Low-mass stars in their core-helium-burning stage define the sharpest feature present in the color-magnitude diagrams of nearby galaxy systems: the red clump (RC). This feature has given rise to a series of methods aimed at measuring the distributions of stellar distances and extinctions, especially in the Magellanic Clouds and Milky Way Bulge. Because the RC is easily recognizable within the data of large spectroscopic and asteroseismic surveys, it is a useful probe of stellar densities, kinematics, and chemical abundances across the Milky Way disk; it can be applied up to larger distances than that allowed by dwarfs; and it has better accuracy than is possible with other kinds of giants. Here, we discuss the reasons for the RC narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and the observed passband. These factors set the limits on the validity and accuracy of several RC methods defined in the literature.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahn CP, Alexandroff R, Allende Prieto C. et al. 2014. Ap. J. Suppl. 211:17 [Google Scholar]
  2. Alcock C, Allsman RA, Alves D. et al. 1997. Ap. J. 479:119–46 [Google Scholar]
  3. Alves DR. 2000. Ap. J. 539:732–41 [Google Scholar]
  4. Alves DR, Rejkuba M, Minniti D, Cook KH. 2002. Ap. J. Lett. 573:L51–54 [Google Scholar]
  5. Anderson E, Francis C. 2012. Astron. Lett. 38:331–46 [Google Scholar]
  6. Aparicio A, Gallart C. 2004. Astron. J. 128:1465–77 [Google Scholar]
  7. Bailey SI. 1902. Ann. Harv. Coll. Obs. 38:1 [Google Scholar]
  8. Balbinot E, Santiago BX, Girardi L. et al. 2015. MNRAS 449:1129–45 [Google Scholar]
  9. Bastian N, de Mink SE. 2009. MNRAS 398:L11–15 [Google Scholar]
  10. Bastian N, Niederhofer F. 2015. MNRAS 448:1863–73 [Google Scholar]
  11. Bastien FA, Stassun KG, Basri G, Pepper J. 2013. Nature 500:427–30 [Google Scholar]
  12. Beaulieu JP, Sackett PD. 1998. Astron. J. 116:209–19 [Google Scholar]
  13. Beck PG, Bedding TR, Mosser B. et al. 2011. Science 332:205 [Google Scholar]
  14. Bedding TR, Mosser B, Huber D. et al. 2011. Nature 471:608–11 [Google Scholar]
  15. Bellazzini M, Ibata R, Martin N. et al. 2006. MNRAS 366:865–83 [Google Scholar]
  16. Bica E, Geisler D, Dottori H. et al. 1998. Astron. J. 116:723–37 [Google Scholar]
  17. Bildsten L, Paxton B, Moore K, Macias PJ. 2012. Ap. J. Lett. 744:L6 [Google Scholar]
  18. Bland-Hawthorn J, Gerhard O. 2016. Annu. Rev. Astron. Astrophys. 54529–96 [Google Scholar]
  19. Bossini D, Miglio A, Salaris M. et al. 2015. MNRAS 453:2290–301 [Google Scholar]
  20. Bovy J, Nidever DL, Rix HW. et al. 2014. Ap. J. 790:127 [Google Scholar]
  21. Brandt TD, Huang CX. 2015. Ap. J. 807:25 [Google Scholar]
  22. Bressan A, Bertelli G, Chiosi C. 1986. Mem. Soc. Astron. Ital. 57:411–26 [Google Scholar]
  23. Bressan A, Girardi L, Marigo P, Rosenfield P, Tang J. 2015. Astrophys. Space Sci. Proc. 39:25 [Google Scholar]
  24. Bressan A, Marigo P, Girardi L. et al. 2012. MNRAS 427:127–45 [Google Scholar]
