1932

Abstract

Our understanding of massive star evolution is in flux due to recent upheavals in our view of mass loss and observations of a high binary fraction among O-type stars. Mass-loss rates for standard metallicity-dependent winds of hot stars are lower by a factor of 2–3 compared with rates adopted in modern stellar evolution codes, due to the influence of clumping on observed diagnostics. Weaker hot star winds shift the burden of H-envelope removal to the winds, pulsations, and eruptions of evolved supergiants, as well as binary mass transfer. Studies of stripped-envelope supernovae, in particular, require binary mass transfer. Dramatic examples of eruptive mass loss are seen in Type IIn supernovae, which have massive shells ejected just a few years earlier. These eruptions are a prelude to core collapse, and may signify severe instabilities in the latest nuclear burning phases. We encounter the predicament that the most important modes of mass loss are also the most uncertain, undermining the predictive power of single-star evolution models. Moreover, the influence of winds and rotation has been evaluated by testing single-star models against observed statistics that, it turns out, are heavily influenced by binary evolution. Altogether, this may alter our view about the most basic outcomes of massive-star mass loss—are Wolf-Rayet stars and Type Ibc supernovae the products of winds, or are they mostly the result of binary evolution and eruptive mass loss? This is not fully settled, but mounting evidence points toward the latter. This paradigm shift impacts other areas of astronomy, because it changes predictions for ionizing radiation and wind feedback from stellar populations, it may alter conclusions about star-formation rates and initial mass functions, it affects the origin of compact stellar remnants, and it influences how we use supernovae as probes of stellar evolution across cosmic time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081913-040025
2014-08-18
2025-02-17
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-astro-081913-040025
Loading
/content/journals/10.1146/annurev-astro-081913-040025
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error