Magnetars are young and highly magnetized neutron stars that display a wide array of X-ray activity including short bursts, large outbursts, giant flares, and quasi-periodic oscillations, often coupled with interesting timing behavior including enhanced spin-down, glitches, and antiglitches. The bulk of this activity is explained by the evolution and decay of an ultrastrong magnetic field, stressing and breaking the neutron-star crust, which in turn drives twists of the external magnetosphere and powerful magnetospheric currents. The population of detected magnetars has grown to about 30 objects and shows unambiguous phenomenological connection with highly magnetized radio pulsars. Recent progress in magnetar theory includes explanation of the hard X-ray component in the magnetar spectrum and development of surface heating models, explaining the sources’ remarkable radiative output.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adler SL. 1971. Ann. Phys. 67:599–647 [Google Scholar]
  2. Akgün T, Reisenegger A, Mastrano A, Marchant P. 2013. MNRAS 433:2445–66 [Google Scholar]
  3. Alford JAJ, Halpern JP. 2016. Ap. J. 818:122 [Google Scholar]
  4. An H, Archibald RF, Hascoët R. et al. 2015. Ap. J. 807:93 [Google Scholar]
  5. An H, Kaspi VM, Archibald R, Cumming A. 2013. Ap. J. 763:82 [Google Scholar]
  6. An H, Kaspi VM, Beloborodov AM. et al. 2014. Ap. J. 790:60 [Google Scholar]
  7. An H, Kaspi VM, Tomsick JA. et al. 2012. Ap. J. 757:68 [Google Scholar]
  8. Anderson PW, Itoh N. 1975. Nature 256:25–27 [Google Scholar]
  9. Archibald AM, Kaspi VM, Livingstone MA, McLaughlin MA. 2008. Ap. J. 688:550–54 [Google Scholar]
  10. Archibald RF, Kaspi VM, Beardmore AP, Gehrels N, Kennea JA. 2015a. Ap. J. 810:67 [Google Scholar]
  11. Archibald RF, Kaspi VM, Ng CY. et al. 2013. Nature 497:591–93 [Google Scholar]
  12. Archibald RF, Kaspi VM, Ng CY. et al. 2015b. Ap. J. 800:33 [Google Scholar]
  13. Archibald RF, Kaspi VM, Tendulkar SP, Scholz P. 2016a. Ap. J. Lett. 829:L21 [Google Scholar]
  14. Archibald RF, Tendulkar SP, Scholz P, Kaspi VM. 2016b. Astron. Telegr.9316 [Google Scholar]
  15. Arzoumanian Z, Chernoff DF, Cordes JM. 2002. Ap. J. 568:289–301 [Google Scholar]
  16. Baring MG, Harding AK. 2007. Ap. Space Sci. 308:109–18 [Google Scholar]
  17. Baykal A, Strohmayer T, Swank J, Alpar A, Stark MJ. 2000. MNRAS 319:205–8 [Google Scholar]
  18. Baykal A, Swank J. 1996. Ap. J. 460:470–77 [Google Scholar]
  19. Beloborodov AM. 2009. Ap. J. 703:1044–60 [Google Scholar]
  20. Beloborodov AM. 2013a. Ap. J. 762:13 [Google Scholar]
  21. Beloborodov AM. 2013b. Ap. J. 777:114 [Google Scholar]
  22. Beloborodov AM, Levin Y. 2014. Ap. J. Lett. 794:L24 [Google Scholar]
  23. Beloborodov AM, Li X. 2016. Ap. J. 833:261 [Google Scholar]
  24. Beloborodov AM, Thompson C. 2007. Ap. J. 657:967–93 [Google Scholar]
  25. Berger E. 2014. Annu. Rev. Astron. Astrophys. 52:43–105 [Google Scholar]
  26. Boggs SE, Zoglauer A, Bellm E. et al. 2007. Ap. J. 661:458–67 [Google Scholar]
