1932

Abstract

Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-082214-122442
2015-08-18
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/astro/53/1/annurev-astro-082214-122442.html?itemId=/content/journals/10.1146/annurev-astro-082214-122442&mimeType=html&fmt=ahah

Literature Cited

  1. Akamatsu H, Gottardi L, Adams J. et al. 2014. J. Low Temp. Phys. 176:591–96 [Google Scholar]
  2. Allen JT, Croom SM, Konstantopoulos IS. et al. 2015. MNRAS 446:1567–83 [Google Scholar]
  3. Allington-Smith J. 2006. See Allington-Smith et al. 2006a 244–51
  4. Allington-Smith J, Gerssen J, Robertson D. 2006a. Integral Field Spectroscopy: Techniques and Data Production New Astron. Rev. 50:4–5235–446 [Google Scholar]
  5. Allington-Smith J, Murray G, Content R. et al. 2002. Publ. Astron. Soc. Pac. 114:892–912 [Google Scholar]
  6. Allington-Smith JR, Content R, Dubbeldam CM, Robertson DJ, Preuss W. 2006b. MNRAS 371:380–94 [Google Scholar]
  7. Anderson PW, Halperin BI, Varma CM. 1972. Philos. Mag 25:1–9 [Google Scholar]
  8. Arribas S, Carter D, Cavaller L. et al. 1998. Optical and Fiber Optic Sensor Systems S Huang, KD Bennett, DA Jackson Proc. SPIE Conf. Ser. 3355821–27 Bellingham, WA: SPIE [Google Scholar]
  9. Arribas S, Mediavilla E, Rasilla JL. 1991. Ap. J. 369:260–70 [Google Scholar]
  10. Atherton PD, Taylor K, Pike CD. et al. 1982. MNRAS 201:661–96 [Google Scholar]
  11. Bacon R, Accardo M, Adjali L. et al. 2010. Ground-Based and Airborne Instrumentation for Astronomy III IS McLean, SK Ramsay, H Takami Proc. SPIE Conf. Ser. 7735773508 Bellingham, WA: SPIE [Google Scholar]
  12. Bacon R, Adam G, Baranne A. et al. 1995. Astron. Astrophys. Suppl. 113:347–57 [Google Scholar]
  13. Bacon R, Brinchmann J, Richard J. et al. 2015. Astron. Astrophys. 575:AA75 [Google Scholar]
  14. Bacon R, Copin Y, Monnet G. et al. 2001. MNRAS 326:23–35 [Google Scholar]
  15. Bandler SR, Brekosky RP, Brown A-D. et al. 2008. J. Low Temp. Phys. 151:400–5 [Google Scholar]
  16. Barden SC, Wade RA. 1988. Fiber Optics in Astronomy SC Barden. ASP Conf. Ser 3113–24 San Francisco: ASP [Google Scholar]
  17. Bernier A-P, Charlebois M, Drissen L, Grandmont F. 2008. Ground-Based and Airborne Instrumentation for Astronomy II IS McLean, MM Casali Proc. SPIE Conf. Ser. 701470147J Bellingham, WA: SPIE [Google Scholar]
  18. Bershady MA. 2011. 3D Spectroscopy in Astronomy E Mediavilla, S Arribas, MM Roth, J Cepa-Nogué, F Sánchez 87–125 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  19. Bland J, Tully RB. 1989. Astron. J. 98:723–35 [Google Scholar]
  20. Bland-Hawthorn J, van Breugel W, Gillingham PR, Baldry IK, Jones DH. 2001. Ap. J. 563:611–28 [Google Scholar]
  21. Bonneville C, Prieto E, Le Fèvre O. et al. 2003. See Iye & Moorwood 2003 1771–82
  22. Booth NE. 1987. Appl. Phys. Lett. 50:293–95 [Google Scholar]
  23. Bowen IS. 1938. Ap. J. 88:113–24 [Google Scholar]
  24. Bridge CM, Cropper M, Ramsay G. et al. 2002. MNRAS 336:1129–38 [Google Scholar]