  25. Broomhall AM, Miglio A, Montalbán J. et al. 2014. MNRAS 440:1828–43 [Google Scholar]
  26. Cabrera-Lavers A, González-Fernández C, Garzón F, Hammersley PL, López-Corredoira M. 2008. Astron. Astrophys. 491:781–87 [Google Scholar]
  27. Cannon RD. 1970. MNRAS 150:111–35 [Google Scholar]
  28. Cao L, Mao S, Nataf D, Rattenbury NJ, Gould A. 2013. MNRAS 434:595–605 [Google Scholar]
  29. Castellani V, Chieffi A, Tornambe A, Pulone L. 1985. Ap. J. 296:204–12 [Google Scholar]
  30. Castellani V, Degl'Innocenti S, Girardi L, Marconi M, Prada Moroni PG, Weiss A. 2000. Astron. Astrophys. 354:150–56 [Google Scholar]
  31. Castellani V, Giannone P, Renzini A. 1971. Ap. Space Sci. 10:355–62 [Google Scholar]
  32. Castelli F, Kurucz RL. 2003. Modelling of Stellar Atmospheres, Proc. IAU Symposium N Piskunov, WW Weiss, DF Gray 210A20 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  33. Chaplin WJ, Miglio A. 2013. Annu. Rev. Astron. Astrophys. 51:353–92 [Google Scholar]
  34. Cioni MRL, Clementini G, Girardi L. et al. 2011. Astron. Astrophys. 527:A116 [Google Scholar]
  35. Cole AA. 1998. Ap. J. Lett. 500:L137–40 [Google Scholar]
  36. Constantino T, Campbell SW, Christensen-Dalsgaard J, Lattanzio JC, Stello D. 2015. MNRAS 452:123–45 [Google Scholar]
  37. Corsi CE, Buonanno R, Fusi Pecci F. et al. 1994. MNRAS 271:385–420 [Google Scholar]
  38. Crowl HH, Sarajedini A, Piatti AE. et al. 2001. Astron. J. 122:220–31 [Google Scholar]
  39. Dalcanton JJ, Williams BF, Lang D. et al. 2012. Ap. J. Suppl. 200:18 [Google Scholar]
  40. Dalcanton JJ, Williams BF, Seth AC. et al. 2009. Ap. J. Suppl. 183:67–108 [Google Scholar]
  41. de Bruijne JHJ. 2012. Ap. Space Sci. 341:31–41 [Google Scholar]
  42. De Marchi G, Panagia N, Girardi L. 2014. MNRAS 438:513–28 [Google Scholar]
  43. Dolphin AE. 2002. MNRAS 332:91–108 [Google Scholar]
  44. D'Orazi V, Bragaglia A, Tosi M, Di Fabrizio L, Held EV. 2006. MNRAS 368:471–78 [Google Scholar]
  45. Eggenberger P, Miglio A, Montalban J. et al. 2010. Astron. Astrophys. 509:A72 [Google Scholar]
  46. Ferraro FR, Dalessandro E, Mucciarelli A. et al. 2009. Nature 462:483–86 [Google Scholar]
  47. Ferraro FR, Origlia L, Testa V, Maraston C. 2004. Ap. J. 608:772–80 [Google Scholar]
  48. Francis C, Anderson E. 2014. MNRAS 441:1105–14 [Google Scholar]
  49. Gallart C, Freedman WL, Mateo M. et al. 1999. Ap. J. 514:665–74 [Google Scholar]
  50. Gallart C, Zoccali M, Aparicio A. 2005. Annu. Rev. Astron. Astrophys. 43:387–434 [Google Scholar]
  51. Gardiner LT, Hatzidimitriou D. 1992. MNRAS 257:195–224 [Google Scholar]
  52. Gardiner LT, Hawkins MRS. 1991. MNRAS 251:174–91 [Google Scholar]
  53. Girardi L. 1999. MNRAS 308:818–32 [Google Scholar]
  54. Girardi L, Bressan A, Bertelli G, Chiosi C. 2000a. Astron. Astrophys. Suppl. 141:371–83 [Google Scholar]
  55. Girardi L, Eggenberger P, Miglio A. 2011. MNRAS 412:L103–7 [Google Scholar]
  56. Girardi L, Groenewegen MAT, Hatziminaoglou E, da Costa L. 2005. Astron. Astrophys. 436:895–915 [Google Scholar]