  27. Bower GC, Deller A, Demorest P. et al. 2014. Ap. J. Lett. 780:L2 [Google Scholar]
  28. Braithwaite J. 2009. MNRAS 397:763–74 [Google Scholar]
  29. Brisken WF, Fruchter AS, Goss WM, Herrnstein RS, Thorsett SE. 2003. Astron. J. 126:3090–98 [Google Scholar]
  30. Burgay M, Possenti A, Kerr M. et al. 2016. Astron. Telegr.9286 [Google Scholar]
  31. Camero-Arranz A, Rea N, Bucciantini N. et al. 2013. MNRAS 429:2493–99 [Google Scholar]
  32. Camilo F, Ransom SM, Halpern JP. et al. 2006. Nature 442:892–95 [Google Scholar]
  33. Camilo F, Ransom SM, Halpern JP. et al. 2016. Ap. J. 820:110 [Google Scholar]
  34. Camilo F, Ransom SM, Halpern JP, Reynolds J. 2007a. Ap. J. 666:L93–96 [Google Scholar]
  35. Camilo F, Ransom SM, Peñalver J. et al. 2007b. Ap. J. 669:561–69 [Google Scholar]
  36. Camilo F, Reynolds J, Johnston S, Halpern JP, Ransom SM. 2008. Ap. J. 679:681–86 [Google Scholar]
  37. Chakraborty M, Göğüş E, Şaşmaz Muş S, Kaneko Y. 2016. Ap. J. 819:153 [Google Scholar]
  38. Chen AY, Beloborodov AM. 2016. Ap. J. Submitted arXiv:1610.10036 [Google Scholar]
  39. Chugunov AI, Horowitz CJ. 2010. MNRAS 407:L54–58 [Google Scholar]
  40. Cline TL, Desai UD, Teegarden BJ. et al. 1982. Ap. J. 255:L45–48 [Google Scholar]
  41. Colpi M, Geppert U, Page D. 2000. Ap. J. 529:L29–32 [Google Scholar]
  42. Cordes JM, Lazio TJW. 2001. Ap. J. 549:997–1010 [Google Scholar]
  43. D'Aì A, Evans PA, Burrows DN. et al. 2016. MNRAS 463:2394 [Google Scholar]
  44. Dall'Osso S, Israel GL, Stella L, Possenti A, Perozzi E. 2003. Ap. J. 599:485–97 [Google Scholar]
  45. De Luca A, Caraveo PA, Mereghetti S, Tiengo A, Bignami GF. 2006. Science 313:814–17 [Google Scholar]
  46. den Hartog PR, Kuiper L, Hermsen W. 2008a. Astron. Astrophys. 489:263–79 [Google Scholar]
  47. den Hartog PR, Kuiper L, Hermsen W. et al. 2008b. Astron. Astrophys. 489:245–61 [Google Scholar]
  48. Dhillon VS, Marsh TR, Hulleman F. et al. 2005. MNRAS 363:609–14 [Google Scholar]
  49. Dhillon VS, Marsh TR, Littlefair SP. et al. 2009. MNRAS 394:L112–16 [Google Scholar]
  50. Dhillon VS, Marsh TR, Littlefair SP. et al. 2011. MNRAS 416:L16–20 [Google Scholar]
  51. Dib R, Kaspi VM. 2014. Ap. J. 784:37 [Google Scholar]
  52. Dib R, Kaspi VM, Gavriil FP. 2008. Ap. J. 673:1044–61 [Google Scholar]
  53. Duncan RC. 1998. Ap. J. Lett. 498:L45–49 [Google Scholar]
  54. Duncan RC, Thompson C. 1992. Ap. J. 392:L9–13 [Google Scholar]
  55. Durant M, van Kerkwijk MH. 2006. Ap. J. 652:576–83 [Google Scholar]
  56. Eatough RP, Falcke H, Karuppusamy R. et al. 2013. Nature 501:391–94 [Google Scholar]
  57. Eichler D, Gedalin M, Lyubarsky Y. 2002. Ap. J. 578:L121–24 [Google Scholar]
  58. Enoto T, Nakazawa K, Makishima K. et al. 2010. Ap. J. Lett. 722:L162–67 [Google Scholar]
  59. Esposito P, Tiengo A, Rea N. et al. 2013. MNRAS 429:3123–32 [Google Scholar]
  60. Evans WD, Klebesadel RW, Laros JG. et al. 1980. Ap. J. 237:L7–9 [Google Scholar]
  61. Fahlman GG, Gregory PC. 1981. Nature 293:202–4 [Google Scholar]