  25. Bridge CM, Cropper M, Ramsay G. et al. 2003. MNRAS 341:863–69 [Google Scholar]
  26. Burke B, Jorden P, Vu P. 2005. Exp. Astron. 19:69–102 [Google Scholar]
  27. Cabrera B, Clarke RM, Colling P. et al. 1998. Appl. Phys. Lett. 73:735–37 [Google Scholar]
  28. Cappellari M, Bacon R, Bureau M. et al. 2006. MNRAS 366:1126–50 [Google Scholar]
  29. Castellano MG, Leoni R, Torrioli G, Greco FV, Carelli P. 2000. Philos. Mag. B 80:919–27 [Google Scholar]
  30. Chervenak JA, Irwin KD, Grossman EN. et al. 1999. Appl. Phys. Lett. 74:4043–45 [Google Scholar]
  31. Claudi RU, Turatto M, Antichi J. et al. 2006. Ground-Based and Airborne Instrumentation for Astronomy IS McLean, M Iye Proc. SPIE Conf. Ser. 626962692Y Bellingham, WA: SPIE [Google Scholar]
  32. Clénet Y, Le Coarer E, Joncas G. et al. 2002. Publ. Astron. Soc. Pac. 114:563–76 [Google Scholar]
  33. Connes P. 1970. Annu. Rev. Astron. Astrophys. 8:209–30 [Google Scholar]
  34. Content R. 1997. Optical Telescopes of Today and Tomorrow AL Ardeberg Proc. SPIE Conf. Ser. 28711295–305 Bellingham, WA: SPIE [Google Scholar]
  35. Content R. 2006. New Astron. Rev. 50:374–77 [Google Scholar]
  36. Courtès G. 1960. Ann. Astrophys. 23:115–217 [Google Scholar]
  37. Courtès G. 1982. Astron. Space Sci. Libr. 92:123–28 [Google Scholar]
  38. Croom SM, Lawrence JS, Bland-Hawthorn J. et al. 2012. MNRAS 421:872–93 [Google Scholar]
  39. Davies R, Kasper M. 2012. Annu. Rev. Astron. Astrophys. 50:305–51 [Google Scholar]
  40. Day PK, LeDuc HG, Mazin BA, Vayonakis A, Zmuidzinas J. 2003. Nature 425:817–21 [Google Scholar]
  41. de Bruijne JHJ, Reynolds AP, Perryman MAC. et al. 2002. Astron. Astrophys. 381:L57–60 [Google Scholar]
  42. de Zeeuw PT, Bureau M, Emsellem E. et al. 2002. MNRAS 329:513–30 [Google Scholar]
  43. den Herder JW, Bagnali D, Bandler S. et al. 2012. Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray T Takahashi, SS Murray, J-WA den Herder Proc. SPIE Conf. Ser. 844384432B Bellingham, WA: SPIE [Google Scholar]
  44. Diener P, Schellevis H, Baselmans JJA. 2012. Appl. Phys. Lett. 101:252601 [Google Scholar]
  45. Doyle S, Naylon J, Mauskopf P. et al. 2008. Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV WD Duncan, WS Holland, S Withington, J Zmuidzinas Proc. SPIE Conf. Ser. 702070200T Bellingham, WA: SPIE [Google Scholar]
  46. Drory N, MacDonald N, Bershady MA. et al. 2015. Ap. J. 149:77 [Google Scholar]
  47. Eaton HAC. 2010. Observing Photons in Space: A Guide to Experimental Space Astronomy MCE Huber, A Pauluhn, JL Culhane, JG Timothy, K Wilhelm, A Zehnder Int. Space Sci. Inst. Sci. Rep. Ser. 9:515–24 [Google Scholar]
  48. Eisenhauer F, Abuter R, Bickert K. et al. 2003. See Iye & Moorwood 2003 1548–61
  49. Eisenhauer F, Genzel R, Alexander T. et al. 2005. Ap. J. 628:246–59 [Google Scholar]
  50. Ezoe Y, Yoshino T, Mukai K. et al. 2008. High Energy, Optical, and Infrared Detectors for Astronomy III DA Dorn, AD Holland Proc. SPIE Conf. Ser. 702170211X Bellingham, WA: SPIE [Google Scholar]
