In this review, the equations of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics are presented, together with their corresponding nonideal source terms. I overview the current landscape of modern grid-based numerical techniques with an emphasis on numerical diffusion, which plays a fundamental role in stabilizing the solution but is also the main source of errors associated with these numerical techniques. I discuss in great detail the inclusion of additional important source terms, such as cooling and gravity. I also show how to modify classic operator-splitting techniques to avoid undesirable numerical errors associated with these additional source terms, in particular in the presence of highly supersonic flows. I finally present various mesh adaptation strategies that can be used to minimize these numerical errors. To conclude, I review existing astrophysical software that is publicly available to perform simulations for such astrophysical fluids.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abel T, Bryan GL, Norman ML. 2002. Science 295:93–98 [Google Scholar]
  2. Abel T, Norman ML, Madau P. 1999. Ap. J. 523:66–71 [Google Scholar]
  3. Abel T, Wandelt BD. 2002. MNRAS 330:L53–56 [Google Scholar]
  4. Agertz O, Teyssier R, Moore B. 2011. MNRAS 410:1391–408 [Google Scholar]
  5. Altay G, Croft RAC, Pelupessy I. 2008. MNRAS 386:1931–46 [Google Scholar]
  6. Aubert D, Teyssier R. 2008. MNRAS 387:295–307 [Google Scholar]
  7. Baek S, Di Matteo P, Semelin B, Combes F, Revaz Y. 2009. Astron. Astrophys. 495:389–405 [Google Scholar]
  8. Balbus SA, Henri P. 2008. Ap. J. 674:408–14 [Google Scholar]
  9. Balsara DS, Dumbser M, Abgrall R. 2014. J. Comput. Phys. 261:172–208 [Google Scholar]
  10. Banerjee R, Pudritz RE. 2006. Ap. J. 641:949–60 [Google Scholar]
  11. Berger MJ, Colella P. 1989. J. Comput. Phys. 82:64–84 [Google Scholar]
  12. Berger MJ, Oliger J. 1984. J. Comput. Phys. 53:484–512 [Google Scholar]
  13. Berthon C, Charrier P, Dubroca B. 2006. J. Sci. Comput. 31:347–89 [Google Scholar]
  14. Boscheri W, Dumbser M. 2014. J. Comput. Phys. 275:484–523 [Google Scholar]
  15. Bouchut F. 2004. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And Well-Balanced Schemes for Sources Basel: Birkhäuser Verlag [Google Scholar]
  16. Brackbill JU, Barnes DC. 1980. J. Comput. Phys. 35:426–30 [Google Scholar]
  17. Bryan GL, Norman ML. 1995. Am. Astron. 187:1421 [Google Scholar]
  18. Bryan GL, Norman ML, O'Shea BW. et al. 2014. Ap. J. Suppl. Ser. 211:19 [Google Scholar]
  19. Bryan GL, Norman ML, Stone JM, Cen R, Ostriker JP. 1995. Comput. Phys. Commun. 89:149–68 [Google Scholar]
  20. Calhoun D, LeVeque RJ. 2000. J. Comput. Phys. 157:143–80 [Google Scholar]
  21. Cantalupo S, Porciani C. 2011. MNRAS 411:1678–94 [Google Scholar]
  22. Cargo P, Gallice G. 1997. J. Comput. Phys. 136:446–66 [Google Scholar]