  62. Faucher-Giguère CA, Kaspi VM. 2006. Ap. J. 643:332–55 [Google Scholar]
  63. Fenimore EE, Evans WD, Klebesadel RW, Laros JG, Terrell J. 1981. Nature 289:42 [Google Scholar]
  64. Fernández R, Davis SW. 2011. Ap. J. 730:131 [Google Scholar]
  65. Fernández R, Thompson C. 2007. Ap. J. 660:615–40 [Google Scholar]
  66. Feroci M, Hurley K, Duncan RC, Thompson C. 2001. Ap. J. 549:1021–38 [Google Scholar]
  67. Ferrario L, Wickramasinghe D. 2006. MNRAS 367:1323–28 [Google Scholar]
  68. Flowers EG, Ruderman M, Sutherland PG. 1976. Ap. J. 205:241 [Google Scholar]
  69. Frail DA, Kulkarni SR, Bloom JS. 1999. Nature 398:127–29 [Google Scholar]
  70. Gabler M, Cerdá-Durán P, Stergioulas N, Font JA, Müller E. 2013. Phys. Rev. Lett. 111:211102 [Google Scholar]
  71. Gabler M, Cerdá-Durán P, Stergioulas N, Font JA, Müller E. 2014. MNRAS 443:1416–24 [Google Scholar]
  72. Gaensler BM, Kouveliotou C, Gelfand JD. et al. 2005. Nature 434:1104–6 [Google Scholar]
  73. Gaensler BM, Slane PO. 2006. Annu. Rev. Astron. Astrophys. 44:17–47 [Google Scholar]
  74. Gavriil FP, Dib R, Kaspi VM. 2011. Ap. J. 736:138 [Google Scholar]
  75. Gavriil FP, Gonzalez ME, Gotthelf EV. et al. 2008. Science 319:1802–5 [Google Scholar]
  76. Gavriil FP, Kaspi VM, Woods PM. 2002. Nature 419:142–44 [Google Scholar]
  77. Gavriil FP, Kaspi VM, Woods PM. 2004. Ap. J. 607:959–69 [Google Scholar]
  78. Gelfand JD, Lyubarsky YE, Eichler D. et al. 2005. Ap. J. Lett. 634:L89–92 [Google Scholar]
  79. Gill R, Heyl JS. 2010. MNRAS 407:1926–32 [Google Scholar]
  80. Glampedakis K, Jones DI, Samuelsson L. 2011. MNRAS 413:2021–30 [Google Scholar]
  81. Goldreich P, Reisenegger A. 1992. Ap. J. 395:250–58 [Google Scholar]
  82. Gonzalez ME, Dib R, Kaspi VM. et al. 2010. Ap. J. 716:1345–55 [Google Scholar]
  83. Gonzalez Caniulef D, Zane S, Taverna R. et al. 2016. MNRAS 459:3585–95 [Google Scholar]
  84. Gotthelf EV, Halpern JP. 2007. Ap. J. 664:L35–38 [Google Scholar]
  85. Gotthelf EV, Halpern JP, Buxton M, Bailyn C. 2004. Ap. J. 605:368–77 [Google Scholar]
  86. Gotthelf EV, Vasisht G, Boylan-Kolchin M, Torii K. 2000. Ap. J. 542:L37–40 [Google Scholar]
  87. Göğüş E, Güver T, Özel F, Eichler D, Kouveliotou C. 2011a. Ap. J. 728:160 [Google Scholar]
  88. Göğüş E, Lin L, Kaneko Y. et al. 2016. Ap. J. Lett. 829:L25 [Google Scholar]
  89. Göğüş E, Kouveliotou C, Woods PM. et al. 2001. Ap. J. 558:228–36 [Google Scholar]
  90. Göğüş E, Woods PM, Kouveliotou C. et al. 1999. Ap. J. 526:L93–96 [Google Scholar]
  91. Göğüş E, Woods PM, Kouveliotou C. et al. 2000. Ap. J. 532:L121–24 [Google Scholar]
  92. Göğüş E, Woods PM, Kouveliotou C. et al. 2011b. Ap. J. 740:55 [Google Scholar]
  93. Götz D, Mereghetti S, Tiengo A, Esposito P. 2006. Astron. Astrophys. 449:L31–34 [Google Scholar]
  94. Gourgouliatos KN, Cumming A. 2014. MNRAS 438:1618–29 [Google Scholar]
  95. Gourgouliatos KN, Wood TS, Hollerbach R. 2016. PNAS 113:3944–49 [Google Scholar]
  96. Gregory PC, Fahlman GG. 1980. Nature 287:805–6 [Google Scholar]
