1932

Abstract

This review describes recent developments related to the unified model of active galactic nuclei (AGNs). It focuses on new ideas about the origin and properties of the central obscurer (torus) and the connection to its surroundings. The review does not address radio unification. AGN tori must be clumpy but uncertainties about their properties persist. Today's most promising models involve disk winds of various types and hydrodynamic simulations that link the large-scale galactic disk to the inner accretion flow. Infrared (IR) studies greatly improved our understanding of the spectral energy distribution of AGNs, but they are hindered by various selection effects. X-ray samples are more complete. The dependence of the covering factor of the torus on luminosity is a basic relationship that remains unexplained. There is also much confusion regarding real type-II AGNs, which do not fit into a simple unification scheme. The most impressive recent results are due to IR interferometry, which is not in accord with most torus models, and the accurate mapping of central ionization cones. AGN unification may not apply to merging systems and is possibly restricted to secularly evolving galaxies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-082214-122302
2015-08-18
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/astro/53/1/annurev-astro-082214-122302.html?itemId=/content/journals/10.1146/annurev-astro-082214-122302&mimeType=html&fmt=ahah

Literature Cited

  1. Aalto S, Garcia-Burillo S, Muller S. et al. 2015. Astron. Astrophys. 574:A85 [Google Scholar]
  2. Alexander T, Lutz D, Sturm E. et al. 2000. Ap. J. 536:710–17 [Google Scholar]
  3. Alig C, Schartmann M, Burkert A, Dolag K. 2013. Ap. J. 771:119 [Google Scholar]
  4. Alonso-Herrero A, Ramos Almeida C, Mason R. et al. 2011. Ap. J. 736:82 [Google Scholar]
  5. Antonucci R. 1993. Annu. Rev. Astron. Astrophys. 31:473–521 [Google Scholar]
  6. Antonucci RRJ, Miller JS. 1985. Ap. J. 297:621–32 [Google Scholar]
  7. Asmus D, Gandhi P, Smette A, Hönig SF, Duschl WJ. 2011. Astron. Astrophys. 536:A36 [Google Scholar]
  8. Assef RJ, Stern D, Kochanek CS. et al. 2013. Ap. J. 772:26 [Google Scholar]
  9. Baldwin JA, Phillips MM, Terlevich R. 1981. Publ. Astron. Soc. Pac. 93:5–19 [Google Scholar]
  10. Barvainis R. 1987. Ap. J. 320:537 [Google Scholar]
  11. Beckert T, Duschl WJ. 2004. Astron. Astrophys. 426:445–54 [Google Scholar]
  12. Bentz MC, Denney KD, Grier CJ. et al. 2013. Ap. J. 767:149 [Google Scholar]
  13. Bianchi S, Bonilla NF, Guainazzi M, Matt G, Ponti G. 2009. Astron. Astrophys. 501:915 [Google Scholar]
  14. Bianchi S, Guainazzi M, Chiaberge M. 2006. Astron. Astrophys. 448:499–511 [Google Scholar]
  15. Blandford RD, Netzer H, Woltjer L, Courvoisier TJL, Mayor M. 1990. Active Galactic Nuclei. Heidelberg, Ger: Springer-Verlag [Google Scholar]
  16. Bock JJ, Neugebauer G, Matthews K. et al. 2000. Astron. J. 120:2904–19 [Google Scholar]
  17. Bottorff MC, Korista KT, Shlosman I. 2000. Ap. J. 537:134–51 [Google Scholar]
