1932

Abstract

The hierarchical triple-body approximation has useful applications to a variety of systems from planetary and stellar scales to supermassive black holes. In this approximation, the energy of each orbit is separately conserved, and therefore the two semimajor axes are constants. On timescales much larger than the orbital periods, the orbits exchange angular momentum, which leads to eccentricity and orientation (i.e., inclination) oscillations. The orbits' eccentricity can reach extreme values, leading to a nearly radial motion, which can further evolve into short orbit periods and merging binaries. Furthermore, the orbits' mutual inclinations may change dramatically from pure prograde to pure retrograde, leading to misalignment and a wide range of inclinations. This dynamical behavior is coined the “eccentric Kozai-Lidov mechanism.” The behavior of such a system is exciting, rich, and chaotic in nature. Furthermore, these dynamics are accessible from a large part of the triple-body parameter space and can be applied to a diverse range of astrophysical settings and used to gain insights into many puzzles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-081915-023315
2016-09-19
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/astro/54/1/annurev-astro-081915-023315.html?itemId=/content/journals/10.1146/annurev-astro-081915-023315&mimeType=html&fmt=ahah

Literature Cited

  1. Albrecht S, Reffert S, Snellen IAG, Winn JN. 2009. Nature 461:373–76 [Google Scholar]
  2. Albrecht S, Setiawan J, Torres G, Fabrycky DC, Winn JN. 2013. Ap. J. 767:32 [Google Scholar]
  3. Albrecht S, Winn JN, Carter JA, Snellen IAG, de Mooij EJW. 2011. Ap. J. 726:68 [Google Scholar]
  4. Albrecht S, Winn JN, Fabrycky DC, Torres G, Setiawan J. 2012a. From Interacting Binaries to Exoplanets: Essential Modeling Tools, Proc. IAU Symp. 282 MT Richards, I Hubeny 397–98 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  5. Albrecht S, Winn JN, Johnson JA. et al. 2012b. Ap. J. 757:18 [Google Scholar]
  6. Albrecht S, Winn JN, Torres G. et al. 2014. Ap. J. 785:83 [Google Scholar]
  7. Antognini JM, Shappee BJ, Thompson TA, Amaro-Seoane P. 2014. MNRAS 439:1079–91 [Google Scholar]
  8. Antognini JMO. 2015. MNRAS 452:3610 [Google Scholar]
  9. Antognini JMO, Thompson TA. 2016. MNRAS 456:4219 [Google Scholar]
  10. Antonini F, Murray N, Mikkola S. 2014. Ap. J. 781:45 [Google Scholar]
  11. Antonini F, Merritt D. 2012. Ap. J. 745:24 [Google Scholar]
  12. Antonini F, Perets HB. 2012. Ap. J. 757:27 [Google Scholar]
  13. Armstrong DJ, Osborn HP, Brown DJA. et al. 2014. MNRAS 444:1873–83 [Google Scholar]
  14. Bailey ME, Chambers JE, Hahn G. 1992. Astron. Astrophys. 257:315–22 [Google Scholar]
  15. Baron F, Monnier JD, Pedretti E. et al. 2012. Ap. J. 752:20 [Google Scholar]
  16. Batygin K. 2012. Nature 491:418–20 [Google Scholar]
  17. Batygin K, Morbidelli A, Tsiganis K. 2011. Astron. Astrophys. 533:A7 [Google Scholar]
  18. Begelman MC, Blandford RD, Rees MJ. 1980. Nature 287:307–9 [Google Scholar]