  51. Fabry C, Perot A. 1901. Ap. J. 13:265–72 [Google Scholar]
  52. Fellgett P. 1958. J. Phys. Radium 19:187–91 [Google Scholar]
  53. Förster Schreiber NM, Genzel R, Bouché N. et al. 2009. Ap. J. 706:1364–428 [Google Scholar]
  54. Frank M, Mears CA, Labov SE. et al. 1996. Nucl. Instrum. Methods Phys. Res. A 370:41–43 [Google Scholar]
  55. Fraser GW. 2009. X-ray Detectors in Astronomy Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  56. Gao J, Daal M, Martinis JM. et al. 2008a. Appl. Phys. Lett. 92:212504 [Google Scholar]
  57. Gao J, Daal M, Vayonakis A. et al. 2008b. Appl. Phys. Lett. 92:152505 [Google Scholar]
  58. Gao J, Zmuidzinas J, Mazin BA, Leduc HG, Day PK. 2007. Appl. Phys. Lett. 90:102507 [Google Scholar]
  59. Genzel R, Tacconi LJ, Eisenhauer F. et al. 2006. Nature 442:786–89 [Google Scholar]
  60. Ghez AM, Salim S, Weinberg NN. et al. 2008. Ap. J. 689:1044–62 [Google Scholar]
  61. Gillessen S, Eisenhauer F, Trippe S. et al. 2009. Ap. J. 692:1075–109 [Google Scholar]
  62. Goldie DJ, Brink PL, Patel C, Booth NE, Salmon GL. 1994. Appl. Phys. Lett. 64:3169–71 [Google Scholar]
  63. Gottardi L, Bruijn M, Gao J-R. et al. 2012. J. Low Temp. Phys. 167:161–67 [Google Scholar]
  64. Grandmont F, Drissen L, Mandar J, Thibault S, Baril M. 2012. Ground-Based and Airborne Instrumentation for Astronomy IV IS McLean, SK Ramsay, H Takami Proc. SPIE Conf. Ser. 844684460U Bellingham, WA: SPIE [Google Scholar]
  65. Gray KE. 1978. Future Trends in Superconductive Electronics BS Deaver Jr., CM Falso, JH Hams, SA Wolf AIP Conf. Proc. 44359–63 Melville, NY: AIP [Google Scholar]
  66. Hagen N, Kudenov MW. 2013. Opt. Eng. 52:090901 [Google Scholar]
  67. Hall DNB, Ridgway S, Bell EA, Yarborough JM. 1979. Instrumentation in Astronomy III DL Crawford Proc. SPIE Conf. Ser. 172121–29 Bellingham, WA: SPIE [Google Scholar]
  68. Hart J, McGregor PJ, Bloxham GJ. 2003. See Iye & Moorwood 2003 319–29
  69. Hartung M, Lidman C, Ageorges N. et al. 2004. Ground-Based Instrumentation for Astronomy AFM Moorwood, M Iye Proc. SPIE Conf. Ser. 54921531–41 Bellingham, WA: SPIE [Google Scholar]
  70. Hicks TR, Reay NK, Atherton PD. 1984. J. Phys. E 17:49–55 [Google Scholar]
  71. Hijmering RA, Verhoeve P, Martin DDE. et al. 2010. Astron. Astrophys. 511:A59 [Google Scholar]
  72. Hofmann R, Brandl B, Eckart A, Eisenhauer F, Tacconi-Garman LE. 1995. Infrared Detectors and Instrumentation for Astronomy AM Fowler. Proc. SPIE Conf. Ser.2475192–202 Bellingham, WA: SPIE [Google Scholar]
  73. Irwin KD. 1995. Appl. Phys. Lett. 66:1998–2000 [Google Scholar]
  74. Irwin KD, Cabrera B, Tigner B, Sethuraman S. 1992. Low Temperature Detectors for Neutrinos and Dark Matter N Booth, G Salmon 209 Paris: Ed. Front. [Google Scholar]
  75. Irwin KD, Hilton GC. 2005. Cryogenic Particle Detection C Enss Top. Appl. Phys. 9963–150 Berlin: Springer-Verlag [Google Scholar]
