1932

Abstract

In this review, the equations of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics are presented, together with their corresponding nonideal source terms. I overview the current landscape of modern grid-based numerical techniques with an emphasis on numerical diffusion, which plays a fundamental role in stabilizing the solution but is also the main source of errors associated with these numerical techniques. I discuss in great detail the inclusion of additional important source terms, such as cooling and gravity. I also show how to modify classic operator-splitting techniques to avoid undesirable numerical errors associated with these additional source terms, in particular in the presence of highly supersonic flows. I finally present various mesh adaptation strategies that can be used to minimize these numerical errors. To conclude, I review existing astrophysical software that is publicly available to perform simulations for such astrophysical fluids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-082214-122309
2015-08-18
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/astro/53/1/annurev-astro-082214-122309.html?itemId=/content/journals/10.1146/annurev-astro-082214-122309&mimeType=html&fmt=ahah

Literature Cited

  1. Abel T, Bryan GL, Norman ML. 2002. Science 295:93–98 [Google Scholar]
  2. Abel T, Norman ML, Madau P. 1999. Ap. J. 523:66–71 [Google Scholar]
  3. Abel T, Wandelt BD. 2002. MNRAS 330:L53–56 [Google Scholar]
  4. Agertz O, Teyssier R, Moore B. 2011. MNRAS 410:1391–408 [Google Scholar]
  5. Altay G, Croft RAC, Pelupessy I. 2008. MNRAS 386:1931–46 [Google Scholar]
  6. Aubert D, Teyssier R. 2008. MNRAS 387:295–307 [Google Scholar]
  7. Baek S, Di Matteo P, Semelin B, Combes F, Revaz Y. 2009. Astron. Astrophys. 495:389–405 [Google Scholar]
  8. Balbus SA, Henri P. 2008. Ap. J. 674:408–14 [Google Scholar]
  9. Balsara DS, Dumbser M, Abgrall R. 2014. J. Comput. Phys. 261:172–208 [Google Scholar]
  10. Banerjee R, Pudritz RE. 2006. Ap. J. 641:949–60 [Google Scholar]
  11. Berger MJ, Colella P. 1989. J. Comput. Phys. 82:64–84 [Google Scholar]
  12. Berger MJ, Oliger J. 1984. J. Comput. Phys. 53:484–512 [Google Scholar]
  13. Berthon C, Charrier P, Dubroca B. 2006. J. Sci. Comput. 31:347–89 [Google Scholar]
  14. Boscheri W, Dumbser M. 2014. J. Comput. Phys. 275:484–523 [Google Scholar]
  15. Bouchut F. 2004. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And Well-Balanced Schemes for Sources Basel: Birkhäuser Verlag [Google Scholar]
  16. Brackbill JU, Barnes DC. 1980. J. Comput. Phys. 35:426–30 [Google Scholar]
  17. Bryan GL, Norman ML. 1995. Am. Astron. 187:1421 [Google Scholar]
  18. Bryan GL, Norman ML, O'Shea BW. et al. 2014. Ap. J. Suppl. Ser. 211:19 [Google Scholar]
  19. Bryan GL, Norman ML, Stone JM, Cen R, Ostriker JP. 1995. Comput. Phys. Commun. 89:149–68 [Google Scholar]
  20. Calhoun D, LeVeque RJ. 2000. J. Comput. Phys. 157:143–80 [Google Scholar]