  97. Güver T, Göğüş E, Özel F. 2011. MNRAS 418:2773–78 [Google Scholar]
  98. Gvozdev AA, Ognev IS, Osokina EV. 2011. Astron. Lett. 37:332–42 [Google Scholar]
  99. Halpern JP, Gotthelf EV. 2010. Ap. J. 709:436–46 [Google Scholar]
  100. Harding AK, Contopoulos I, Kazanas D. 1999. Ap. J. 525:L125–28 [Google Scholar]
  101. Hascoët R, Beloborodov AM. Hartog PR. , den 2014. Ap. J. Lett. 786L1 [Google Scholar]
  102. Helfand DJ. 1994. MNRAS 267:490 [Google Scholar]
  103. Heyl JS, Hernquist L. 2005. Ap. J. 618:463–73 [Google Scholar]
  104. Heyl JS, Shaviv NJ, Lloyd D. 2003. MNRAS 342:134 [Google Scholar]
  105. Ho WCG, Andersson N. 2017. MNRAS 464:65 [Google Scholar]
  106. Ho WCG, Lai D. 2001. MNRAS 327:1081–96 [Google Scholar]
  107. Horowitz CJ, Kadau K. 2009. Phys. Rev. Lett. 102:191102 [Google Scholar]
  108. Huppenkothen D, D'Angelo C, Watts AL. et al. 2014. Ap. J. 787:128 [Google Scholar]
  109. Huppenkothen D, Watts AL, Uttley P. et al. 2013. Ap. J. 768:87 [Google Scholar]
  110. Hurley K, Boggs SE, Smith DM. et al. 2005. Nature 434:1098–103 [Google Scholar]
  111. Hurley K, Cline T, Mazets E. et al. 1999. Nature 397:41–43 [Google Scholar]
  112. Hurley K, Rowlinson A, Bellm E. et al. 2010. MNRAS 403:342–52 [Google Scholar]
  113. Ibrahim AI, Markwardt CB, Swank JH. et al. 2004. Ap. J. 609:L21–24 [Google Scholar]
  114. Icdem B, Baykal A, Inam SC. 2012. MNRAS 419:3109–14 [Google Scholar]
  115. Israel G, Covino S, Mignani R. et al. 2005a. Astron. Astrophys. 438:L1–4 [Google Scholar]
  116. Israel GL, Belloni T, Stella L. et al. 2005b. Ap. J. Lett. 628:L53–56 [Google Scholar]
  117. Israel GL, Esposito P, Rea N. et al. 2010. MNRAS 408:1387–95 [Google Scholar]
  118. Israel GL, Mereghetti S, Stella L. 1994. Ap. J. 433:L25–28 [Google Scholar]
  119. Israel GL, Oosterbroek T, Angelini L. et al. 1999. Astron. Astrophys. 346:929–35 [Google Scholar]
  120. Jones PB. 1988. MNRAS 233:875–85 [Google Scholar]
  121. Jones PB. 2003. Ap. J. 595:342–45 [Google Scholar]
  122. Kaminker AD, Kaurov AA, Potekhin AY, Yakovlev DG. 2014. MNRAS 442:3484–94 [Google Scholar]
  123. Kargaltsev O, Kouveliotou C, Pavlov GG. et al. 2012. Ap. J. 748:26 [Google Scholar]
  124. Kaspi VM. 2010. PNAS 107:7147–52 [Google Scholar]
  125. Kaspi VM, Boydstun K. 2010. Ap. J. Lett. 710:L115–20 [Google Scholar]
  126. Kaspi VM, Chakrabarty D, Steinberger J. 1999. Ap. J. 525:L33–36 [Google Scholar]
  127. Kaspi VM, Gavriil FP. 2003. Ap. J. 596:L71–74 [Google Scholar]
  128. Kaspi VM, Gavriil FP, Woods PM. et al. 2003. Ap. J. 588:L93 [Google Scholar]
  129. Kaspi VM, Kramer M. 2015. Proc. 26th Solvay Conf. Phys. Astrophys. Cosmol., Brussels, Belgium Oct. 9–11 22–61 Singapore: World Sci arXiv1602.07738 [Google Scholar]
  130. Kaspi VM, Lackey JR, Chakrabarty D. 2000. Ap. J. 537:L31–34 [Google Scholar]
  131. Kaspi VM, McLaughlin MA. 2005. Ap. J.618 [Google Scholar]
  132. Kennea JA, Burrows DN, Kouveliotou C. et al. 2013. Ap. J. Lett. 770:L24 [Google Scholar]
