Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abia C, Isern J. 2000. Ap. J. 536:438–49 [Google Scholar]
  2. Alexander CMO'D. 2004. Geochim. Cosmochim. Acta 68:3943–69 [Google Scholar]
  3. Alexander CMO'D, Bowden R, Fogel ML. et al. 2012. Science 337:721–23 [Google Scholar]
  4. Alexander CMO'D, Grossman JN, Ebel DS, Ciesla FJ. 2008. Science 320:1617–19 [Google Scholar]
  5. Alexander CMO'D, Newsome SD, Fogel ML. et al. 2010. Geochim. Cosmochim. Acta 74:4417–37 [Google Scholar]
  6. Alexander CMO'D, Nittler LR. 1999. Ap. J. 519:222–35 [Google Scholar]
  7. Alexander CMO'D, Nittler LR, Ciesla FJ. 2014. Meteorit. Planet. Sci. 49:Suppl.5241 [Google Scholar]
  8. Altwegg K, Balsiger H, Bar-Nun A. et al. 2015. Science 347:62201261952 [Google Scholar]
  9. Amari S, Gao X, Nittler LR. et al. 2001a. Ap. J. 551:1065–72 [Google Scholar]
  10. Amari S, Nittler LR, Zinner E. et al. 2001b. Ap. J. 559:463–83 [Google Scholar]
  11. Amari S, Zinner E, Gallino R. 2014. Geochim. Cosmochim. Acta 133:479–522 [Google Scholar]
  12. Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA. 2002. Science 297:1678–83 [Google Scholar]
  13. Anders E, Zinner E. 1993. Meteoritics 28:490–514 [Google Scholar]
  14. Andre P, Ward-Thompson D, Barsony M. 1993. Ap. J. 406:122–41 [Google Scholar]
  15. Armitage PJ. 2011. Annu. Rev. Astron. Astrophys. 49:195–236 [Google Scholar]
  16. Asphaug E, Jutzi M, Movshovitz N. 2011. Earth Planet. Sci. Lett. 308:369–79 [Google Scholar]
  17. Asplund M, Lambert DL, Kipper T. et al. 1999. Astron. Astrophys. 343:507–18 [Google Scholar]
  18. Bai X-N. 2011. Ap. J. 739:50 [Google Scholar]
  19. Bai X-N, Stone JM. 2013. Ap. J. 769:76 [Google Scholar]
  20. Balbus SA, Hawley JF. 1991. Ap. J. 376:214–22 [Google Scholar]
  21. Bernatowicz TJ, Akande OW, Croat TK, Cowsik R. 2005. Ap. J. 631:988–1000 [Google Scholar]
  22. Bernatowicz TJ, Cowsik R, Gibbons PC. et al. 1996. Ap. J. 472:760–82 [Google Scholar]
  23. Beuther H, Klessen RS, Dullemond CP, Henning T. 2014. Protostars and Planets VI Tucson: Univ. Ariz. Press [Google Scholar]
  24. Biscaro C, Cherchneff I. 2014. Astron. Astrophys. 564:A25 [Google Scholar]
  25. Blum J, Wurm G. 2008. Annu. Rev. Astron. Astrophys. 46:21–56 [Google Scholar]
  26. Bockelée-Morvan D, Gautier D, Hersant F. et al. 2002. Astron. Astrophys. 384:1107–18 [Google Scholar]
  27. Boley AC, Durisen RH. 2008. Ap. J. 685:1193–209 [Google Scholar]
  28. Boley AC, Morris MA, Desch SJ. 2013. Ap. J. 776:101 [Google Scholar]
  29. Boothroyd AI, Sackmann I-J. 1999. Ap. J. 510:232–50 [Google Scholar]
  30. Boss AP. 1998. Annu. Rev. Earth Planet. Sci. 26:53–80 [Google Scholar]
  31. Boss AP. 2012. Annu. Rev. Earth Planet. Sci. 40:23–43 [Google Scholar]
  32. Boss AP, Durisen RH. 2005. Ap. J. Lett. 621:L137–40 [Google Scholar]
  33. Boss AP, Keiser SA. 2015. Ap. J. 809:103 [Google Scholar]
  34. Bouvier A, Wadhwa M. 2010. Nat. Geosci. 3:637–41 [Google Scholar]
  35. Bradley JP, Brownlee DE. 1986. Science 231:1542–44 [Google Scholar]
  36. Brennecka GA, Borg LE, Wadhwa M. 2013. PNAS 110:17241–46 [Google Scholar]
  37. Brennecka GA, Weyer S, Wadhwa M. et al. 2010. Science 327:449–51 [Google Scholar]