  21. Cantalupo S, Porciani C. 2011. MNRAS 411:1678–94 [Google Scholar]
  22. Cargo P, Gallice G. 1997. J. Comput. Phys. 136:446–66 [Google Scholar]
  23. Cen R. 2002. Ap. J. Suppl. Ser. 141:211–27 [Google Scholar]
  24. Ciardi B, Ferrara A, Marri S, Raimondo G. 2001. MNRAS 324:381–88 [Google Scholar]
  25. Cockburn B, Shu CW. 1998. J. Comput. Phys. 141:199–224 [Google Scholar]
  26. Colella P, Woodward PR. 1984. J. Comput. Phys. 54:174–201 [Google Scholar]
  27. Commercon B, Audit E, Chabrier G, Chièze JP. 2011a. Astron. Astrophys. 530:13 [Google Scholar]
  28. Commercon B, Teyssier R, Audit E, Hennebelle P, Chabrier G. 2011b. Astron. Astrophys. 529:35 [Google Scholar]
  29. Crockett RK, Colella P, Fisher RT, Klein RJ, McKee CI. 2005. J. Comput. Phys. 203:422–48 [Google Scholar]
  30. Dedner A, Kemm F, Kröner D. et al. 2002. J. Comput. Phys. 175:645–73 [Google Scholar]
  31. Enßlin T, Pfrommer C, Miniati F, Subramanian K. 2011. Astron. Astrophys. 527:99 [Google Scholar]
  32. Evans CR, Hawley JF. 1988. Ap. J. 332:659–77 [Google Scholar]
  33. Fromang S, Hennebelle P, Teyssier R. 2006. Astron. Astrophys. 457:371–84 [Google Scholar]
  34. Fromang S, Papaloizou J, Lesur G, Heinemann T. 2007. Astron. Astrophys. 476:1123–32 [Google Scholar]
  35. Fryxell B, Olson K, Ricker P. et al. 2000. Ap. J. Suppl. Ser. 131:273–334 [Google Scholar]
  36. Giles MB. 1989. Proc. 11th Int. Conf. Numerical Methods Fluid Dyn. DL Dwoyer, MY Hussaini, RG Voigt 273–77 Berlin: Springer-Verlag [Google Scholar]
  37. Glover SCO, Mac Low MM. 2007. Ap. J. Suppl. Ser. 169:239–68 [Google Scholar]
  38. Gnedin NY. 1995. Ap. J. Suppl. Ser. 97:231–57 [Google Scholar]
  39. Gnedin NY, Abel T. 2001. New Astron. 6:437–55 [Google Scholar]
  40. Godunov SK. 1959. Mat. Sb. 89:271–306 [Google Scholar]
  41. González M, Audit E, Huynh P. 2007. Astron. Astrophys. 464:429–35 [Google Scholar]
  42. Gottlieb D, Orszag SA, Sod GA. 1978. J. Appl. Mech. 45:969 [Google Scholar]
  43. Grassi T, Bovino S, Schleicher DRG. et al. 2014. MNRAS 439:2386–419 [Google Scholar]
  44. Harten A, Lax PD, van Leer B. 1983. SIAM Rev. 25:35–61 [Google Scholar]
  45. Hennebelle P, Teyssier R. 2008. Astron. Astrophys. 477:25–34 [Google Scholar]
  46. Hockney RW, Eastwood JW. 1988. Computer Simulation Using Particles. Bristol: Hilger [Google Scholar]
  47. Holleman R, Fringer O, Stacey M. 2013. Int. J. Numer. Methods Fluids 72:1117–45 [Google Scholar]
  48. Hubbard ME. 1999. J. Comput. Phys. 155:54–74 [Google Scholar]
  49. Jiang GS, Wu CC. 1999. J. Comput. Phys. 150:561–94 [Google Scholar]
  50. Jiang YF, Stone JM, Davis SW. 2012. Ap. J. Suppl. Ser. 199:14 [Google Scholar]
  51. Jiang YF, Stone JM, Davis SW. 2014. Ap. J. Suppl. Ser. 213:7 [Google Scholar]
  52. Jordan GC IV, Fisher RT, Townsley DM. 2008. Ap. J. 681:1448 [Google Scholar]
  53. Joulain K, Falgarone E, Pineau des Forêts G, Flower D. 1998. Astron. Astrophys. 340:241–56 [Google Scholar]