  133. Kennea JA, Lien AY, Marshall FE. et al. 2016. Gamma-ray Coord. Netw. Circ.19735 [Google Scholar]
  134. Kern B, Martin C. 2002. Nature 415:527–29 [Google Scholar]
  135. Kouveliotou C, Dieters S, Strohmayer T. et al. 1998. Nature 393:235–37 [Google Scholar]
  136. Kouveliotou C, Norris JP, Cline TL. et al. 1987. Ap. J. Lett. 322:L21–25 [Google Scholar]
  137. Kouveliotou C, Strohmayer T, Hurley K. et al. 1999. Ap. J. 510:L115–18 [Google Scholar]
  138. Kuiper L, Hermsen W. 2009. Astron. Astrophys. 501:1031–46 [Google Scholar]
  139. Kuiper L, Hermsen W, den Hartog P, Collmar W. 2006. Ap. J. 645:556–75 [Google Scholar]
  140. Kuiper L, Hermsen W, den Hartog PR, Urama JO. 2012. Ap. J. 748:133 [Google Scholar]
  141. Kuiper L, Hermsen W, Mendez M. 2004. Ap. J. 613:1173–78 [Google Scholar]
  142. Kulkarni SR, Kaplan DL, Marshall HL. et al. 2003. Ap. J. 585:948–54 [Google Scholar]
  143. Kumar HS, Safi-Harb S. 2008. Ap. J. 678:L43–46 [Google Scholar]
  144. Lai D, Ho WC. 2003. Phys. Rev. Lett. 91:071101 [Google Scholar]
  145. Lander SK, Andersson N, Antonopoulou D, Watts AL. 2015. MNRAS 449:2047–58 [Google Scholar]
  146. Laros JG, Fenimore EE, Klebesadel RW. et al. 1987. Ap. J. Lett. 320:L111–15 [Google Scholar]
  147. Lazaridis K, Jessner A, Kramer M. et al. 2008. MNRAS 390:839–46 [Google Scholar]
  148. Lazarus P, Kaspi VM, Champion DJ, Hessels JWT, Dib R. 2012. Ap. J. 744:97 [Google Scholar]
  149. Lenters GT, Woods PM, Goupell JE. et al. 2003. Ap. J. 587:761–70 [Google Scholar]
  150. Levin L, Bailes M, Bates S. et al. 2010. Ap. J. Lett. 721:L33–37 [Google Scholar]
  151. Levin L, Bailes M, Bates SD. et al. 2012. MNRAS 422:2489–500 [Google Scholar]
  152. Levin Y. 2007. MNRAS 377:159–67 [Google Scholar]
  153. Levin Y, Lyutikov M. 2012. MNRAS 427:1574–79 [Google Scholar]
  154. Li X. 2007. Ap. J. 666:L81–84 [Google Scholar]
  155. Li X, Beloborodov AM. 2015. Ap. J. 815:25 [Google Scholar]
  156. Li X, Levin Y, Beloborodov AM. 2016. Ap. J. 833:189 [Google Scholar]
  157. Lin L, Göğüş E, Kaneko Y, Kouveliotou C. 2013. Ap. J. 778:105 [Google Scholar]
  158. Link B. 2014. MNRAS 441:2676–83 [Google Scholar]
  159. Link B, Epstein RI. 1996. Ap. J. 457:844 [Google Scholar]
  160. Livingstone MA, Kaspi VM, Gavriil FP. 2010. Ap. J. 710:1710–17 [Google Scholar]
  161. Livingstone MA, Ng CY, Kaspi VM, Gavriil FP, Gotthelf EV. 2011. Ap. J. 730:66 [Google Scholar]
  162. Lynch RS, Archibald RF, Kaspi VM, Scholz P. 2015. Ap. J. 806:266 [Google Scholar]
  163. Lyubarsky Y, Eichler D, Thompson C. 2002. Ap. J. 580:L69–72 [Google Scholar]
  164. Lyubarsky YE. 2002. MNRAS 332:199–204 [Google Scholar]
  165. Lyutikov M. 2003. MNRAS 339:623–32 [Google Scholar]
  166. Lyutikov M, Gavriil FP. 2006. MNRAS 368:690–706 [Google Scholar]
  167. Maron O, Kijak J, Kramer M, Wielebinski R. 2000. Astron. Astrophys. Suppl. 147:195–203 [Google Scholar]
  168. Marsden D, White NE. 2001. Ap. J. 551:L155–58 [Google Scholar]
  169. Martin J, Rea N, Torres DF, Papitto A. 2014. MNRAS 444:2910–24 [Google Scholar]