  18. Brightman M, Nandra K. 2011a. MNRAS 413:1206–35 [Google Scholar]
  19. Brightman M, Nandra K. 2011b. MNRAS 414:3084–104 [Google Scholar]
  20. Brightman M, Ueda Y. 2012. MNRAS 423:702–17 [Google Scholar]
  21. Brusa M, Civano F, Comastri A. et al. 2010. Ap. J. 716:348–69 [Google Scholar]
  22. Buchanan CL, Gallimore JF, O'Dea CP. et al. 2006. Astron. J. 132:401–19 [Google Scholar]
  23. Burlon D, Ajello M, Greiner J. et al. 2011. Ap. J. 728:58 [Google Scholar]
  24. Burtscher L, Meisenheimer K, Tristram KRW. et al. 2013. Astron. Astrophys. 558:A149 [Google Scholar]
  25. Caproni A, Livio M, Abraham Z, Mosquera Cuesta HJ. 2006. Ap. J. 653:112–26 [Google Scholar]
  26. Chaudhary P, Brusa M, Hasinger G, Merloni A, Comastri A. 2010. Astron. Astrophys. 518:A58 [Google Scholar]
  27. Cid Fernandes R, Stasińska G, Mateus A, Vale Asari N. 2011. MNRAS 413:1687–99 [Google Scholar]
  28. Cisternas M, Jahnke K, Bongiorno A. et al. 2011. Ap. J. Lett. 741:L11 [Google Scholar]
  29. Collin S, Zahn JP. 1999. Astron. Astrophys. 344:433–49 [Google Scholar]
  30. Collin S, Zahn JP. 2008. Astron. Astrophys. 477:419–35 [Google Scholar]
  31. Comastri A, Setti G, Zamorani G, Hasinger G. 1995. Astron. Astrophys. 296:1 [Google Scholar]
  32. Combes F, García-Burillo S, Casasola V. et al. 2013. Astron. Astrophys. 558:A124 [Google Scholar]
  33. Czerny B, Hryniewicz K. 2011. Astron. Astrophys. 525:L8 [Google Scholar]
  34. Davies R, Mark D, Sternberg A. 2012. Astron. Astrophys. 537:A133 [Google Scholar]
  35. Davies RI, Maciejewski W, Hicks EKS. et al. 2014. Ap. J. 792:101 [Google Scholar]
  36. Davies RI, Müller-Sánchez F, Genzel R. et al. 2007. Ap. J. 671:1388–412 [Google Scholar]
  37. Deo RP, Crenshaw DM, Kraemer SB. et al. 2007. Ap. J. 671:124–35 [Google Scholar]
  38. Deo RP, Richards GT, Crenshaw DM, Kraemer SB. 2009. Ap. J. 705:14–31 [Google Scholar]
  39. Diamond-Stanic AM, Rieke GH. 2012. Ap. J. 746:168 [Google Scholar]
  40. Diamond-Stanic AM, Rieke GH, Rigby JR. 2009. Ap. J. 698:623–31 [Google Scholar]
  41. Díaz-Santos T, Alonso-Herrero A, Colina L. et al. 2010. Ap. J. 711:328–49 [Google Scholar]
  42. Dicken D, Tadhunter C, Morganti R. et al. 2014. Ap. J. 788:98 [Google Scholar]
  43. Dopita MA, Scharwächter J, Shastri P. et al. 2014. Astron. Astrophys. 566:A41 [Google Scholar]
  44. Dullemond CP, van Bemmel IM. 2005. Astron. Astrophys. 436:47–56 [Google Scholar]
  45. Duschl WJ, Britsch M. 2006. Ap. J. Lett. 653:L89–92 [Google Scholar]
  46. Efstathiou A, Rowan-Robinson M. 1995. MNRAS 273:649–61 [Google Scholar]
  47. Elitzur M. 2012. Ap. J. Lett. 747:L33 [Google Scholar]
  48. Elitzur M, Ho LC. 2009. Ap. J. Lett. 701:L91–94 [Google Scholar]
  49. Elitzur M, Shlosman I. 2006. Ap. J. Lett. 648:L101–4 [Google Scholar]
  50. Elvis M. 2012. J. Phys. Conf. Ser. 372:012032 [Google Scholar]
  51. Emmering RT, Blandford RD, Shlosman I. 1992. Ap. J. 385:460–77 [Google Scholar]
  52. Esquej P, Alonso-Herrero A, González-Martín O. et al. 2014. Ap. J. 780:86 [Google Scholar]