  57. Girardi L, Groenewegen MAT, Weiss A, Salaris M. 1998. MNRAS 301:149–60 [Google Scholar]
  58. Girardi L, Marigo P, Bressan A, Rosenfield P. 2013. Ap. J. 777:142 [Google Scholar]
  59. Girardi L, Mermilliod JC, Carraro G. 2000b. Astron. Astrophys. 354:892–98 [Google Scholar]
  60. Girardi L, Rubele S, Kerber L. 2009. MNRAS 394:L74–78 [Google Scholar]
  61. Girardi L, Salaris M. 2001. MNRAS 323:109–29 [Google Scholar]
  62. Gonzalez OA, Rejkuba M, Minniti D. et al. 2011. Astron. Astrophys. 534:L14 [Google Scholar]
  63. González Delgado RM, García-Benito R, Pérez E. et al. 2015. Astron. Astrophys. 581:A103 [Google Scholar]
  64. Goudfrooij P, Girardi L, Kozhurina-Platais V. et al. 2014. Ap. J. 797:35 [Google Scholar]
  65. Goudfrooij P, Girardi L, Rosenfield P. et al. 2015. MNRAS 450:1693–704 [Google Scholar]
  66. Goudfrooij P, Puzia TH, Chandar R, Kozhurina-Platais V. 2011. Ap. J. 737:4 [Google Scholar]
  67. Grocholski AJ, Sarajedini A. 2002. Astron. J. 123:1603–12 [Google Scholar]
  68. Grocholski AJ, Sarajedini A, Olsen KAG, Tiede GP, Mancone CL. 2007. Astron. J. 134:680–93 [Google Scholar]
  69. Groenewegen MAT. 2008. Astron. Astrophys. 488:935–41 [Google Scholar]
  70. Harris J, Zaritsky D. 2001. Ap. J. Suppl. 136:25–40 [Google Scholar]
  71. Haschke R, Grebel EK, Duffau S. 2011. Astron. J. 141:158 [Google Scholar]
  72. Hatzidimitriou D. 1991. MNRAS 251:545–54 [Google Scholar]
  73. Hekker S, Gilliland RL, Elsworth Y. et al. 2011. MNRAS 414:2594–601 [Google Scholar]
  74. Heyl J, Kalirai J, Richer HB. et al. 2015. Ap. J. 810:127 [Google Scholar]
  75. Holtzman JA, Mould JR, Gallagher JS III. et al. 1997. Astron. J. 113:656–68 [Google Scholar]
  76. Holtzman JA, Smith GH, Grillmair C. 2000. Astron. J. 120:3060–69 [Google Scholar]
  77. Huber D, Bedding TR, Stello D. et al. 2010. Ap. J. 723:1607–17 [Google Scholar]
  78. Ibata RA, Lewis GF, Beaulieu JP. 1998. Ap. J. Lett. 509:L29–32 [Google Scholar]
  79. Ivezić Ž, Beers TC, Jurić M. 2012. Annu. Rev. Astron. Astrophys. 50:251–304 [Google Scholar]
  80. Ivezić Ž, Kahn SM, Eliason P. 2015. EAS Publ. Ser. 67–68:211–17 [Google Scholar]
  81. Ivezić Z, Tyson JA, Abel B. et al. 2008. LSST: From Science Drivers to Reference Design and Anticipated Data Products Work. Pap., Dep. Astron., Univ. Wash. arXiv:0805.2366 [Google Scholar]
  82. Jurić M, Ivezić Ž, Brooks A. et al. 2008. Ap. J. 673:864–914 [Google Scholar]
  83. Kallinger T, Mosser B, Hekker S. et al. 2010. Astron. Astrophys. 522:A1 [Google Scholar]
  84. Kato D, Nagashima C, Nagayama T. et al. 2007. Publ. Astron. Soc. Jpn. 59:615–41 [Google Scholar]
  85. Kroupa P. 2002. Science 295:82–91 [Google Scholar]
  86. Laney CD, Joner MD, Pietrzyński G. 2012. MNRAS 419:1637–41 [Google Scholar]
  87. López-Corredoira M. 2006. MNRAS 369:1911–15 [Google Scholar]
  88. López-Corredoira M. 2014. Astron. Astrophys. 563:A128 [Google Scholar]
  89. López-Corredoira M, Abedi H, Garzón F, Figueras F. 2014. Astron. Astrophys. 572:A101 [Google Scholar]