  170. Mazets EP, Golenetskii SV. 1981. Ap. Space Sci. 75:47–81 [Google Scholar]
  171. Mazets EP, Golenetskii SV, Gur'yan YA. 1979a. Sov. Astron. Lett. 5:343–44 [Google Scholar]
  172. Mazets EP, Golenetskii SV, Ilinskii VN, Apetkar RL, Guryan YA. 1979b. Nature 282:587–89 [Google Scholar]
  173. Medin Z, Lai D. 2006. Phys. Rev. A 74:062508 [Google Scholar]
  174. Mereghetti S, Götz D, Mirabel IF, Hurley K. 2005a. Astron. Astrophys. 433:L9–12 [Google Scholar]
  175. Mereghetti S, Götz D, von Kienlin A. et al. 2005b. Ap. J. Lett. 624:L105–8 [Google Scholar]
  176. Mereghetti S, Götz D, Weidenspointner G. et al. 2009. Ap. J. Lett. 696:L74–78 [Google Scholar]
  177. Mereghetti S, Pons JA, Melatos A. 2015. Space Sci. Rev. 191:315–38 [Google Scholar]
  178. Mereghetti S, Stella L. 1995. Ap. J. 442:L17–20 [Google Scholar]
  179. Mészáros P. 2002. Annu. Rev. Astron. Astrophys. 40:137–69 [Google Scholar]
  180. Mikic Z, Linker JA. 1994. Ap. J. 430:898–912 [Google Scholar]
  181. Mori K, Gotthelf EV, Zhang S. et al. 2013. Ap. J. Lett. 770:L23 [Google Scholar]
  182. Muş , Göğüş E, Kaneko Y, Chakraborty M, Aydn B. 2015. Ap. J. 807:42 [Google Scholar]
  183. Ng CY, Kaspi VM. 2011. Astrophysics of Neutron Stars 2010: A Conference in Honor of M. Ali Alpar E Göğüş, T Belloni, Ü Ertan 137970 Melville, NY: AIP [Google Scholar]
  184. Ng CY, Kaspi VM, Dib R, Olausen SA, Scholz P. et al. 2011. Ap. J. 729:131 [Google Scholar]
  185. Nobili L, Turolla R, Zane S. 2008. MNRAS 386:1527–42 [Google Scholar]
  186. Ofek EO, Muno M, Quimby R. et al. 2008. Ap. J. 681:1464–69 [Google Scholar]
  187. Olausen SA, Kaspi VM. 2014. Ap. J. Suppl. Ser. 212:6 [Google Scholar]
  188. Olausen SA, Kaspi VM, Ng CY. et al. 2011. Ap. J. 742:4 [Google Scholar]
  189. Olausen SA, Zhu WW, Vogel JK. et al. 2013. Ap. J. 764:1 [Google Scholar]
  190. Özel F. 2001. Ap. J. 563:276–88 [Google Scholar]
  191. Paczyński B. 1992. Acta Astron. 42:145–53 [Google Scholar]
  192. Parfrey K, Beloborodov AM, Hui L. 2013. Ap. J. 774:92 [Google Scholar]
  193. Passamonti A, Lander SK. 2014. MNRAS 438:156–68 [Google Scholar]
  194. Pennucci TT, Possenti A, Esposito P. et al. 2015. Ap. J. 808:81 [Google Scholar]
  195. Perna R, Pons JA. 2011. Ap. J. Lett. 727:L51 [Google Scholar]
  196. Piro AL. 2005. Ap. J. Lett. 634:L153–56 [Google Scholar]
  197. Pons JA, Miralles JA, Geppert U. 2009. Astron. Astrophys. 496:207–16 [Google Scholar]
  198. Potekhin AY, De Luca A, Pons JA. 2015a. Space Sci. Rev. 191:171–206 [Google Scholar]
  199. Potekhin AY, Pons JA, Page D. 2015b. Space Sci. Rev. 191:239–91 [Google Scholar]
  200. Potekhin AY, Yakovlev DG, Chabrier G, Gnedin OY. 2003. Ap. J. 594:404–18 [Google Scholar]
  201. Rea N, Borghese A, Esposito P. et al. 2016. Ap. J. 828:L13 [Google Scholar]
  202. Rea N, Esposito P. 2011. Ap. Space Sci. 21:247 [Google Scholar]
  203. Rea N, Esposito P, Turolla R. et al. 2010. Science 330:944 [Google Scholar]
  204. Rea N, Israel GL, Esposito P. et al. 2012. Ap. J. 754:27 [Google Scholar]