  23. Cen R. 2002. Ap. J. Suppl. Ser. 141:211–27 [Google Scholar]
  24. Ciardi B, Ferrara A, Marri S, Raimondo G. 2001. MNRAS 324:381–88 [Google Scholar]
  25. Cockburn B, Shu CW. 1998. J. Comput. Phys. 141:199–224 [Google Scholar]
  26. Colella P, Woodward PR. 1984. J. Comput. Phys. 54:174–201 [Google Scholar]
  27. Commercon B, Audit E, Chabrier G, Chièze JP. 2011a. Astron. Astrophys. 530:13 [Google Scholar]
  28. Commercon B, Teyssier R, Audit E, Hennebelle P, Chabrier G. 2011b. Astron. Astrophys. 529:35 [Google Scholar]
  29. Crockett RK, Colella P, Fisher RT, Klein RJ, McKee CI. 2005. J. Comput. Phys. 203:422–48 [Google Scholar]
  30. Dedner A, Kemm F, Kröner D. et al. 2002. J. Comput. Phys. 175:645–73 [Google Scholar]
  31. Enßlin T, Pfrommer C, Miniati F, Subramanian K. 2011. Astron. Astrophys. 527:99 [Google Scholar]
  32. Evans CR, Hawley JF. 1988. Ap. J. 332:659–77 [Google Scholar]
  33. Fromang S, Hennebelle P, Teyssier R. 2006. Astron. Astrophys. 457:371–84 [Google Scholar]
  34. Fromang S, Papaloizou J, Lesur G, Heinemann T. 2007. Astron. Astrophys. 476:1123–32 [Google Scholar]
  35. Fryxell B, Olson K, Ricker P. et al. 2000. Ap. J. Suppl. Ser. 131:273–334 [Google Scholar]
  36. Giles MB. 1989. Proc. 11th Int. Conf. Numerical Methods Fluid Dyn. DL Dwoyer, MY Hussaini, RG Voigt 273–77 Berlin: Springer-Verlag [Google Scholar]
  37. Glover SCO, Mac Low MM. 2007. Ap. J. Suppl. Ser. 169:239–68 [Google Scholar]
  38. Gnedin NY. 1995. Ap. J. Suppl. Ser. 97:231–57 [Google Scholar]
  39. Gnedin NY, Abel T. 2001. New Astron. 6:437–55 [Google Scholar]
  40. Godunov SK. 1959. Mat. Sb. 89:271–306 [Google Scholar]
  41. González M, Audit E, Huynh P. 2007. Astron. Astrophys. 464:429–35 [Google Scholar]
  42. Gottlieb D, Orszag SA, Sod GA. 1978. J. Appl. Mech. 45:969 [Google Scholar]
  43. Grassi T, Bovino S, Schleicher DRG. et al. 2014. MNRAS 439:2386–419 [Google Scholar]
  44. Harten A, Lax PD, van Leer B. 1983. SIAM Rev. 25:35–61 [Google Scholar]
  45. Hennebelle P, Teyssier R. 2008. Astron. Astrophys. 477:25–34 [Google Scholar]
  46. Hockney RW, Eastwood JW. 1988. Computer Simulation Using Particles. Bristol: Hilger [Google Scholar]
  47. Holleman R, Fringer O, Stacey M. 2013. Int. J. Numer. Methods Fluids 72:1117–45 [Google Scholar]
  48. Hubbard ME. 1999. J. Comput. Phys. 155:54–74 [Google Scholar]
  49. Jiang GS, Wu CC. 1999. J. Comput. Phys. 150:561–94 [Google Scholar]
  50. Jiang YF, Stone JM, Davis SW. 2012. Ap. J. Suppl. Ser. 199:14 [Google Scholar]
  51. Jiang YF, Stone JM, Davis SW. 2014. Ap. J. Suppl. Ser. 213:7 [Google Scholar]
  52. Jordan GC IV, Fisher RT, Townsley DM. 2008. Ap. J. 681:1448 [Google Scholar]
  53. Joulain K, Falgarone E, Pineau des Forêts G, Flower D. 1998. Astron. Astrophys. 340:241–56 [Google Scholar]
  54. Jubelgas M, Springel V, Enßlin T, Pfrommer C. 2008. Astron. Astrophys. 481:33–63 [Google Scholar]