  53. Feltre A, Hatziminaoglou E, Fritz J, Franceschini A. 2012. MNRAS 426:120–27 [Google Scholar]
  54. Fischer TC, Crenshaw DM, Kraemer SB, Schmitt HR. 2013. Ap. J. Suppl. 209:1 [Google Scholar]
  55. Fischer TC, Crenshaw DM, Kraemer SB, Schmitt HR, Turner TJ. 2014. Ap. J. 785:25 [Google Scholar]
  56. Fritz J, Franceschini A, Hatziminaoglou E. 2006. MNRAS 366:767–86 [Google Scholar]
  57. Gandhi P, Horst H, Smette A. et al. 2009. Astron. Astrophys. 502:457 [Google Scholar]
  58. García-Burillo S, Combes F, Usero A. et al. 2014. Astron. Astrophys. 567:A125 [Google Scholar]
  59. Gilli R, Comastri A, Hasinger G. 2007. Astron. Astrophys. 463:79–96 [Google Scholar]
  60. Gilli R, Comastri A, Vignali C, Ranalli P, Iwasawa K. 2010. X-ray Astronomy 2009; Present Status, Multi-Wavelength Approach and Future Perspectives A Comastri, L Angelini, M Cappi AIP Conf. Proc. 1248359–64 Melville, NY: AIP [Google Scholar]
  61. Glass IS. 1992. MNRAS 256:P23–27 [Google Scholar]
  62. Glikman E, Gregg MD, Lacy M. et al. 2004. Ap. J. 607:60–75 [Google Scholar]
  63. Glikman E, Urrutia T, Lacy M. et al. 2012. Ap. J. 757:51 [Google Scholar]
  64. González-Martín O, Rodríguez-Espinosa JM, Díaz-Santos T. et al. 2013. Astron. Astrophys. 553:A35 [Google Scholar]
  65. Goulding AD, Alexander DM. 2009. MNRAS 398:1165–93 [Google Scholar]
  66. Goulding AD, Alexander DM, Bauer FE. et al. 2012. Ap. J. 755:5 [Google Scholar]
  67. Granato GL, Danese L, Franceschini A. 1997. Ap. J. 486:147–59 [Google Scholar]
  68. Greenhill LJ, Booth RS, Ellingsen SP. et al. 2003. Ap. J. 590:162–73 [Google Scholar]
  69. Haas M, Willner SP, Heymann F. et al. 2008. Ap. J. 688:122–27 [Google Scholar]
  70. Hailey-Dunsheath S, Sturm E, Fischer J. et al. 2012. Ap. J. 755:57 [Google Scholar]
  71. Hasinger G. 2008. Astron. Astrophys. 490:905–22 [Google Scholar]
  72. Heckman T, Best P. 2014. Annu. Rev. Astron. Astrophys. 52:589 [Google Scholar]
  73. Hernández-García L, González-Martín O, Márquez I, Masegosa J. 2013. Astron. Astrophys. 556:A47 [Google Scholar]
  74. Hicks EKS, Davies RI, Malkan MA. et al. 2009. Ap. J. 696:448–70 [Google Scholar]
  75. Ho LC. 2008. Annu. Rev. Astron. Astrophys. 46:475–539 [Google Scholar]
  76. Hönig SF, Beckert T. 2007. MNRAS 380:1172–76 [Google Scholar]
  77. Hönig SF, Kishimoto M, Gandhi P. et al. 2010. Astron. Astrophys. 515:A23 [Google Scholar]
  78. Hönig SF, Kishimoto M, Tristram KRW. et al. 2013. Ap. J. 771:87 [Google Scholar]
  79. Hönig SF, Leipski C, Antonucci R, Haas M. 2011. Ap. J. 736:26 [Google Scholar]
  80. Ikeda S, Awaki H, Terashima Y. 2009. Ap. J. 692:608–17 [Google Scholar]
  81. Imanishi M, Maiolino R, Nakagawa T. 2010. Ap. J. 709:801–15 [Google Scholar]
  82. Iwasawa K, Taniguchi Y. 1993. Ap. J. Lett. 413:L15–18 [Google Scholar]
  83. Jaffe W, Meisenheimer K, Röttgering HJA. et al. 2004. Nature 429:47–49 [Google Scholar]
  84. Kartje JF, Königl A. 1996. Vistas Astron. 40:133–37 [Google Scholar]
  85. Kaspi S, Smith PS, Netzer H. et al. 2000. Ap. J. 533:631–49 [Google Scholar]
  86. Kauffmann G, Heckman TM, Tremonti C. et al. 2003. MNRAS 346:1055–77 [Google Scholar]