  90. López-Corredoira M, Cabrera-Lavers A, Garzón F, Hammersley PL. 2002. Astron. Astrophys. 394:883–99 [Google Scholar]
  91. López-Corredoira M, Momany Y, Zaggia S, Cabrera-Lavers A. 2007. Astron. Astrophys. 472:L47–50 [Google Scholar]
  92. MacArthur LA, Courteau S, Bell E, Holtzman JA. 2004. Ap. J. Suppl. 152:175–99 [Google Scholar]
  93. Mao S, Paczyński B. 2002. MNRAS 337:895–900 [Google Scholar]
  94. Massari D, Mucciarelli A, Ferraro FR. et al. 2014. Ap. J. 795:22 [Google Scholar]
  95. McQuinn KBW, Skillman ED, Dolphin A. et al. 2015. Ap. J. 812:158 [Google Scholar]
  96. McWilliam A, Zoccali M. 2010. Ap. J. 724:1491–502 [Google Scholar]
  97. Mermilliod JC, Mathieu RD, Latham DW, Mayor M. 1998. Astron. Astrophys. 339:423–30 [Google Scholar]
  98. Mermilliod JC, Mayor M. 1990. Astron. Astrophys. 237:61–72 [Google Scholar]
  99. Mermilliod JC, Mayor M, Udry S. 2008. Astron. Astrophys. 485:303–14 [Google Scholar]
  100. Michalik D, Lindegren L, Hobbs D. 2015. Astron. Astrophys. 574:A115 [Google Scholar]
  101. Miglio A, Brogaard K, Stello D. et al. 2012. MNRAS 419:2077–88 [Google Scholar]
  102. Miglio A, Chiappini C, Morel T. et al. 2013. MNRAS 429:423–28 [Google Scholar]
  103. Miglio A, Montalbán J, Baudin F. et al. 2009. Astron. Astrophys. 503:L21–24 [Google Scholar]
  104. Minniti D, Saito RK, Alonso-García J, Lucas PW, Hempel M. 2011. Ap. J. Lett. 733:L43 [Google Scholar]
  105. Minniti D, Saito RK, Gonzalez OA. et al. 2014. Astron. Astrophys. 571:A91 [Google Scholar]
  106. Mocák M, Müller E, Weiss A, Kifonidis K. 2009. Astron. Astrophys. 501:659–77 [Google Scholar]
  107. Monachesi A, Trager SC, Lauer TR. et al. 2011. Ap. J. 727:55 [Google Scholar]
  108. Montalbán J, Miglio A, Noels A. et al. 2013. Ap. J. 766:118 [Google Scholar]
  109. Mosser B, Barban C, Montalbán J. et al. 2011. Astron. Astrophys. 532:A86 [Google Scholar]
  110. Mosser B, Belkacem K, Goupil MJ. et al. 2010. Astron. Astrophys. 517:A22 [Google Scholar]
  111. Mosser B, Benomar O, Belkacem K. et al. 2014. Astron. Astrophys. 572:L5 [Google Scholar]
  112. Mosser B, Goupil MJ, Belkacem K. et al. 2012. Astron. Astrophys. 548:A10 [Google Scholar]
  113. Munari U, Henden A, Frigo A. et al. 2014. Astron. J. 148:81 [Google Scholar]
  114. Nataf DM, Gould A, Fouqué P. et al. 2013. Ap. J. 769:88 [Google Scholar]
  115. Nataf DM, Udalski A, Gould A, Fouqué P, Stanek KZ. 2010. Ap. J. Lett. 721:L28–32 [Google Scholar]
  116. Nataf DM, Udalski A, Skowron J. et al. 2015. MNRAS 447:1535–49 [Google Scholar]
  117. Ness M, Freeman K, Athanassoula E. et al. 2013. MNRAS 430:836–57 [Google Scholar]
  118. Nidever DL, Bovy J, Bird JC. et al. 2014. Ap. J. 796:38 [Google Scholar]
  119. Nidever DL, Monachesi A, Bell EF. et al. 2013. Ap. J. 779:145 [Google Scholar]
  120. Nishiyama S, Nagata T, Sato S. et al. 2006. Ap. J. 647:1093–98 [Google Scholar]
  121. Nishiyama S, Tamura M, Hatano H. et al. 2009. Ap. J. 696:1407–17 [Google Scholar]