  55. Käppeli R, Mishra S. 2014. J. Comput. Phys. 259:199–219 [Google Scholar]
  56. Katz A, Sankaran V. 2011. J. Comput. Phys. 230:7670–86 [Google Scholar]
  57. Kim J, Balsara DS. 2014. J. Comput. Phys. 270:634–39 [Google Scholar]
  58. Klein RI, McKee CF, Colella P. 1994. Ap. J. 420:213–36 [Google Scholar]
  59. Knebe A, Green A, Binney J. 2001. MNRAS 325:845–64 [Google Scholar]
  60. Kravtsov AV, Klypin AA, Khokhlov AM. 1997. Ap. J. Suppl. Ser. 111:73 [Google Scholar]
  61. Krumholz MR, Klein RI, McKee CF, Bolstad J. 2007. Ap. J. 667:626–43 [Google Scholar]
  62. Lamberts A, Fromang S, Dubus G, Teyssier R. 2013. Astron. Astrophys. 560:79 [Google Scholar]
  63. Lesur G, Kunz MW, Fromang S. 2014. Astron. Astrophys. 566:56 [Google Scholar]
  64. LeVeque RJ. 1992. Numerical Methods for Conservation Laws Basel: Birkhäuser Verlag, 2nd ed.. [Google Scholar]
  65. Levermore CD. 1984. J. Quant. Spectrosc. Radiat. Transf. 31:149–60 [Google Scholar]
  66. Li B, Zhao G-B, Teyssier R, Koyama K. 2012. J. Cosmol. Astropart. Phys. 01:2012051 [Google Scholar]
  67. Liu TP. 1987. Commun. Math. Phys. 108:153–75 [Google Scholar]
  68. Londrillo P, del Zanna L. 2004. J. Comput. Phys. 195:17–48 [Google Scholar]
  69. Lowrie RB, Morel JE, Hittinger JA. 1999. Ap. J. 521:432–50 [Google Scholar]
  70. Majda A. 1984. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer [Google Scholar]
  71. McCorquodale P, Colella P. 2011. Commun. Appl. Math. Comput. Sci. 6:1–25 [Google Scholar]
  72. Mellema G, Iliev IT, Alvarez MA, Shapiro PR. 2006. New Astron. 11:374–95 [Google Scholar]
  73. Mignone A, Bodo G, Massaglia S. et al. 2007. Ap. J. Suppl. Ser. 170:228–42 [Google Scholar]
  74. Mihalas D, Mihalas BW. 1984. Foundations of Radiation Hydrodynamics. New York: Oxford Univ. Press [Google Scholar]
  75. Miyoshi T, Kusano K. 2005. J. Comput. Phys. 208:315–44 [Google Scholar]
  76. Mocz P, Vogelsberger M, Hernquist L. 2014. MNRAS 442:43–55 [Google Scholar]
  77. Murphy JW, Burrows A. 2008. Ap. J. Suppl. Ser. 179:209–41 [Google Scholar]
  78. Nakamoto T, Umemura M, Susa H. 2001. MNRAS 321:593–604 [Google Scholar]
  79. Nool M, Keppens R. 2002. Comput. Methods Appl. Math. 2:92–109 [Google Scholar]
  80. Pakmor R, Springel V. 2013. MNRAS 432:176–93 [Google Scholar]
  81. Pawlik AH, Schaye J. 2008. MNRAS 389:651–77 [Google Scholar]
  82. Pawlik AH, Schaye J. 2011. MNRAS 412:1943–64 [Google Scholar]
  83. Pen UL. 1998. Ap. J. Suppl. Ser. 115:19–34 [Google Scholar]
  84. Petkova M, Springel V. 2011. MNRAS 415:3731–49 [Google Scholar]
  85. Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL. 1999. J. Comput. Phys. 154:284–309 [Google Scholar]
  86. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 1992. Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  87. Razoumov AO, Cardall CY. 2005. MNRAS 362:1413–17 [Google Scholar]