  87. Kawaguchi T, Mori M. 2010. Ap. J. Lett. 724:L183 [Google Scholar]
  88. Kawaguchi T, Mori M. 2011. Ap. J. 737:105 [Google Scholar]
  89. Kewley LJ, Groves B, Kauffmann G, Heckman T. 2006. MNRAS 372:961–76 [Google Scholar]
  90. Kinkhabwala A, Sako M, Behar E. et al. 2002. Ap. J. 575:732–46 [Google Scholar]
  91. Kinney AL, Schmitt HR, Clarke CJ. et al. 2000. Ap. J. 537:152–77 [Google Scholar]
  92. Kishimoto M. 1999. Ap. J. 518:676–92 [Google Scholar]
  93. Kishimoto M, Hönig SF, Antonucci R. et al. 2011a. Astron. Astrophys. 527:A121 [Google Scholar]
  94. Kishimoto M, Hönig SF, Antonucci R. et al. 2011b. Astron. Astrophys. 536:A78 [Google Scholar]
  95. Kishimoto M, Hönig SF, Beckert T, Weigelt G. 2007. Astron. Astrophys. 476:713–21 [Google Scholar]
  96. Königl A, Kartje JF. 1994. Ap. J. 434:446–67 [Google Scholar]
  97. Koshida S, Minezaki T, Yoshii Y. et al. 2014. Ap. J. 788:159 [Google Scholar]
  98. Koss M, Mushotzky R, Veilleux S. et al. 2011. Ap. J. 739:57 [Google Scholar]
  99. Kraemer SB, Schmitt HR, Crenshaw DM. 2008. Ap. J. 679:1128–43 [Google Scholar]
  100. Kraemer SB, Schmitt HR, Crenshaw DM. et al. 2011. Ap. J. 727:130 [Google Scholar]
  101. Kreimeyer K, Veilleux S. 2013. Ap. J. Lett. 772:L11 [Google Scholar]
  102. Krips M, Martín S, Eckart A. et al. 2011. Ap. J. 736:37 [Google Scholar]
  103. Krolik JH. 1998. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment. Princeton, NJ: Princeton Univ. Press [Google Scholar]
  104. Krolik JH. 2007. Ap. J. 661:52–59 [Google Scholar]
  105. Krolik JH, Begelman MC. 1988. Ap. J. 329:702 [Google Scholar]
  106. Lacy M, Petric AO, Sajina A. et al. 2007. Astron. J. 133:186–205 [Google Scholar]
  107. Lagos CDP, Padilla ND, Strauss MA, Cora SA, Hao L. 2011. MNRAS 414:2148–62 [Google Scholar]
  108. LaMassa SM, Heckman TM, Ptak A. et al. 2011. Ap. J. 729:52 [Google Scholar]
  109. Laor A. 2003. Ap. J. 590:86–94 [Google Scholar]
  110. Laor A, Netzer H. 1989. MNRAS 238:897–916 [Google Scholar]
  111. Lawrence A. 1991. R. Astron. Soc. 252:586–92 [Google Scholar]
  112. Lawrence A, Elvis M. 1982. Ap. J. 256:410–26 [Google Scholar]
  113. Lawrence A, Elvis M. 2010. Ap. J. 714:561–70 [Google Scholar]
  114. Leipski C, Haas M, Willner SP. et al. 2010. Ap. J. 717:766–75 [Google Scholar]
  115. Levenson NA, Radomski JT, Packham C. et al. 2009. Ap. J. 703:390–98 [Google Scholar]
  116. Lira P, Videla L, Wu Y. et al. 2013. Ap. J. 764:159 [Google Scholar]
  117. Lusso E, Hennawi JF, Comastri A. et al. 2013. Ap. J. 777:86 [Google Scholar]
  118. Lusso E, Hennawi JF, Comastri A. et al. 2014. Ap. J. 784:176 [Google Scholar]
  119. Lutz D, Maiolino R, Moorwood AFM. et al. 2002. Astron. Astrophys. 396:439–48 [Google Scholar]
  120. Lutz D, Maiolino R, Spoon HWW, Moorwood AFM. 2004. Astron. Astrophys. 418:465–73 [Google Scholar]
  121. Mainieri V, Bongiorno A, Merloni A. et al. 2011. Astron. Astrophys. 535:A80 [Google Scholar]
  122. Maiolino R. 2008. New Astron. Rev. 52:339–57 [Google Scholar]