  76. Iye M, Moorwood AFM. 2000. Optical and IR Telescope Instrumentation and Detectors, Proc. SPIE Conf. Ser.4008 Bellingham, WA: SPIE [Google Scholar]
  77. Iye M, Moorwood AFM. 2003. Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, Proc. SPIE Conf. Ser4841 Bellingham, WA: SPIE [Google Scholar]
  78. Jacquinot P. 1954. J. Opt. Soc. Am. 44:761–65 [Google Scholar]
  79. Jacquinot P. 1960. Rep. Progr. Phys. 23:267–312 [Google Scholar]
  80. Jerjen I, Kirk E, Schmid E, Zehnder A. 2006. Nucl. Instrum. Methods Phys. Res. A 559:497–99 [Google Scholar]
  81. Kawada M, Baba H, Barthel PD. et al. 2007. Publ. Astron. Soc. Jpn. 59:389–400 [Google Scholar]
  82. Kelz A, Verheijen MAW, Roth MM. et al. 2006. Publ. Astron. Soc. Pac. 118:129–45 [Google Scholar]
  83. Krabbe A, Rotaciuc V, Storey JWV. et al. 1993. Publ. Astron. Soc. Pac. 105:1472–81 [Google Scholar]
  84. Kulik IO. 1965. Opt. Express 20:21503–11 [Google Scholar]
  85. Kurakado M. 1982. Nucl. Instrum. Methods Phys. Res. 196:275–77 [Google Scholar]
  86. Lanting TM, Cho H, Clarke J. et al. 2004. Nucl. Instrum. Methods Phys. Res. 520:1–3548–50 [Google Scholar]
  87. Larkin J, Barczys M, Krabbe A. et al. 2006. New Astron. Rev. 50:362–64 [Google Scholar]
  88. Larkin JE, Chilcote JK, Aliado T. et al. 2014. Ground-Based and Airborne Instrumentation for Astronomy V SK Ramsay, IS McLean, H Takami Proc. SPIE 914791471K Bellingham, WA: SPIE [Google Scholar]
  89. Laurent F, Adjali L, Arns J. et al. 2010. Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation E Atad-Ettedgui, D Lemke Proc. SPIE Conf. Ser. 773977394M Bellingham, WA: SPIE [Google Scholar]
  90. Law DR, Steidel CC, Erb DK. et al. 2009. Ap. J. 697:2057–82 [Google Scholar]
  91. Lee D, Dickson CJ, Hastings PR, Wells M, Leclerc M. 2004. Optical Fabrication, Metrology, and Material Advancements for Telescopes E Atad-Ettedgui, P Dierickx Proc. SPIE Conf. Ser. 5494176–87 Bellingham, WA: SPIE [Google Scholar]
  92. Lobb D, Robertson D, Closs M, Barnes A. 2008. Optical Design and Engineering III J-L Tissot, L Mazuray, JM Raynor, R Wartmann, A Wood Proc. SPIE Conf. Ser 7100710012 Bellingham, WA: SPIE [Google Scholar]
  93. Looney LW, Raab W, Poglitsch A, Geis N. 2003. Ap. J. 597:628–43 [Google Scholar]
  94. Mackay CD. 1986. Annu. Rev. Astron. Astrophys. 24:255–83 [Google Scholar]
  95. Maillard JP. 2000. Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices W van Breugel, J Bland-Hawthorn ASP Conf. Ser. 195185–90 San Francisco: ASP [Google Scholar]
  96. Maillard JP, Drissen L, Grandmont F, Thibault S. 2013. Exp. Astron. 35:527–59 [Google Scholar]
  97. Martin DDE, Peacock A, Verhoeve P, Poelaert A, Venn R. 2000a. Nucl. Instrum. Methods Phys. Res. A 444:115–19 [Google Scholar]
  98. Martin DDE, Peacock A, Verhoeve P, Poelaert A, Venn R. 2000b. Rev. Sci. Instrum. 71:3543–51 [Google Scholar]
  99. Martin DDE, Verhoeve P. 2010. Observing Photons in Space: A Guide to Experimental Space Astronomy MCE Huber, A Pauluhn, JL Culhane, JG Timothy, K Wilhelm, A Zehnder Int. Space Sci. Inst. Sci. Rep. Ser. 9:479–96 [Google Scholar]