  88. Rijkhorst EJ, Plewa T, Dubey A, Mellema G. 2006. Astron. Astrophys. 452:907–20 [Google Scholar]
  89. Rosdahl J, Blaizot J, Aubert D, Stranex T, Teyssier R. 2013. MNRAS 436:2188–231 [Google Scholar]
  90. Rybicki GB, Lightman AP. 1986. Radiative Processes in Astrophysics. Hoboken, NJ: Wiley-VCH [Google Scholar]
  91. Ryu D, Ostriker JP, Kang H, Cen R. 1993. Ap. J. 414:1–19 [Google Scholar]
  92. Schmidt W, Federrath C. 2011. Astron. Astrophys. 528:106 [Google Scholar]
  93. Schmidt W, Niemeyer JC, Hillebrandt W. 2006. Astron. Astrophys. 450:265–81 [Google Scholar]
  94. Shu CW, Osher S. 1988. J. Comput. Phys. 77:439–71 [Google Scholar]
  95. Shu FH. 1992. The Physics of Astrophysics II Gas Dynamics Mill Valley, CA: Univ. Sci. Books [Google Scholar]
  96. Skinner MA, Ostriker EC. 2013. Ap. J. Suppl. Ser. 206:21 [Google Scholar]
  97. Spitzer L Jr, Härm R. 1953. Phys. Rev. 89:977 [Google Scholar]
  98. Springel V. 2010a. MNRAS 401:791–851 [Google Scholar]
  99. Springel V. 2010b. Annu. Rev. Astron. Astrophys. 48:391–430 [Google Scholar]
  100. Stone JM, Gardiner TA, Teuben P, Hawley JF, Simon JB. 2008. Ap. J. Suppl. Ser. 178:137–77 [Google Scholar]
  101. Stone JM, Mihalas D, Norman ML. 1992. Ap. J. Suppl. Ser. 80:819–45 [Google Scholar]
  102. Stone JM, Norman ML. 1992. Ap. J. Suppl. Ser. 80:753–90 [Google Scholar]
  103. Stone JM, Norman ML. 1992. Ap. J. Suppl. Ser. 80:791 [Google Scholar]
  104. Suresh A, Huynh HT. 1997. J. Comput. Phys. 136:83–99 [Google Scholar]
  105. Susa H. 2006. Publ. Astron. Soc. Jpn. 58:445–60 [Google Scholar]
  106. Teyssier R. 2002. Astron. Astrophys. 385:337–64 [Google Scholar]
  107. Teyssier R, Pires S, Prunet S. et al. 2009. Astron. Astrophys. 497:335–41 [Google Scholar]
  108. Titarev VA, Toro EF. 2002. J. Sci. Comput. 17:609–18 [Google Scholar]
  109. Toro EF. 1999. Riemann Solvers and Numerical Methods for Fluid Dynamics Berlin: Springer-Verlag [Google Scholar]
  110. Tóth G. 2000. J. Comput. Phys. 161:605–52 [Google Scholar]
  111. Truelove JK, Klein RI, McKee CF. et al. 1997. Ap. J. Lett. 489:L179 [Google Scholar]
  112. van Leer B. 1976. Computing Plasma Physics Astrophysics D Biskamp 1 Amsterdam: North-Holland [Google Scholar]
  113. Vilar F, Maire PH, Abgrall R. 2014. J. Comput. Phys. 276:188–234 [Google Scholar]
  114. Whalen D, Norman ML. 2006. Ap. J. Suppl. Ser. 162:281–303 [Google Scholar]
  115. Wise JH, Abel T. 2011. MNRAS 414:3458–91 [Google Scholar]
  116. Woodward PR, Herwig F, Lin PH. 2015. Ap. J. 798:49–65 [Google Scholar]
  117. Yang H, Ricker PM, Sutter PM. 2009. Ap. J. 699:315–29 [Google Scholar]
  118. Ziegler U. 1998. Comput. Phys. Commun. 109:111–34 [Google Scholar]
  119. Ziegler U. 2005. Astron. Astrophys. 435:385–95 [Google Scholar]
  120. Zienkiewicz OC. 1971. The Finite Element Method in Engineering Science. New York: McGraw-Hill, 2nd ed.. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error