  19. Binder B, Williams BF, Kong AKH. et al. 2011. Ap. J. Lett. 739:L51 [Google Scholar]
  20. Blaes O, Lee MH, Socrates A. 2002. Ap. J. 578:775–86 [Google Scholar]
  21. Bode JN, Wegg C. 2014. MNRAS 438:573–89 [Google Scholar]
  22. Borkovits T, Hajdu T, Sztakovics J. et al. 2016. MNRAS 455:4136–65 [Google Scholar]
  23. Boué G, Fabrycky DC. 2014a. Ap. J. 789:110 [Google Scholar]
  24. Boué G, Fabrycky DC. 2014b. Ap. J. 789:111 [Google Scholar]
  25. Brouwer D. 1959. Astron. J. 64:378 [Google Scholar]
  26. Callegari S, Mayer L, Kazantzidis S. et al. 2009. Ap. J. Lett. 696:L89–92 [Google Scholar]
  27. Carruba V, Burns JA, Nicholson PD, Gladman BJ. 2002. Icarus 158:434–49 [Google Scholar]
  28. Chambers JE, Migliorini F. 1997. Bull. Am. Astron. Soc. 29:1024 [Google Scholar]
  29. Chatterjee S, Ford EB, Matsumura S, Rasio FA. 2008. Ap. J. 686:580–602 [Google Scholar]
  30. Chen X, Madau P, Sesana A, Liu FK. 2009. Ap. J. Lett. 697:L149–52 [Google Scholar]
  31. Chen X, Sesana A, Madau P, Liu FK. 2011. Ap. J. 729:13 [Google Scholar]
  32. Chirikov BV. 1979. Phys. Rep. 52:263–379 [Google Scholar]
  33. Chou Y, Grindlay JE. 2001. Ap. J. 563:2934–40 [Google Scholar]
  34. Cochran WD, Hatzes AP, Butler RP, Marcy GW. 1996. Bull. Am. Astron. Soc. 28:1111 [Google Scholar]
  35. Correia ACM, Laskar J, Farago F, Boué G. 2011. Celest. Mech. Dyn. Astron. 111:105 [Google Scholar]
  36. Ćuk M, Burns JA. 2004. Astron. J. 128:2518–41 [Google Scholar]
  37. Dawson RI, Chiang E. 2014. Science 346:212–16 [Google Scholar]
  38. Deacon NR, Kraus AL, Mann AW. et al. 2016. MNRAS 455:4212 [Google Scholar]
  39. Di Matteo T, Springel V, Hernquist L. 2005. Nature 433:604–7 [Google Scholar]
  40. Dong S, Katz B, Kushnir D, Prieto JL. 2015. MNRAS 454:61 [Google Scholar]
  41. Dong S, Katz B, Socrates A. 2013. Ap. J. Lett. 763:L2 [Google Scholar]
  42. Dong S, Katz B, Socrates A. 2014. Ap. J. Lett. 781:L5 [Google Scholar]
  43. Dotti M, Sesana A, Decarli R. 2012. Adv. Astron. 2012:3 [Google Scholar]
  44. Doyle LR, Carter JA, Fabrycky DC. et al. 2011. Science 333:1602 [Google Scholar]
  45. Duncan MJ, Levison HF. 1997. Science 276:1670–72 [Google Scholar]
  46. Eggleton PP, Kiseleva LG, Hut P. 1998. Ap. J. 499:853 [Google Scholar]
  47. Eggleton PP, Kiseleva-Eggleton L. 2001. Ap. J. 562:1012–30 [Google Scholar]
  48. Eggleton PP, Kisseleva-Eggleton L, Dearborn X. 2007. Binary Stars as Critical Tools & Tests in Contemporary Astrophysics, Proc. IAU Symp. 240 WI Hartkopf, EF Guinan, P Harmanec 347–55 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  49. Fabrycky D, Tremaine S. 2007. Ap. J. 669:1298–315 [Google Scholar]
  50. Fabrycky DC, Johnson ET, Goodman J. 2007. Ap. J. 665:754–66 [Google Scholar]
  51. Fang J, Margot J-L. 2012. Astron. J. 143:59 [Google Scholar]
  52. Ford EB, Joshi KJ, Rasio FA, Zbarsky B. 2000a. Ap. J. 528:336–50 [Google Scholar]
  53. Ford EB, Kozinsky B, Rasio FA. 2000b. Ap. J. 535:385–401 [Google Scholar]