  54. Jubelgas M, Springel V, Enßlin T, Pfrommer C. 2008. Astron. Astrophys. 481:33–63 [Google Scholar]
  55. Käppeli R, Mishra S. 2014. J. Comput. Phys. 259:199–219 [Google Scholar]
  56. Katz A, Sankaran V. 2011. J. Comput. Phys. 230:7670–86 [Google Scholar]
  57. Kim J, Balsara DS. 2014. J. Comput. Phys. 270:634–39 [Google Scholar]
  58. Klein RI, McKee CF, Colella P. 1994. Ap. J. 420:213–36 [Google Scholar]
  59. Knebe A, Green A, Binney J. 2001. MNRAS 325:845–64 [Google Scholar]
  60. Kravtsov AV, Klypin AA, Khokhlov AM. 1997. Ap. J. Suppl. Ser. 111:73 [Google Scholar]
  61. Krumholz MR, Klein RI, McKee CF, Bolstad J. 2007. Ap. J. 667:626–43 [Google Scholar]
  62. Lamberts A, Fromang S, Dubus G, Teyssier R. 2013. Astron. Astrophys. 560:79 [Google Scholar]
  63. Lesur G, Kunz MW, Fromang S. 2014. Astron. Astrophys. 566:56 [Google Scholar]
  64. LeVeque RJ. 1992. Numerical Methods for Conservation Laws Basel: Birkhäuser Verlag, 2nd ed.. [Google Scholar]
  65. Levermore CD. 1984. J. Quant. Spectrosc. Radiat. Transf. 31:149–60 [Google Scholar]
  66. Li B, Zhao G-B, Teyssier R, Koyama K. 2012. J. Cosmol. Astropart. Phys. 01:2012051 [Google Scholar]
  67. Liu TP. 1987. Commun. Math. Phys. 108:153–75 [Google Scholar]
  68. Londrillo P, del Zanna L. 2004. J. Comput. Phys. 195:17–48 [Google Scholar]
  69. Lowrie RB, Morel JE, Hittinger JA. 1999. Ap. J. 521:432–50 [Google Scholar]
  70. Majda A. 1984. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer [Google Scholar]
  71. McCorquodale P, Colella P. 2011. Commun. Appl. Math. Comput. Sci. 6:1–25 [Google Scholar]
  72. Mellema G, Iliev IT, Alvarez MA, Shapiro PR. 2006. New Astron. 11:374–95 [Google Scholar]
  73. Mignone A, Bodo G, Massaglia S. et al. 2007. Ap. J. Suppl. Ser. 170:228–42 [Google Scholar]
  74. Mihalas D, Mihalas BW. 1984. Foundations of Radiation Hydrodynamics. New York: Oxford Univ. Press [Google Scholar]
  75. Miyoshi T, Kusano K. 2005. J. Comput. Phys. 208:315–44 [Google Scholar]
  76. Mocz P, Vogelsberger M, Hernquist L. 2014. MNRAS 442:43–55 [Google Scholar]
  77. Murphy JW, Burrows A. 2008. Ap. J. Suppl. Ser. 179:209–41 [Google Scholar]
  78. Nakamoto T, Umemura M, Susa H. 2001. MNRAS 321:593–604 [Google Scholar]
  79. Nool M, Keppens R. 2002. Comput. Methods Appl. Math. 2:92–109 [Google Scholar]
  80. Pakmor R, Springel V. 2013. MNRAS 432:176–93 [Google Scholar]
  81. Pawlik AH, Schaye J. 2008. MNRAS 389:651–77 [Google Scholar]
  82. Pawlik AH, Schaye J. 2011. MNRAS 412:1943–64 [Google Scholar]
  83. Pen UL. 1998. Ap. J. Suppl. Ser. 115:19–34 [Google Scholar]
  84. Petkova M, Springel V. 2011. MNRAS 415:3731–49 [Google Scholar]
  85. Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL. 1999. J. Comput. Phys. 154:284–309 [Google Scholar]
  86. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 1992. Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  87. Razoumov AO, Cardall CY. 2005. MNRAS 362:1413–17 [Google Scholar]
  88. Rijkhorst EJ, Plewa T, Dubey A, Mellema G. 2006. Astron. Astrophys. 452:907–20 [Google Scholar]