  205. Rea N, Israel GL, Pons JA. et al. 2013. Ap. J. 770:65 [Google Scholar]
  206. Rea N, Israel GL, Turolla R. et al. 2009a. MNRAS 396:2419–32 [Google Scholar]
  207. Rea N, McLaughlin MA, Gaensler BM. et al. 2009b. Ap. J. 703:L41–45 [Google Scholar]
  208. Rea N, Testa V, Israel GL. et al. 2004. Astron. Astrophys. 425:L5–8 [Google Scholar]
  209. Rea N, Zane S, Turolla R, Lyutikov M, Götz D. 2008. Ap. J. 686:1245–60 [Google Scholar]
  210. Rodríguez Castillo GA, Israel GL, Tiengo A. et al. 2016. MNRAS 456:4145–55 [Google Scholar]
  211. Ruderman M. 1971. Phys. Rev. Lett. 27:1306–8 [Google Scholar]
  212. Ruderman MA, Sutherland PG. 1975. Ap. J. 196:51–72 [Google Scholar]
  213. Samuelsson L, Andersson N. 2007. MNRAS 374:256–68 [Google Scholar]
  214. Şaşmaz Muş S, Aydn B, Göğüş E. 2014. MNRAS 440:2916–21 [Google Scholar]
  215. Scholz P, Archibald RF, Kaspi VM. et al. 2014. Ap. J. 783:99 [Google Scholar]
  216. Scholz P, Kaspi VM. 2011. Ap. J. 739:94 [Google Scholar]
  217. Scholz P, Kaspi VM, Cumming A. 2014. Ap. J. 786:62 [Google Scholar]
  218. Seward FD, Charles PA, Smale AP. 1986. Ap. J. 305:814–16 [Google Scholar]
  219. Shannon RM, Johnston S. 2013. MNRAS [Google Scholar]
  220. Spitler LG, Lee KJ, Eatough RP. et al. 2014. Ap. J. Lett. 780:L3 [Google Scholar]
  221. Spruit HC. 2008. 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More C Bassa, Z Wang, A Cumming, VM Kaspi AIP Conf. Ser. 983391–98 Melville, NY: AIP [Google Scholar]
  222. Stella L, Mereghetti S, Israel GL. 1996. Mem. Soc. Astron. Ital. 67:1053 [Google Scholar]
  223. Strohmayer TE, Watts AL. 2005. Ap. J. Lett. 632:L111–14 [Google Scholar]
  224. Suleimanov V, Potekhin AY, Werner K. 2009. Astron. Astrophys. 500:891–99 [Google Scholar]
  225. Tam CR, Gavriil FP, Dib R. et al. 2008. Ap. J. 677:503–14 [Google Scholar]
  226. Tam CR, Kaspi VM, van Kerkwijk MH, Durant M. 2004. Ap. J. 617:L53–56 [Google Scholar]
  227. Tendulkar SP, Cameron PB, Kulkarni SR. 2013. Ap. J. 772:31 [Google Scholar]
  228. Tendulkar SP, Hascöet R, Yang C. et al. 2015. Ap. J. 808:32 [Google Scholar]
  229. Tendulkar SP, Kaspi VM, Patel C. 2016. Ap. J. 827:59 [Google Scholar]
  230. Testa V, Rea N, Mignani RP. et al. 2008. Astron. Astrophys. 482:607–15 [Google Scholar]
  231. Thompson C. 2008. Ap. J. 688:499–526 [Google Scholar]
  232. Thompson C, Beloborodov AM. 2005. Ap. J. 634:565–69 [Google Scholar]
  233. Thompson C, Blaes O. 1998. Phys. Rev. D 57:3219–34 [Google Scholar]
  234. Thompson C, Duncan RC. 1995. MNRAS 275:255–300 [Google Scholar]
  235. Thompson C, Duncan RC. 1996. Ap. J. 473:322–42 [Google Scholar]
  236. Thompson C, Duncan RC. 2001. Ap. J. 561:980–1005 [Google Scholar]
  237. Thompson C, Duncan RC, Woods PM. et al. 2000. Ap. J. 543:340–50 [Google Scholar]
  238. Thompson C, Lyutikov M, Kulkarni SR. 2002. Ap. J. 574:332–55 [Google Scholar]
  239. Tiengo A, Esposito P, Mereghetti S. et al. 2009. MNRAS 399:L74–78 [Google Scholar]
  240. Tiengo A, Esposito P, Mereghetti S. et al. 2013. Nature 500:312–14 [Google Scholar]