  54. Freire PCC, Bassa CG, Wex N. et al. 2011. MNRAS 412:2763–80 [Google Scholar]
  55. Frewen S, Hansen. 2016. MNRAS 455:1538 [Google Scholar]
  56. Galaviz P, Brügmann B. 2011. Phys. Rev. D 83:8084013 [Google Scholar]
  57. Geller AM, Mathieu RD. 2012. Astron. J. 144:54 [Google Scholar]
  58. Gillessen S, Eisenhauer F, Trippe S. et al. 2009. Ap. J. 692:1075 [Google Scholar]
  59. Gillessen S, Genzel R, Fritz TK. et al. 2012. Nature 481:51–54 [Google Scholar]
  60. Goldstein H. 1950. Classical Mechanics Reading, Mass: Addison-Wesley, 1st ed.. [Google Scholar]
  61. Gomes RS, Gallardo T, Fernández JA, Brunini A. 2005. Celest. Mech. Dyn. Astron. 91:109–29 [Google Scholar]
  62. Grindlay JE, Bailyn CD, Cohn H. et al. 1988. Ap. J. Lett. 334:L25–29 [Google Scholar]
  63. Gronchi GF, Milani A. 1999. Astron. Astrophys. 341:928–35 [Google Scholar]
  64. Gualandris A, Merritt D. 2009. Ap. J. 705:361–71 [Google Scholar]
  65. Gualandris A, Merritt D. 2012. Ap. J. 744:74 [Google Scholar]
  66. Guillochon J, Ramirez-Ruiz E, Lin D. 2011. Ap. J. 732:74 [Google Scholar]
  67. Hamers AS, Perets HB, Antonini F. et al. 2015. MNRAS 449:4221–45 [Google Scholar]
  68. Hamers AS, Perets HB, Portegies Zwart SF. 2016. MNRAS 455:3180 [Google Scholar]
  69. Hamers AS, Pols OR, Claeys JSW, Nelemans G. 2013. MNRAS 430:2262–80 [Google Scholar]
  70. Hansen BMS. 2010. Ap. J. 723:285–99 [Google Scholar]
  71. Hansen BMS, Zink J. 2015. MNRAS 450:4505–20 [Google Scholar]
  72. Harding LK, Hallinan G, Konopacky QM. et al. 2013. Astron. Astrophys. 554:A113 [Google Scholar]
  73. Harrington RS. 1968. Astron. J. 73:190–94 [Google Scholar]
  74. Harrington RS. 1969. Celest. Mech. 1:200–9 [Google Scholar]
  75. Heintz WD. 1967. Astron. Nachr. 289:269 [Google Scholar]
  76. Hoffman L, Loeb A. 2007. MNRAS 377:957–76 [Google Scholar]
  77. Holman M, Touma J, Tremaine S. 1997. Nature 386:254–56 [Google Scholar]
  78. Hurley JR, Pols OR, Tout CA. 2000. MNRAS 315:543–69 [Google Scholar]
  79. Hut P. 1980. Astron. Astrophys. 92:167–70 [Google Scholar]
  80. Hut P, Bahcall JN. 1983. Ap. J. 268:319–41 [Google Scholar]
  81. Innanen KA, Zheng JQ, Mikkola S, Valtonen MJ. 1997. Astron. J. 113:1915 [Google Scholar]
  82. Ivanov PB, Polnarev AG, Saha P. 2005. MNRAS 358:1361–78 [Google Scholar]
  83. Iwasawa M, An S, Matsubayashi T, Funato Y, Makino J. 2011. Ap. J. Lett. 731:L9 [Google Scholar]
  84. Jefferys WH, Moser J. 1966. Astron. J. 71:568–78 [Google Scholar]
  85. Katz B, Dong S. 2012. The rate of WD-WD head-on collisions may be as high as the SNe Ia rate. arXiv:1211.4584
  86. Katz B, Dong S, Malhotra R. 2011. Phys. Rev. Lett. 107:1101 [Google Scholar]
  87. Khan FM, Berentzen I, Berczik P. et al. 2012. Ap. J. 756:30 [Google Scholar]
  88. Kinoshita H, Nakai H. 1991. Celest. Mech. Dyn. Astron. 52:293–303 [Google Scholar]
  89. Kinoshita H, Nakai H. 1999. Celest. Mech. Dyn. Astron. 75:125–47 [Google Scholar]
  90. Kinoshita H, Nakai H. 2007. Celest. Mech. Dyn. Astron. 98:67–74 [Google Scholar]