  122. Olszewski EW, Suntzeff NB, Mateo M. 1996. Annu. Rev. Astron. Astrophys. 34:511–50 [Google Scholar]
  123. Paczyński B, Stanek KZ. 1998. Ap. J. Lett. 494:L219–22 [Google Scholar]
  124. Pavel MD. 2014. Astron. J. 148:49 [Google Scholar]
  125. Percival SM, Salaris M. 2003. MNRAS 343:539–46 [Google Scholar]
  126. Perryman MAC, Lindegren L, Kovalevsky J. et al. 1997. Astron. Astrophys. 323:L49–52 [Google Scholar]
  127. Piatti AE, Geisler D, Bica E. et al. 1999. Astron. J. 118:2865–74 [Google Scholar]
  128. Pietrinferni A, Cassisi S, Salaris M, Castelli F. 2004. Ap. J. 612:168–90 [Google Scholar]
  129. Pietrzyński G, Górski M, Gieren W. et al. 2010. Astron. J. 140:1038–42 [Google Scholar]
  130. Pinsonneault MH, Elsworth Y, Epstein C. et al. 2014. Ap. J. Suppl. 215:19 [Google Scholar]
  131. Popowski P, Griest K, Thomas CL. et al. 2005. Ap. J. 631:879–905 [Google Scholar]
  132. Rattenbury NJ, Mao S, Debattista VP. et al. 2007. MNRAS 378:1165–76 [Google Scholar]
  133. Rauer H, Catala C, Aerts C. et al. 2014. Exp. Astron. 38:249–330 [Google Scholar]
  134. Reimers D. 1975. Mem. Soc. R. Sci. Liege 8:369–82 [Google Scholar]
  135. Renzini A, Buzzoni A. 1986. Spectral Evolution of Galaxies. C Chiosi, A Renzini Astrophys. Space Sci. Libr 122195–235 Dordrecht, Neth.: Reidel [Google Scholar]
  136. Renzini A, Fusi Pecci F. 1988. Annu. Rev. Astron. Astrophys. 26:199–244 [Google Scholar]
  137. Ricker GR, Winn JN, Vanderspek R. et al. 2014. Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. JM Oschmann, M Clampin, GG Fazio, HA MacEwen Proc. SPIE Conf. Ser. 9143914320 Bellingham, WA: SPIE [Google Scholar]
  138. Ripepi V, Cignoni M, Tosi M. et al. 2014. MNRAS 442:1897–921 [Google Scholar]
  139. Robin AC, Reylé C, Derrière S, Picaud S. 2003. Astron. Astrophys. 409:523–40 [Google Scholar]
  140. Rodrigues TS, Girardi L, Miglio A. et al. 2014. MNRAS 445:2758–76 [Google Scholar]
  141. Rubele S, Kerber L, Girardi L. et al. 2012. Astron. Astrophys. 537:A106 [Google Scholar]
  142. Saito RK, Minniti D, Dias B. et al. 2012. Astron. Astrophys. 544:A147 [Google Scholar]
  143. Saito RK, Zoccali M, McWilliam A. et al. 2011. Astron. J. 142:76 [Google Scholar]
  144. Salaris M, Girardi L. 2002. MNRAS 337:332–40 [Google Scholar]
  145. Salpeter EE. 1955. Ap. J. 121:161 [Google Scholar]
  146. Sandquist EL. 2004. MNRAS 347:101–18 [Google Scholar]
  147. Sarajedini A, Dotter A, Kirkpatrick A. 2009. Ap. J. 698:1872–78 [Google Scholar]
  148. Sarajedini A, von Hippel T, Kozhurina-Platais V, Demarque P. 1999. Astron. J. 118:2894–907 [Google Scholar]
  149. Silva Aguirre V, Ruchti GR, Hekker S. et al. 2014. Ap. J. Lett. 784:L16 [Google Scholar]
  150. Skowron DM, Jacyszyn AM, Udalski A. et al. 2014. Ap. J. 795:108 [Google Scholar]
  151. Skrutskie MF, Cutri RM, Stiening R. et al. 2006. Astron. J. 131:1163–83 [Google Scholar]
  152. Smecker-Hane TA, Stetson PB, Hesser JE, Lehnert MD. 1994. Astron. J. 108:507–13 [Google Scholar]