  100. Martin DDE, Verhoeve P, Oosterbroek T. et al. 2006. Ground-Based and Airborne Instrumentation for Astronomy IS McLean, M Iye Proc. SPIE Conf. Ser. 626962690O Bellingham, WA: SPIE [Google Scholar]
  101. Martin DDE, Verhoeve P, Peacock AJ, Goldie DJ. 2000c. See Iye & Moorwood 2000 328–36
  102. Mazin BA. 2009. The 13th International Workshop on Low Temperature Detectors B Young, B Cabrera, A Miller AIP Conf. Proc. 1185135–42 Melville, NY: AIP [Google Scholar]
  103. Mazin BA, Bumble B, Meeker SR. et al. 2012. Opt. Express 20:1503–11 [Google Scholar]
  104. Mazin BA, Day PK, LeDuc HG, Vayonakis A, Zmuidzinas J. 2002. Highly Innovative Space Telescope Concepts HA MacEwen Proc. SPIE Conf. Ser. 4849283–93 Bellingham, WA: SPIE [Google Scholar]
  105. Mazin BA, Eckart ME, Bumble B. et al. 2008. J. Low Temp. Phys. 151:537–43 [Google Scholar]
  106. Mazin BA, Meeker SR, Strader MJ. et al. 2013. Publ. Astron. Soc. Pac. 125:1348–61 [Google Scholar]
  107. Mazin BA, O'Brien K, McHugh S. et al. 2010. Ground-Based and Airborne Instrumentation for Astronomy III IS McLean, SK Ramsay, H Takami Proc. SPIE Conf. Ser. 7735773518 Bellingham, WA: SPIE [Google Scholar]
  108. Mediavilla E, Arribas S, Roth M, Cepa-Nogué J, Sánchez F. 2011. 3D Spectroscopy in Astronomy Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  109. Miller AJ, Cabrera B, Romani RW. et al. 2000. Nucl. Instrum. Methods Phys. Res. A 444:445–48 [Google Scholar]
  110. Monfardini A, Swenson LJ, Bideaud A. et al. 2010. Astron. Astrophys. 521:A29 [Google Scholar]
  111. Moore DC, Mazing BA, Golwala S. et al. 2009. The 13th International Workshop on Low Temperature Detectors B Young, B Cabrera, A Miller AIP Conf. Proc. 1185168–71 Melville, NY: AIP [Google Scholar]
  112. O'Brien K, Mazin B, McHugh S, Meeker S, Bumble B. 2012. New Horizons in Time-Domain Astronomy 285385–88 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  113. Perryman MAC, Cropper M, Ramsay G. et al. 2001. MNRAS 324:899–909 [Google Scholar]
  114. Perryman MAC, Favata F, Peacock A, Rando N, Taylor BG. 1999. Astron. Astrophys. 346:L30–32 [Google Scholar]
  115. Phillips WA. 1972. J. Low Temp. Phys. 7:351–60 [Google Scholar]
  116. Poglitsch A, Geis N, Genzel R, Haggerty M, Beeman JW. 1991. Int. J. Infrared Millim. Waves 12:859–84 [Google Scholar]
  117. Poglitsch A, Waelkens C, Geis N. et al. 2010. Astron. Astrophys. 518:L2 [Google Scholar]
  118. Preuss W, Rickens K. 2006. New Astron. Rev. 50:332–36 [Google Scholar]
  119. Raab W, Looney LW, Poglitsch A. et al. 2003. Airborne Telescope Systems II RK Melugin, H-P Roeser Proc. SPIE Conf. Ser. 4857166–74 Bellingham, WA: SPIE [Google Scholar]
  120. Ramsey LW. 1988. Fiber Optics in Astronomy SC Barden ASP Conf. Ser. 326–39 San Francisco: ASP [Google Scholar]
  121. Rando N, Andersson S, Collaudin B. et al. 2000a. Nucl. Instrum. Methods Phys. Res. A 444:441–44 [Google Scholar]