  91. Kiseleva LG, Eggleton PP, Mikkola S. 1998. MNRAS 300:292–302 [Google Scholar]
  92. Knutson HA, Fulton BJ, Montet BT. et al. 2014. Ap. J. 785:126 [Google Scholar]
  93. Kocsis B, Tremaine S. 2011. MNRAS 412:187–207 [Google Scholar]
  94. Kocsis B, Tremaine S. 2015. MNRAS 448:3265–96 [Google Scholar]
  95. Kostov VB, McCullough PR, Carter JA. et al. 2014. Ap. J. 784:14 [Google Scholar]
  96. Kostov VB, McCullough PR, Hinse TC. et al. 2013. Ap. J. 770:52 [Google Scholar]
  97. Kozai Y. 1962. Astron. J. 67:591 [Google Scholar]
  98. Kozai Y. 1979. Dynamics of the Solar System, Proc. IAU Symp. 81 RL Duncombe 231–36 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  99. Kratter KM, Perets HB. 2012. Ap. J. 753:91 [Google Scholar]
  100. Kroupa P. 1995. MNRAS 277:1507 [Google Scholar]
  101. Kulkarni G, Loeb A. 2012. MNRAS 422:1306–23 [Google Scholar]
  102. Kushnir D, Katz B, Dong S, Livne E, Fernández R. 2013. Ap. J. Lett. 778:L37 [Google Scholar]
  103. Lanza AF, Shkolnik EL. 2014. MNRAS 443:1451–62 [Google Scholar]
  104. Levesque EM, Massey P, Żytkow AN, Morrell N. 2014. MNRAS 443:L94–98 [Google Scholar]
  105. Levrard B, Correia ACM, Chabrier G. et al. 2007. Astron. Astrophys. 462:L5–8 [Google Scholar]
  106. Li G, Naoz S, Holman M, Loeb A. 2014a. Ap. J. 791:86 Erratum. 2015 Ap. J. 802:71 [Google Scholar]
  107. Li G, Naoz S, Kocsis B, Loeb A. 2014b. Ap. J. 785:116 [Google Scholar]
  108. Li G, Naoz S, Kocsis B, Loeb A. 2015. MNRAS 451:1341–49 [Google Scholar]
  109. Li G, Naoz S, Valsecchi F, Johnson JA, Rasio FA. 2014c. Ap. J. 794:131 [Google Scholar]
  110. Lidov ML. 1962. Planet. Space Sci. 9:719–59 [Google Scholar]
  111. Lidov ML, Ziglin SL. 1974. Celest. Mech. 9:151–73 [Google Scholar]
  112. Lidov ML, Ziglin SL. 1976. Celest. Mech. 13:471–89 [Google Scholar]
  113. Lin DNC, Papaloizou J. 1986. Ap. J. 309:846–57 [Google Scholar]
  114. Lithwick Y, Naoz S. 2011. Ap. J. 742:94 [Google Scholar]
  115. Lithwick Y, Wu Y. 2012. Ap. J. Lett. 756:L11 [Google Scholar]
  116. Liu B, Muñoz DJ, Lai D. 2015. MNRAS 447:747–64 [Google Scholar]
  117. Liu S-F, Guillochon J, Lin DNC, Ramirez-Ruiz E. 2013. Ap. J. 762:37 [Google Scholar]
  118. Luo L, Katz B, Dong S. 2016. MNRAS 458:3060 [Google Scholar]
  119. Madigan A-M, Levin Y. 2012. Ap. J. 754:42 [Google Scholar]
  120. Mandel I, Brown DA, Gair JR, Miller MC. 2008. Ap. J. 681:1431–47 [Google Scholar]
  121. Maoz D, Mannucci F, Nelemans G. 2014. Annu. Rev. Astron. Astrophys. 52:107–70 [Google Scholar]
  122. Marchal C. 1990. The Three-Body Problem Amsterdam: Elsevier [Google Scholar]
  123. Mardling RA, Aarseth SJ. 2001. MNRAS 321:398–420 [Google Scholar]
  124. Margot J-L, Pravec P, Taylor P, Carry B, Jacobson S. 2015. Asteroids IV P Michel, FE DeMeo, WF Bottke 355–74 Tucson, AZ: Univ. Ariz. Press
  125. Martin DV, Mazeh T, Fabrycky DC. 2015. MNRAS 453:3554–67 [Google Scholar]
  126. Martin DV, Triaud AHMJ. 2015a. MNRAS 449:781–93 [Google Scholar]
  127. Martin DV, Triaud AHMJ. 2015b. MNRAS 455:1L46–50 [Google Scholar]