  89. Rosdahl J, Blaizot J, Aubert D, Stranex T, Teyssier R. 2013. MNRAS 436:2188–231 [Google Scholar]
  90. Rybicki GB, Lightman AP. 1986. Radiative Processes in Astrophysics. Hoboken, NJ: Wiley-VCH [Google Scholar]
  91. Ryu D, Ostriker JP, Kang H, Cen R. 1993. Ap. J. 414:1–19 [Google Scholar]
  92. Schmidt W, Federrath C. 2011. Astron. Astrophys. 528:106 [Google Scholar]
  93. Schmidt W, Niemeyer JC, Hillebrandt W. 2006. Astron. Astrophys. 450:265–81 [Google Scholar]
  94. Shu CW, Osher S. 1988. J. Comput. Phys. 77:439–71 [Google Scholar]
  95. Shu FH. 1992. The Physics of Astrophysics II Gas Dynamics Mill Valley, CA: Univ. Sci. Books [Google Scholar]
  96. Skinner MA, Ostriker EC. 2013. Ap. J. Suppl. Ser. 206:21 [Google Scholar]
  97. Spitzer L Jr, Härm R. 1953. Phys. Rev. 89:977 [Google Scholar]
  98. Springel V. 2010a. MNRAS 401:791–851 [Google Scholar]
  99. Springel V. 2010b. Annu. Rev. Astron. Astrophys. 48:391–430 [Google Scholar]
  100. Stone JM, Gardiner TA, Teuben P, Hawley JF, Simon JB. 2008. Ap. J. Suppl. Ser. 178:137–77 [Google Scholar]
  101. Stone JM, Mihalas D, Norman ML. 1992. Ap. J. Suppl. Ser. 80:819–45 [Google Scholar]
  102. Stone JM, Norman ML. 1992. Ap. J. Suppl. Ser. 80:753–90 [Google Scholar]
  103. Stone JM, Norman ML. 1992. Ap. J. Suppl. Ser. 80:791 [Google Scholar]
  104. Suresh A, Huynh HT. 1997. J. Comput. Phys. 136:83–99 [Google Scholar]
  105. Susa H. 2006. Publ. Astron. Soc. Jpn. 58:445–60 [Google Scholar]
  106. Teyssier R. 2002. Astron. Astrophys. 385:337–64 [Google Scholar]
  107. Teyssier R, Pires S, Prunet S. et al. 2009. Astron. Astrophys. 497:335–41 [Google Scholar]
  108. Titarev VA, Toro EF. 2002. J. Sci. Comput. 17:609–18 [Google Scholar]
  109. Toro EF. 1999. Riemann Solvers and Numerical Methods for Fluid Dynamics Berlin: Springer-Verlag [Google Scholar]
  110. Tóth G. 2000. J. Comput. Phys. 161:605–52 [Google Scholar]
  111. Truelove JK, Klein RI, McKee CF. et al. 1997. Ap. J. Lett. 489:L179 [Google Scholar]
  112. van Leer B. 1976. Computing Plasma Physics Astrophysics D Biskamp 1 Amsterdam: North-Holland [Google Scholar]
  113. Vilar F, Maire PH, Abgrall R. 2014. J. Comput. Phys. 276:188–234 [Google Scholar]
  114. Whalen D, Norman ML. 2006. Ap. J. Suppl. Ser. 162:281–303 [Google Scholar]
  115. Wise JH, Abel T. 2011. MNRAS 414:3458–91 [Google Scholar]
  116. Woodward PR, Herwig F, Lin PH. 2015. Ap. J. 798:49–65 [Google Scholar]
  117. Yang H, Ricker PM, Sutter PM. 2009. Ap. J. 699:315–29 [Google Scholar]
  118. Ziegler U. 1998. Comput. Phys. Commun. 109:111–34 [Google Scholar]
  119. Ziegler U. 2005. Astron. Astrophys. 435:385–95 [Google Scholar]
  120. Zienkiewicz OC. 1971. The Finite Element Method in Engineering Science. New York: McGraw-Hill, 2nd ed.. [Google Scholar]
/content/journals/10.1146/annurev-astro-082214-122309
Loading
/content/journals/10.1146/annurev-astro-082214-122309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error