  122. Rando N, Peacock A, Favata F, Perryman M. 2000b. Exp. Astron. 10:499–517 [Google Scholar]
  123. Rando N, Peacock A, van Dordrecht A. et al. 1992. Nucl. Instrum. Methods Phys. Res. A 313:173–95 [Google Scholar]
  124. Rando N, Verveer J, Andersson S. et al. 2000c. Rev. Sci. Instrum. 71:4582–91 [Google Scholar]
  125. Rando N, Verveer J, Verhoeve P. et al. 2000d. See Iye & Moorwood 2000 646–56
  126. Rausch AJ, Deiker SW, Hilton G. et al. 2008. Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray MJL Turner, KA Flanagan Proc. SPIE Conf. Ser. 7011773518 Bellingham, WA: SPIE [Google Scholar]
  127. Revéret V, Talvard M, André P. et al. 2009. EAS Publ. Ser. 37:135–40 [Google Scholar]
  128. Reynolds AP, de Bruijne JHJ, Perryman MAC, Peacock A, Bridge CM. 2003. Astron. Astrophys. 400:1209–17 [Google Scholar]
  129. Ridgway ST, Brault JW. 1984. Annu. Rev. Astron. Astrophys. 22:291–317 [Google Scholar]
  130. Rieke GH. 2003. Detection of Light: From the Ultraviolet to the Submillimeter. Cambridge, UK: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  131. Rieke GH. 2007. Annu. Rev. Astron. Astrophys. 45:77–115 [Google Scholar]
  132. Roelfsema P, Giard M, Najarro F. et al. 2012. Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave MC Clampin, GG Fazio, HA MacEwen, JM Oschmann Jr Proc. SPIE Conf. Ser. 844284420R Bellingham, WA: SPIE [Google Scholar]
  133. Romani RW, Bay TJ, Burney J, Cabrera B. 2008. Ap. Space Sci. Libr. 351:311–25 [Google Scholar]
  134. Romani RW, Miller AJ, Cabrera B, Figueroa-Feliciano E, Nam SW. 1999. Ap. J. Lett. 521:L153–56 [Google Scholar]
  135. Romani RW, Miller AJ, Cabrera B, Nam SW, Martinis JM. 2001. Ap. J. 563:221–28 [Google Scholar]
  136. Roth MM, Kelz A, Fechner T. et al. 2005. Publ. Astron. Soc. Pac. 117:620–42 [Google Scholar]
  137. Schmoll J, Dubbeldam CM, Robertson DJ, Yao J. 2006. New Astron. Rev. 50:337–41 [Google Scholar]
  138. Schmoll J, Roth MM, Laux U. 2003. Publ. Astron. Soc. Pac. 115:854–68 [Google Scholar]
  139. Sellar RG, Boreman GD. 2005. Appl. Opt. 44:1614–24 [Google Scholar]
  140. Sharples R, Bender R, Agudo Berbel A. et al. 2013. ESO Messenger 151:21–23 [Google Scholar]
  141. Simons DA, Clark CC, Smith SS. et al. 1994. Instrumentation in Astronomy VIII DL Crawford, ER Craine Proc. SPIE Conf. Ser. 2198185–93 Bellingham, WA: SPIE [Google Scholar]
  142. Smith E, Long K. 2000. Next Generation Space Telescope Technology E Smith, K Long ASP Conf. Ser. 207 San Francisco: ASP [Google Scholar]
  143. Smith SJ, Whitford CH, Fraser GW, Goldie DJ. 2006. Nucl. Instrum. Methods Phys. Res. A 559:500–502 [Google Scholar]
  144. Stankov A, Martin D, Schulz R. et al. 2007. Transiting Extrasolar Planets Workshop C Afonso, D Weldrake, Th Henning ASP Conf. Ser. 366268–70 San Francisco: ASP [Google Scholar]
  145. Steeghs D, Perryman MAC, Reynolds A. et al. 2003. MNRAS 339:810–16 [Google Scholar]