  128. Masset FS, Papaloizou JCB. 2003. Ap. J. 588:494–508 [Google Scholar]
  129. Mazeh T, Krymolowski Y, Rosenfeld G. 1997. Ap. J. Lett. 477:L103–6 [Google Scholar]
  130. Mazeh T, Shaham J. 1979. Astron. Astrophys. 77:145–51 [Google Scholar]
  131. McKenna J, Lyne AG. 1988. Nature 336:226 [Google Scholar]
  132. Meiron Y, Laor A. 2013. MNRAS 433:2502–10 [Google Scholar]
  133. Merritt D, Alexander T, Mikkola S, Will CM. 2010. Phys. Rev. D 81:6062002 [Google Scholar]
  134. Merritt D, Vasiliev E. 2012. Phys. Rev. D 86:10102002 [Google Scholar]
  135. Michaely E, Perets HB. 2014. Ap. J. 794:122 [Google Scholar]
  136. Miller MC, Hamilton DP. 2002. Ap. J. 576:894–98 [Google Scholar]
  137. Milosavljević M, Merritt D. 2001. Ap. J. 563:34–62 [Google Scholar]
  138. Misner CW, Thorne KS, Wheeler JA. 1973. Gravitation San Francisco: W.H. Freeman [Google Scholar]
  139. Moeckel N, Veras D. 2012. MNRAS 422:831–40 [Google Scholar]
  140. Morbidelli A. 2002. Modern Celestial Mechanics: Aspects of Solar System Dynamics London: Taylor & Francis [Google Scholar]
  141. Morton TD, Johnson JA. 2011. Ap. J. 729:138 [Google Scholar]
  142. Muñoz DJ, Lai D. 2015. PNAS 112:9264–69 [Google Scholar]
  143. Murray CD, Dermott SF. 1999. Solar System Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  144. Murray N, Holman M. 1997. Astron. J. 114:1246–59 [Google Scholar]
  145. Nagasawa M, Ida S. 2011. Ap. J. 742:72 [Google Scholar]
  146. Nagasawa M, Ida S, Bessho T. 2008. Ap. J. 678:498–508 [Google Scholar]
  147. Naoz S, Fabrycky DC. 2014. Ap. J. 793:137 [Google Scholar]
  148. Naoz S, Farr WM, Lithwick Y, Rasio FA, Teyssandier J. 2011. Nature 473:187–89 [Google Scholar]
  149. Naoz S, Farr WM, Lithwick Y, Rasio FA, Teyssandier J. 2013a. MNRAS 431:2155–71 [Google Scholar]
  150. Naoz S, Farr WM, Rasio FA. 2012. Ap. J. Lett. 754:L36 [Google Scholar]
  151. Naoz S, Fragos T, Geller A, Stephan SP, Rasio FA. 2016. Ap. J. Lett. 822:L24 [Google Scholar]
  152. Naoz S, Kocsis B, Loeb A, Yunes N. 2013b. Ap. J. 773:187 [Google Scholar]
  153. Naoz S, Perets HB, Ragozzine D. 2010. Ap. J. 719:1775–83 [Google Scholar]
  154. Naoz S, Silk J. 2014. Ap. J. 795:102 [Google Scholar]
  155. Nesvorný D, Alvarellos JLA, Dones L, Levison HF. 2003. Astron. J. 126:398–429 [Google Scholar]
  156. Nesvorný D, Vokrouhlický D, Bottke WF, Noll K, Levison HF. 2011. Astron. J. 141:159 [Google Scholar]
  157. Ngo H, Knutson HA, Hinkley S. et al. 2015. Ap. J. 800:138 [Google Scholar]
  158. O'Leary RM, Rasio FA, Fregeau JM, Ivanova N, O'Shaughnessy R. 2006. Ap. J. 637:937–51 [Google Scholar]
  159. Orosz JA, Welsh WF, Carter JA. et al. 2012a. Ap. J. 758:87 [Google Scholar]
  160. Orosz JA, Welsh WF, Carter JA. et al. 2012b. Science 337:1511 [Google Scholar]
  161. Pejcha O, Antognini JM, Shappee BJ, Thompson TA. 2013. MNRAS 435:943–51 [Google Scholar]
  162. Perets HB, Fabrycky DC. 2009. Ap. J. 697:1048–56 [Google Scholar]
  163. Perets HB, Kratter KM. 2012. Ap. J. 760:99 [Google Scholar]