  38. Brownlee D. 2014. Annu. Rev. Earth Planet. Sci. 42:179–205 [Google Scholar]
  39. Brownlee D, Tsou P, Aleon J. et al. 2006. Science 314:1711–16 [Google Scholar]
  40. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F. 1957. Rev. Mod. Phys. 29:547–650 [Google Scholar]
  41. Burkhardt C, Kleine T, Bourdon B. et al. 2008. Geochim. Cosmochim. Acta 72:6177–97 [Google Scholar]
  42. Burnett DS. 2013. Meteorit. Planet. Sci. 48:2351–70 [Google Scholar]
  43. Busemann H, Young AF, Alexander CMO'D. et al. 2006. Science 312:727–30 [Google Scholar]
  44. Busso M, Wasserburg GJ, Nollett KM, Calandra A. 2007. Ap. J. 671:802–10 [Google Scholar]
  45. Cameron AGW. 1957. Chalk River Rep. CRL-41 Atomic Energy Can. Ltd. [Google Scholar]
  46. Cameron AGW, Truran JW. 1977. Icarus 30:447–61 [Google Scholar]
  47. Carlson RW, Boyet M, Horan M. 2007. Science 316:1175–78 [Google Scholar]
  48. Chaussidon M, Gounelle M. 2006. See Lauretta & McSween Jr. 2006 323–39
  49. Chen H-W, Lee T, Lee D-C. et al. 2011. Ap. J. Lett. 743:L23 [Google Scholar]
  50. Chiang E, Youdin AN. 2010. Annu. Rev. Earth Planet. Sci. 38:493–522 [Google Scholar]
  51. Ciesla FJ. 2010. Icarus 208:455–67 [Google Scholar]
  52. Clayton DD. 1983. Ap. J. 268:381–84 [Google Scholar]
  53. Clayton DD. 1988. Ap. J. 334:191–95 [Google Scholar]
  54. Clayton DD. 1997. Ap. J. Lett. 484:L67–70 [Google Scholar]
  55. Clayton DD. 2003. Ap. J. 598:313–24 [Google Scholar]
  56. Clayton DD. 2013. Ap. J. 762:5 [Google Scholar]
  57. Clayton DD, Arnett D, Kane J, Meyer BS. 1997. Ap. J. 486:824–34 [Google Scholar]
  58. Clayton DD, Deneault EA-N, Meyer BS. 2001. Ap. J. 562:480–93 [Google Scholar]
  59. Clayton DD, Liu W, Dalgarno A. 1999. Science 283:1290–92 [Google Scholar]
  60. Clayton DD, Timmes FX. 1997. Ap. J. 483:220–27 [Google Scholar]
  61. Clayton RN. 2002. Nature 415:860–61 [Google Scholar]
  62. Clayton RN, Grossman L, Mayeda TK. 1973. Science 182:485–88 [Google Scholar]
  63. Cleeves LI, Bergin EA, Alexander CMO'D. et al. 2014. Science 345:1590–93 [Google Scholar]
  64. Cody GD, Heying E, Alexander CMO'D. et al. 2011. PNAS 108:19171–76 [Google Scholar]
  65. Connelly JN, Bizzarro M, Krot AN. et al. 2012. Science 338:651–55 [Google Scholar]
  66. Connolly HC Jr., Desch SJ. 2004. Chem. Erde/Geochem. 64:95–125 [Google Scholar]
  67. Cristallo S, Piersanti L, Straniero O. et al. 2011. Ap. J. Suppl. 197:17 [Google Scholar]
  68. Croat TK, Bernatowicz T, Amari S. et al. 2003. Geochim. Cosmochim. Acta 67:4705–25 [Google Scholar]
  69. Croat TK, Stadermann FJ, Bernatowicz TJ. 2005. Ap. J. 631:976–87 [Google Scholar]
  70. Cuzzi JN, Alexander CMO'D. 2006. Nature 441:483–85 [Google Scholar]
  71. Cuzzi JN, Davis SS, Dobrovolskis AR. 2003. Icarus 166:385–402 [Google Scholar]
  72. Cuzzi JN, Hogan RC, Paque JM, Dobrovolskis AR. 2001. Ap. J. 546:496–508 [Google Scholar]
  73. Cuzzi JN, Hogan RC, Shariff K. 2008. Ap. J. 687:1432–47 [Google Scholar]
  74. Cuzzi JN, Weidenschilling SJ, McSween HY. 2006. See Lauretta & McSween Jr. 2006 353–81
  75. D'Alessio P, Calvet N, Woolum DS. 2005. See Krot et al. 2005b 353–72