  241. Tong H, Xu RX, Song LM, Qiao GJ. 2013a. Ap. J. 768:144 [Google Scholar]
  242. Tong H, Yuan JP, Liu ZY. 2013b. Res. Astron. Astrophys. 13:835–40 [Google Scholar]
  243. Torne P, Eatough RP, Karuppusamy R. et al. 2015. MNRAS 451:L50–54 [Google Scholar]
  244. Turolla R, Zane S, Drake JJ. 2004. Ap. J. 603:265–82 [Google Scholar]
  245. Turolla R, Zane S, Watts AL. 2015. Rep. Progress Phys. 78:116901 [Google Scholar]
  246. Uzdensky DA. 2002. Ap. J. 574:1011–20 [Google Scholar]
  247. Uzdensky DA. 2011. Space Sci. Rev. 160:45–71 [Google Scholar]
  248. van der Horst AJ, Kouveliotou C, Gorgone NM. et al. 2012. Ap. J. 749:122 [Google Scholar]
  249. van Hoven M, Levin Y. 2011. MNRAS 410:1036–51 [Google Scholar]
  250. van Paradijs J, Taam RE, van den Heuvel EPJ. 1995. Astron. Astrophys. 299:L41–44 [Google Scholar]
  251. van Putten T, Watts AL, Baring MG, Wijers RAMJ. 2016. MNRAS 461:877–91 [Google Scholar]
  252. Viganò D, Rea N, Pons JA. et al. 2013. MNRAS 434:123–41 [Google Scholar]
  253. Vink J, Kuiper L. 2006. MNRAS 370:L14–18 [Google Scholar]
  254. Vogel JK, Hascoët R, Kaspi VM. et al. 2014. Ap. J. 789:75 [Google Scholar]
  255. von Kienlin A, Gruber D, Kouveliotou C. et al. 2012. Ap. J. 755:150 [Google Scholar]
  256. Wang Z, Bassa C, Kaspi VM. et al. 2008. Ap. J. 679:1443–46 [Google Scholar]
  257. Wang Z, Chakrabarty D, Kaplan DL. 2006. Nature 440:772–75 [Google Scholar]
  258. Watts AL, Strohmayer TE. 2006. Ap. J. Lett. 637:L117–20 [Google Scholar]
  259. Wolfson R. 1995. Ap. J. 443:810–17 [Google Scholar]
  260. Woods PM, Kaspi VM, Thompson C. et al. 2004. Ap. J. 605:378–99 [Google Scholar]
  261. Woods PM, Kouveliotou C, Finger MH. et al. 2007. Ap. J. 654:470–86 [Google Scholar]
  262. Woods PM, Kouveliotou C, Gavriil FP. et al. 2005. Ap. J. 629:985–97 [Google Scholar]
  263. Woods PM, Kouveliotou C, Göğüş E. et al. 2001. Ap. J. 552:748–55 [Google Scholar]
  264. Woods PM, Kouveliotou C, van Paradijs J. et al. 1999. Ap. J. 524:L55–58 [Google Scholar]
  265. Woods PM, Thompson C. 2006. Compact Stellar X-ray Sources WHG Lewin, M van der Klis Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  266. Yakovlev DG, Pethick CJ. 2004. Annu. Rev. Astron. Astrophys. 42:169–210 [Google Scholar]
  267. Yakovlev DG, Shalybkov DA. 1990. Sov. Astron. Lett. 16:86 [Google Scholar]
  268. Younes G, Kouveliotou C, Kargaltsev O. et al. 2016. Ap. J. 824:138 [Google Scholar]
  269. Younes G, Kouveliotou C, Roberts O. 2016. GCN19736 [Google Scholar]
  270. Yu M, Manchester RN, Hobbs G. et al. 2013. MNRAS 429:688–724 [Google Scholar]
  271. Zane S, Rea N, Turolla R, Nobili L. 2009. MNRAS 398:1403–13 [Google Scholar]
  272. Zane S, Turolla R, Stella L, Treves A. 2001. Ap. J. 560:384–89 [Google Scholar]
  273. Zavlin VE, Pavlov GG, Shibanov YA, Ventura J. 1995. Astron. Astrophys. 297:441 [Google Scholar]
  274. Zhu WW, Kaspi VM, McLaughlin MA. et al. 2011. Ap. J. 734:44 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error