  123. Maiolino R, Marconi A, Salvati M. et al. 2001. Astron. Astrophys. 365:28–36 [Google Scholar]
  124. Maiolino R, Risaliti G, Salvati M. et al. 2010. Astron. Astrophys. 517:A47 [Google Scholar]
  125. Maiolino R, Shemmer O, Imanishi M. et al. 2007. Astron. Astrophys. 468:979–92 [Google Scholar]
  126. Malizia A, Bassani L, Bazzano A. et al. 2012. MNRAS 426:1750–66 [Google Scholar]
  127. Malkan MA, Gorjian V, Tam R. 1998. Ap. J. Suppl. 117:25–88 [Google Scholar]
  128. Maoz D. 2007. MNRAS 377:1696–710 [Google Scholar]
  129. Marinucci A, Bianchi S, Nicastro F, Matt G, Goulding AD. 2012. Ap. J. 748:130 [Google Scholar]
  130. Markowitz AG, Krumpe M, Nikutta R. 2014. MNRAS 439:1403–58 [Google Scholar]
  131. Mayo JH, Lawrence A. 2013. MNRAS 434:1593–98 [Google Scholar]
  132. Merloni A, Bongiorno A, Brusa M. et al. 2014. MNRAS 437:3550–67 [Google Scholar]
  133. Merloni A, Heinz S. 2013. Planets, Stars and Stellar Systems TD Oswalt, WC Keel 6503–66 Dordrecht, Neth: Springer [Google Scholar]
  134. Meusinger H, Balafkan N. 2014. Astron. Astrophys. 568:A114 [Google Scholar]
  135. Mor R, Netzer H. 2012. MNRAS 420:526–41 [Google Scholar]
  136. Mor R, Netzer H, Elitzur M. 2009. Ap. J. 705:298–313 [Google Scholar]
  137. Mor R, Trakhtenbrot B. 2011. Ap. J. Lett. 737:L36 [Google Scholar]
  138. Mulchaey JS, Wilson AS, Tsvetanov Z. 1996. Ap. J. 467:197 [Google Scholar]
  139. Mullaney JR, Alexander DM, Goulding AD, Hickox RC. 2011. MNRAS 414:1082–110 [Google Scholar]
  140. Müller-Sánchez F, Prieto MA, Hicks EKS. et al. 2011. Ap. J. 739:69 [Google Scholar]
  141. Narayan R. 2005. Ap. Space Sci. 300:177 [Google Scholar]
  142. Narayanan D, Dey A, Hayward CC. et al. 2010. MNRAS 407:1701–20 [Google Scholar]
  143. Nenkova M, Sirocky MM, Ivezić V, Elitzur M. 2008a. Ap. J. 685:147–59 [Google Scholar]
  144. Nenkova M, Sirocky MM, Nikutta R, Ivezić V, Elitzur M. 2008b. Ap. J. 685:160–80 [Google Scholar]
  145. Netzer H. 1993. Ap. J. 411:594–601 [Google Scholar]
  146. Netzer H. 2009. MNRAS 399:1907–20 [Google Scholar]
  147. Netzer H. 2013. The Physics and Evolution of Active Galactic Nuclei Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  148. Netzer H, Laor A. 1993. Ap. J. Lett. 404:L51–54 [Google Scholar]
  149. Netzer H, Trakhtenbrot B. 2014. MNRAS 438:672–79 [Google Scholar]
  150. Nicastro F. 2000. Ap. J. Lett. 530:L65–68 [Google Scholar]
  151. Ogle PM, Marshall HL, Lee JC, Canizares CR. 2000. Ap. J. Lett. 545:L81–84 [Google Scholar]
  152. Osterbrock DE, Ferland GJ. 2006. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Sausalito, CA: Univ. Sci. Books, 2nd ed.. [Google Scholar]
  153. Paggi A, Wang J, Fabbiano G, Elvis M, Karovska M. 2012. Ap. J. 756:39 [Google Scholar]
  154. Panessa F, Bassani L. 2002. Astron. Astrophys. 394:435–42 [Google Scholar]
  155. Peeters E, Spoon HWW, Tielens AGGM. 2004. Ap. J. 613:986–1003 [Google Scholar]
  156. Peterson BM. 1997. An Introduction to Active Galactic Nuclei Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  157. Pier EA, Krolik JH. 1992. Ap. J. 401:99 [Google Scholar]