  146. Strader MJ, Johnson MD, Mazin BA. et al. 2013. Ap. J. Lett. 779:L12 [Google Scholar]
  147. Swinyard BM, Dohlen K, Ferand D. et al. 2003. IR Space Telescopes and Instruments JC Mather Proc. SPIE Conf. Ser. 4850698–709 Bellingham, WA: SPIE [Google Scholar]
  148. Szypryt P, Duggan GE, Mazin BA. et al. 2014. MNRAS 439:2765–70 [Google Scholar]
  149. Tecza M. 2014. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation R Navarro, CR Cunningham, AA Barto Proc. SPIE Conf. Ser. 9151915118 Bellingham, WA: SPIE [Google Scholar]
  150. Tecza M, Thatte N, Clarke F. et al. 2006. Optomechanical Technologies for Astronomy E Atad-Ettedgui, J Antebi, D Lemke Proc. SPIE Conf. Ser. 627362732L Bellingham, WA: SPIE [Google Scholar]
  151. Tecza M, Thatte NA, Eisenhauer F. et al. 2000. See Iye & Moorwood 2000 1344–50
  152. Tully RB. 1974. Ap. J. Suppl. 27:415–35 [Google Scholar]
  153. Vanderriest C. 1980. Publ. Astron. Soc. Pac. 92:858–62 [Google Scholar]
  154. Vanderriest C, Lemonnier JP. 1988. Instrumentation for Ground-Based Optical Astronomy LB Robinson 304–10 New York: Springer-Verlag [Google Scholar]
  155. Vaughan AH Jr. 1967. Annu. Rev. Astron. Astrophys. 5:139–66 [Google Scholar]
  156. Veilleux S, Weiner BJ, Rupke DSN. et al. 2010. Astron. J. 139:145–57 [Google Scholar]
  157. Verhoeve P, den Hartog RH, Martin DD. et al. 2000. See Iye & Moorwood 2000 683–94
  158. Verhoeve P, Martin D, Brammertz G, Hijmering R, Peacock A. 2004. ESA Spec. Publ. 554:781–88 [Google Scholar]
  159. Verhoeve P, Martin DDE, Hijmering RA. et al. 2006. Nucl. Instrum. Methods Phys. Res. A 559:598–601 [Google Scholar]
  160. Verhoeve P, Rando N, Peacock AJ, Martin DD, den Hartog RH. 2002. Opt. Eng. 41:1170–84 [Google Scholar]
  161. Wade R. 1984. Instrumentation in Astronomy V A Boksenberg, DL Crawford Proc. SPIE Conf. Ser. 44547–50 Bellingham, WA: SPIE [Google Scholar]
  162. Walraven T, Walraven JH. 1972. ESO/CERN Proc. Conf. Aux. Instrum. Large Telesc. S Lausten, A Reiz 175–83 Geneva: ESO/CERN [Google Scholar]
  163. Weitzel L, Krabbe A, Kroker H. et al. 1996. Astron. Astrophys. Suppl. 119:531–46 [Google Scholar]
  164. Wilson CM, Segall K, Frunzio L. et al. 2000. Nucl. Instrum. Methods Phys. Res. A 444:449–52 [Google Scholar]
  165. Wilson TL, Rohlfs K, Hüttemeister S. 2013. Tools of Radio Astronomy Berlin: Springer [Google Scholar]
  166. Wisnioski E, Förster Schreiber NM, Wuyts S. et al. 2015. Ap. J. 799:209 [Google Scholar]
  167. Woodcraft AL, Ade PAR, Bintley D. et al. 2006. Low Temperature Physics: 24th International Conference on Low Temperature Physics Y Takano, SP Hershfield, SO Hill, OJ Horschfeld, AM Goldman AIP Conf. Proc. 8501611–12 Melville, NY: AIP [Google Scholar]
  168. Zmuidzinas J. 2012. Annu. Rev. Condens. Matter Phys. 3:169–214 [Google Scholar]
/content/journals/10.1146/annurev-astro-082214-122442
Loading
/content/journals/10.1146/annurev-astro-082214-122442
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error