  164. Perets HB, Naoz S. 2009. Ap. J. Lett. 699:L17–21 [Google Scholar]
  165. Petrovich C. 2015a. Ap. J. 799:27 [Google Scholar]
  166. Petrovich C. 2015b. Ap. J. 805:75 [Google Scholar]
  167. Petrovich C. 2015c. Ap. J. 808:120 [Google Scholar]
  168. Podsiadlowski P, Rappaport S, Han Z. 2003. MNRAS 341:385–404 [Google Scholar]
  169. Polishook D, Brosch N. 2006. Presented at NASA's “Near-Earth Object Detect., Charact., and Threat Mitig.” workshop, June 2006, Colorado. arXiv:0607128
  170. Polishook D, Brosch N. 2009. Icarus 199:319–32 [Google Scholar]
  171. Pravec P, Scheirich P, Kusnirák P. et al. 2006. Icarus 181:63–93 [Google Scholar]
  172. Pribulla T, Rucinski SM. 2006. Astron. J. 131:2986–3007 [Google Scholar]
  173. Prodan S, Antonini F, Perets HB. 2015. Ap. J. 799:118 [Google Scholar]
  174. Prodan S, Murray N. 2012. Ap. J. 747:14 [Google Scholar]
  175. Prodan S, Murray N, Thompson TA. 2013. arXiv:1305.2191
  176. Quinn T, Tremaine S, Duncan M. 1990. Ap. J. 355:667–79 [Google Scholar]
  177. Raghavan D, Henry TJ, Mason BD. et al. 2006. Ap. J. 646:523–42 [Google Scholar]
  178. Raghavan D, McAlister HA, Henry TJ. et al. 2010. Ap. J. Suppl. 190:1–42 [Google Scholar]
  179. Ransom SM, Stairs IH, Archibald AM. et al. 2014. Nature 505:7484520–24 [Google Scholar]
  180. Rasio FA. 2001. Evolution of Binary and Multiple Star Systems; A Meeting in Celebration of Peter Eggleton's 60th Birthday P Podsiadlowski, S Rappaport, AR King, F D'Antona, L Burderi ASP Conf. Ser. 229117 San Francisco: ASP [Google Scholar]
  181. Rasio FA, Ford EB. 1996. Science 274:954–56 [Google Scholar]
  182. Rice K. 2015. MNRAS 448:1729–37 [Google Scholar]
  183. Schwamb ME, Orosz JA, Carter JA. et al. 2013. Ap. J. 768:127 [Google Scholar]
  184. Sesana A, Gualandris A, Dotti M. 2011. MNRAS 415:L35–39 [Google Scholar]
  185. Seto N. 2013. Phys. Rev. Lett. 111:6061106 [Google Scholar]
  186. Shappee BJ, Stanek KZ, Pogge RW, Garnavich PM. 2013. Ap. J. Lett. 762:L5 [Google Scholar]
  187. Shappee BJ, Thompson TA. 2013. Ap. J. 766:64 [Google Scholar]
  188. Sigurdsson S, Richer HB, Hansen BM, Stairs IH, Thorsett SE. 2003. Science 301:5193–96 [Google Scholar]
  189. Söderhjelm S. 1975. Astron. Astrophys. 42:229–36 [Google Scholar]
  190. Soderhjelm S. 1982. Astron. Astrophys. 107:54–60 [Google Scholar]
  191. Söderhjelm S. 1984. Astron. Astrophys. 141:232–40 [Google Scholar]
  192. Stephan AP, Naoz S, Ghez AM. et al. 2016. MNRAS 460(4):3494–504 [Google Scholar]
  193. Storch NI, Anderson KR, Lai D. 2014. Science 345:1317–21 [Google Scholar]
  194. Storch NI, Lai D. 2015. MNRAS 448:1821–34 [Google Scholar]
  195. Takeda G, Kita R, Rasio FA. 2008. Ap. J. 683:1063–75 [Google Scholar]
  196. Tamayo D, Burns JA, Hamilton DP. 2013. Icarus 226:655–62 [Google Scholar]
  197. Tauris TM, van den Heuvel EPJ. 2014. Ap. J. Lett. 781:1L13 [Google Scholar]
  198. Teyssandier J, Naoz S, Lizarraga I, Rasio FA. 2013. Ap. J. 779:166 [Google Scholar]