  158. Pogge RW. 1988. Ap. J. 328:519–22 [Google Scholar]
  159. Pott JU, Malkan MA, Elitzur M. et al. 2010. Ap. J. 715:736–42 [Google Scholar]
  160. Pozo Nuñez F, Haas M, Chini R. et al. 2014. Astron. Astrophys. 561:L8 [Google Scholar]
  161. Prieto MA, Mezcua M, Fernández-Ontiveros JA, Schartmann M. 2014. MNRAS 442:2145–64 [Google Scholar]
  162. Ramos Almeida C, Alonso-Herrero A, Levenson NA. et al. 2014. MNRAS 439:3847–59 [Google Scholar]
  163. Ramos Almeida C, Levenson NA, Alonso-Herrero A. et al. 2011. Ap. J. 731:92 [Google Scholar]
  164. Reyes R, Zakamska NL, Strauss MA. et al. 2008. Astron. J. 136:2373–90 [Google Scholar]
  165. Ricci C, Paltani S, Awaki H. et al. 2013. Astron. Astrophys. 553:A29 [Google Scholar]
  166. Rieke GH, Alonso-Herrero A, Weiner BJ. et al. 2009. Ap. J. 692:556–73 [Google Scholar]
  167. Riffel R, Riffel RA, Ferrari F, Storchi-Bergmann T. 2011. MNRAS 416:493–500 [Google Scholar]
  168. Riffel RA, Storchi-Bergmann T, Riffel R, Pastoriza MG. 2010. Ap. J. 713:469–74 [Google Scholar]
  169. Riffel RA, Storchi-Bergmann T, Winge C. 2013. MNRAS 430:2249–61 [Google Scholar]
  170. Risaliti G, Elvis M, Fabbiano G. et al. 2007. Ap. J. Lett. 659:L111–14 [Google Scholar]
  171. Risaliti G, Elvis M, Nicastro F. 2002. Ap. J. 571:234–46 [Google Scholar]
  172. Risaliti G, Nardini E, Salvati M. et al. 2011. MNRAS 410:1027–35 [Google Scholar]
  173. Robson IEI. 1996. Active Galactic Nuclei. New York: Wiley [Google Scholar]
  174. Rosario DJ, Santini P, Lutz D. et al. 2013. Ap. J. 771:63 [Google Scholar]
  175. Rosario DJ, Santini P, Lutz D. et al. 2012. Astron. Astrophys. 545:A45 [Google Scholar]
  176. Roseboom IG, Lawrence A, Elvis M. et al. 2013. MNRAS 429:1494–501 [Google Scholar]
  177. Sako M, Kahn SM, Paerels F, Liedahl DA. 2000. Ap. J. Lett. 543:L115–18 [Google Scholar]
  178. Schartmann M, Burkert A, Krause M. et al. 2010. MNRAS 403:1801–11 [Google Scholar]
  179. Schartmann M, Meisenheimer K, Camenzind M. et al. 2008. Astron. Astrophys. 482:67–80 [Google Scholar]
  180. Schartmann M, Meisenheimer K, Camenzind M, Wolf S, Henning T. 2005. Astron. Astrophys. 437:861–81 [Google Scholar]
  181. Schawinski K, Simmons BD, Urry CM, Treister E, Glikman E. 2012. MNRAS 425:L61–65 [Google Scholar]
  182. Schneider R, Bianchi S, Valiante R, Risaliti G, Salvadori S. 2014. arXiv1402.2279
  183. Schnorr-Müller A, Storchi-Bergmann T, Nagar NM. et al. 2014. MNRAS 437:1708–24 [Google Scholar]
  184. Schweitzer M, Groves B, Netzer H. et al. 2008. Ap. J. 679:101–17 [Google Scholar]
  185. Shemmer O, Trakhtenbrot B, Anderson SF. et al. 2010. Ap. J. Lett. 722:L152–56 [Google Scholar]
  186. Shi Y, Rieke GH, Smith P. et al. 2010. Ap. J. 714:115–29 [Google Scholar]
  187. Simpson C. 2005. MNRAS 360:565–72 [Google Scholar]
  188. Stalevski M, Fritz J, Baes M, Nakos T, Popović LC. 2012. MNRAS 420:2756–72 [Google Scholar]
  189. Stern D, Eisenhardt P, Gorjian V. et al. 2005. Ap. J. 631:163–68 [Google Scholar]
  190. Stern J, Laor A. 2012. MNRAS 426:2703–18 [Google Scholar]