  153. Spergel D, Gehrels N, Breckinridge J. et al. 2013. Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report by the Science Definition Team (SDT) and WFIRST Study Office arXiv:1305.5422 [Google Scholar]
  154. Stanek KZ. 1996. Ap. J. Lett. 460:L37 [Google Scholar]
  155. Stanek KZ, Garnavich PM. 1998. Ap. J. Lett. 503:L131–34 [Google Scholar]
  156. Stanek KZ, Mateo M, Udalski A. et al. 1994. Ap. J. Lett. 429:L73–76 [Google Scholar]
  157. Stanek KZ, Udalski A, Szymański M. et al. 1997. Ap. J. 477:163–75 [Google Scholar]
  158. Stanek KZ, Zaritsky D, Harris J. 1998. Ap. J. Lett. 500:L141–44 [Google Scholar]
  159. Stello D, Huber D, Bedding TR. et al. 2013. Ap. J. Lett. 765:L41 [Google Scholar]
  160. Stello D, Huber D, Sharma S. et al. 2015. Ap. J. Lett. 809:L3 [Google Scholar]
  161. Straniero O, Domínguez I, Imbriani G, Piersanti L. 2003. Ap. J. 583:878–84 [Google Scholar]
  162. Subramaniam A. 2005. Astron. Astrophys. 430:421–26 [Google Scholar]
  163. Subramaniam A, Subramanian S. 2009. Ap. J. Lett. 703:L37–40 [Google Scholar]
  164. Subramanian S, Subramaniam A. 2012. Ap. J. 744:128 [Google Scholar]
  165. Sumi T, Eyer L, Woźniak PR. 2003. MNRAS 340:1346–52 [Google Scholar]
  166. Sweigart AV, Greggio L, Renzini A. 1990. Ap. J. 364:527–39 [Google Scholar]
  167. Tatton BL, van Loon JT, Cioni MR. et al. 2013. Astron. Astrophys. 554:A33 [Google Scholar]
  168. Thomas HC. 1967. Z. Astrophys. 67:420 [Google Scholar]
  169. Tinsley BM. 1980. Fundam. Cosmic Phys. 5:287–388 [Google Scholar]
  170. Udalski A. 1998. Acta Astron. 48:383–404 [Google Scholar]
  171. Valentini M, Munari U. 2010. Astron. Astrophys. 522:A79 [Google Scholar]
  172. van Helshoecht V, Groenewegen MAT. 2007. Astron. Astrophys. 463:559–65 [Google Scholar]
  173. van Leeuwen F. 2007. Hipparcos, the New Reduction of the Raw Data. 350 Astrophysics and Space Science Library Dordrecht, Neth.: Springer [Google Scholar]
  174. van Leeuwen F. 2009. Astron. Astrophys. 497:209–42 [Google Scholar]
  175. Wegg C, Gerhard O. 2013. MNRAS 435:1874–87 [Google Scholar]
  176. Wegg C, Gerhard O, Portail M. 2015. MNRAS 450:4050–69 [Google Scholar]
  177. Weisz DR, Dolphin AE, Skillman ED. et al. 2013. MNRAS 431:364–71 [Google Scholar]
  178. Williams BF, Dalcanton JJ, Dolphin AE, Holtzman J, Sarajedini A. 2009. Ap. J. Lett. 695:L15–19 [Google Scholar]
  179. Williams BF, Lang D, Dalcanton JJ. et al. 2014. Ap. J. Suppl. 215:9 [Google Scholar]
  180. Williams MEK, Steinmetz M, Binney J. et al. 2013. MNRAS 436:101–21 [Google Scholar]
  181. Wozniak PR, Stanek KZ. 1996. Ap. J. 464:233 [Google Scholar]
  182. Yaz Gökçe E, Bilir S, Öztürkmen ND. et al. 2013. New Astron. 25:19–26 [Google Scholar]
  183. Zaritsky D, Lin DNC. 1997. Astron. J. 114:2545 [Google Scholar]
  184. Zasowski G, Johnson JA, Frinchaboy PM. et al. 2013. Astron. J. 146:81 [Google Scholar]
  185. Zhao G, Qiu HM, Mao S. 2001. Ap. J. Lett. 551:L85–88 [Google Scholar]
  186. Zwitter T, Matijevič G, Breddels MA. et al. 2010. Astron. Astrophys. 522:A54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error