  199. Thomas F, Morbidelli A. 1996. Celest. Mech. Dyn. Astron. 64:209–29 [Google Scholar]
  200. Thompson TA. 2011. Ap. J. 741:82 [Google Scholar]
  201. Thorne KS, Zytkow AN. 1975. Ap. J. Lett. 199:L19–24 [Google Scholar]
  202. Thorsett SE, Arzoumanian Z, Camilo F, Lyne AG. 1999. Ap. J. 523:2763–70 [Google Scholar]
  203. Tokovinin A. 2008. MNRAS 389:925–38 [Google Scholar]
  204. Tokovinin A. 2014a. Astron. J. 147:86 [Google Scholar]
  205. Tokovinin A. 2014b. Astron. J. 147:87 [Google Scholar]
  206. Tokovinin AA. 1997. Astron. Lett. 23:727–30 [Google Scholar]
  207. Tokovinin AA, Smekhov MG. 2002. Astron. Astrophys. 382:118–23 [Google Scholar]
  208. Touma JR, Tremaine S, Kazandjian MV. 2009. MNRAS 394:1085–108 [Google Scholar]
  209. Triaud AHMJ, Collier Cameron A, Queloz D. et al. 2010. Astron. Astrophys. 524:A25 [Google Scholar]
  210. Triaud AHMJ, Hebb L, Anderson DR. et al. 2013. Astron. Astrophys. 549:A18 [Google Scholar]
  211. Valtonen M, Karttunen H. 2006. The Three-Body Problem Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  212. Valtonen MJ. 1996. MNRAS 278:186–90 [Google Scholar]
  213. Vashkov'yak MA. 1999. Astron. Lett. 25:476–81 [Google Scholar]
  214. Veras D, Evans NW, Wyatt MC, Tout CA. 2014. MNRAS 437:1127–40 [Google Scholar]
  215. Veras D, Ford EB. 2010. Ap. J. 715:803–22 [Google Scholar]
  216. Veras D, Mustill AJ, Bonsor A, Wyatt MC. 2013. MNRAS 431:1686–708 [Google Scholar]
  217. Veras D, Tout CA. 2012. MNRAS 422:1648–64 [Google Scholar]
  218. Wang J, Fischer DA, Horch EP, Xie J-W. 2015. Ap. J. 806:248 [Google Scholar]
  219. Wang L, Berczik P, Spurzem R, Kouwenhoven MBN. 2014. Ap. J. 780:164 [Google Scholar]
  220. Welsh WF, Orosz JA, Carter JA. et al. 2012. Nature 481:475–79 [Google Scholar]
  221. Welsh WF, Orosz JA, Short DR. et al. 2015. Ap. J. 809:26 [Google Scholar]
  222. Wen L. 2003. Ap. J. 598:419–30 [Google Scholar]
  223. Will CM. 2014a. Class. Quantum Gravity 31:24244001 [Google Scholar]
  224. Will CM. 2014b. Phys. Rev. D 89:4044043 [Google Scholar]
  225. Winn JN, Fabrycky D, Albrecht S, Johnson JA. 2010. Ap. J. Lett. 718:L145–49 [Google Scholar]
  226. Wisdom J, Holman M. 1991. Astron. J. 102:1528–38 [Google Scholar]
  227. Witzel G, Ghez AM, Morris MR. et al. 2014. Ap. J. Lett. 796:L8 [Google Scholar]
  228. Wu Y, Murray N. 2003. Ap. J. 589:605–14 [Google Scholar]
  229. Wu Y, Murray NW, Ramsahai JM. 2007. Ap. J. 670:820–25 [Google Scholar]
  230. Yokoyama T, Santos MT, Cardin G, Winter OC. 2003. Astron. Astrophys. 401:763–72 [Google Scholar]
  231. Yu Q. 2002. MNRAS 331:935–58 [Google Scholar]
  232. Yunes N, Miller MC, Thornburg J. 2011. Phys. Rev. D 83:4044030 [Google Scholar]
  233. Zdziarski AA, Wen L, Gierliński M. 2007. MNRAS 377:31006–16 [Google Scholar]
  234. Zhou G, Huang CX. 2013. Ap. J. Lett. 776:L35 [Google Scholar]
/content/journals/10.1146/annurev-astro-081915-023315
Loading
/content/journals/10.1146/annurev-astro-081915-023315
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error