  191. Storchi-Bergmann T, Riffel RA, Riffel R. et al. 2012. Ap. J. 755:87 [Google Scholar]
  192. Suganuma M, Yoshii Y, Kobayashi Y. et al. 2006. Ap. J. 639:46–63 [Google Scholar]
  193. Swain M, Vasisht G, Akeson R. et al. 2003. Ap. J. Lett. 596:L163–66 [Google Scholar]
  194. Tadhunter C. 2008. New Astron. Rev. 52:227–39 [Google Scholar]
  195. Tadhunter C, Tsvetanov Z. 1989. Nature 341:422–24 [Google Scholar]
  196. Tommasin S, Spinoglio L, Malkan MA, Fazio G. 2010. Ap. J. 709:1257–83 [Google Scholar]
  197. Torricelli-Ciamponi G, Pietrini P, Risaliti G, Salvati M. 2014. MNRAS 442:2116–30 [Google Scholar]
  198. Tran HD. 2003. Ap. J. 583:632–48 [Google Scholar]
  199. Treister E, Krolik JH, Dullemond C. 2008. Ap. J. 679:140–48 [Google Scholar]
  200. Tristram KRW, Burtscher L, Jaffe W. et al. 2014. Astron. Astrophys. 563:A82 [Google Scholar]
  201. Trump JR, Impey CD, Taniguchi Y. et al. 2009. Ap. J. 706:797–809 [Google Scholar]
  202. Turner TJ, Miller L. 2009. Astron. Astrophys. Rev. 17:47–104 [Google Scholar]
  203. Ueda Y, Akiyama M, Ohta K, Miyaji T. 2003. Ap. J. 598:886–908 [Google Scholar]
  204. Ueda Y, Eguchi S, Terashima Y. et al. 2007. Ap. J. Lett. 664:L79–82 [Google Scholar]
  205. Urry CM, Padovani P. 1995. Publ. Astron. Soc. Pac. 107:803 [Google Scholar]
  206. Urry M. 2003. Active Galactic Nuclei: From Central Engine to Host Galaxy S Collin, F Combes, I Shlosman ASP Conf. Ser. 2903 San Francisco: ASP [Google Scholar]
  207. Vardanyan V, Weedman D, Sargsyan L. 2014. Ap. J. 790:88 [Google Scholar]
  208. Veilleux S, Kim DC, Peng CY. et al. 2006. Ap. J. 643:707–23 [Google Scholar]
  209. Veilleux S, Kim DC, Rupke DSN. et al. 2009a. Ap. J. 701:587–606 [Google Scholar]
  210. Veilleux S, Osterbrock DE. 1987. Ap. J. Suppl. 63:295–310 [Google Scholar]
  211. Veilleux S, Rupke DSN, Kim DC. et al. 2009b. Ap. J. Suppl. Ser. 182:628–66 [Google Scholar]
  212. Vito F, Vignali C, Gilli R. et al. 2013. MNRAS 428:354–69 [Google Scholar]
  213. Vollmer B, Beckert T, Davies RI. 2008. Astron. Astrophys. 491:441–53 [Google Scholar]
  214. Wada K. 2012. Ap. J. 758:66 [Google Scholar]
  215. Wada K, Papadopoulos PP, Spaans M. 2009. Ap. J. 702:63–74 [Google Scholar]
  216. Wang J, Fabbiano G, Elvis M. et al. 2011a. Ap. J. 742:23 [Google Scholar]
  217. Wang JM, Ge JQ, Hu C. et al. 2011b. Ap. J. 739:3 [Google Scholar]
  218. Wang JM, Qiu J, Du P, Ho LC. 2014. Ap. J. 797:65 [Google Scholar]
  219. Wang JM, Yan CS, Gao HQ. et al. 2010. Ap. J. Lett. 719:L148–52 [Google Scholar]
  220. Weaver KA, Meléndez M, Mushotzky RF. et al. 2010. Ap. J. 716:1151–65 [Google Scholar]
  221. Weedman D, Sargsyan L, Lebouteiller V, Houck J, Barry D. 2012. Ap. J. 761:184 [Google Scholar]
  222. Weigelt G, Hofmann KH, Kishimoto M. et al. 2012. Astron. Astrophys. 541:L9 [Google Scholar]
  223. Yaqoob T, Murphy KD, Miller L, Turner TJ. 2010. MNRAS 401:411–17 [Google Scholar]
/content/journals/10.1146/annurev-astro-082214-122302
Loading
/content/journals/10.1146/annurev-astro-082214-122302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error