  76. Dai ZR, Bradley JP, Joswiak DJ. et al. 2002. Nature 418:157–59 [Google Scholar]
  77. Daulton TL, Bernatowicz TJ, Lewis RS. et al. 2002. Science 296:1852–55 [Google Scholar]
  78. Dauphas N, Chaussidon M. 2011. Annu. Rev. Earth Planet. Sci. 39:351–86 [Google Scholar]
  79. Dauphas N, Chen JH, Zhang J. et al. 2014. Earth Planet. Sci. Lett. 407:96–108 [Google Scholar]
  80. Dauphas N, Pourmand A. 2011. Nature 473:489–92 [Google Scholar]
  81. Dauphas N, Remusat L, Chen JH. et al. 2010. Ap. J. 720:1577–91 [Google Scholar]
  82. Davis AM. 2014. Meteorites and Cosmochemical Processes: Treatise on Geochemistry 1 Oxford: Elsevier-Pergamon, 2nd ed.. [Google Scholar]
  83. Davis AM, Alexander CMO'D, Nagahara H, Richter FM. 2005. See Krot et al. 2005b 432–55
  84. Davis AM, McKeegan KD. 2014. See Davis 2014 361–95
  85. Deneault EA-N, Clayton DD, Heger A. 2003. Ap. J. 594:312–25 [Google Scholar]
  86. Denissenkov PA, Tout CA. 2003. MNRAS 340:722–32 [Google Scholar]
  87. Desch SJ, Morris MA, Connolly HC, Boss AP. 2012. Meteorit. Planet. Sci. 47:1139–56 [Google Scholar]
  88. Draine BT. 1990. The Evolution of the Interstellar Medium L Blitz ASP Conf. Ser 12193–205 San Francisco: ASP [Google Scholar]
  89. Draine BT. 2009. Cosmic Dust: Near and Far T Henning, E Grün, J Steinacker ASP Conf. Ser 414453–72 San Francisco: ASP [Google Scholar]
  90. Dullemond CP, Stammler SM, Johansen A. 2014. Ap. J. 794:91 [Google Scholar]
  91. Ebel DS. 2006. See Lauretta & McSween Jr. 2006 253–77
  92. Evans NJ II, Dunham MM, Jørgensen JK. et al. 2009. Ap. J. Suppl. 181:321–50 [Google Scholar]
  93. Fedkin AV, Grossman L, Ciesla FJ, Simon SB. 2012. Geochim. Cosmochim. Acta 87:81–116 [Google Scholar]
  94. Feigelson ED, Garmire GP, Pravdo SH. 2002. Ap. J. 572:335–49 [Google Scholar]
  95. Floss C, Stadermann FJ, Bose M. 2008. Ap. J. 672:1266–71 [Google Scholar]
  96. Foster PN, Boss AP. 1997. Ap. J. 489:346–57 [Google Scholar]
  97. Freiburghaus C, Rosswog S, Thielemann F-K. 1999. Ap. J. Lett. 525:L121–24 [Google Scholar]
  98. Fu RR, Weiss BP, Lima EA. et al. 2014. Science 346:1089–92 [Google Scholar]
  99. Fujiya W, Hoppe P, Zinner E. et al. 2013. Ap. J. Lett. 776:L29 [Google Scholar]
  100. Gaidos E, Krot AN, Williams JP, Raymond SN. 2009. Ap. J. 696:1854–63 [Google Scholar]
  101. Gail H-P, Sedlmayr E. 1999. Astron. Astrophys. 347:594–616 [Google Scholar]
  102. Gail H-P, Zhukovska SV, Hoppe P, Trieloff M. 2009. Ap. J. 698:1136–54 [Google Scholar]
  103. Gal-Yam A, Arcavi I, Ofek EO. et al. 2014. Nature 509:471–74 [Google Scholar]
  104. Gall C, Hjorth J, Watson D. et al. 2014. Nature 511:326–29 [Google Scholar]
  105. Gallino R, Arlandini C, Busso M. et al. 1998. Ap. J. 497:388–403 [Google Scholar]
  106. Geiss J, Gloeckler G. 2003. Space Sci. Rev. 106:3–18 [Google Scholar]
  107. Goldreich P, Ward WR. 1973. Ap. J. 183:1051–62 [Google Scholar]
  108. Gounelle M, Meibom A, Hennebelle P, Inutsuka S-I. 2009. Ap. J. Lett. 694:L1–L5 [Google Scholar]
  109. Gounelle M, Meynet G. 2012. Astron. Astrophys. 545:4 [Google Scholar]
  110. Groopman E, Bernatowicz T, Zinner E. 2012. Ap. J. Lett. 754:L8 [Google Scholar]
  111. Groopman E, Bernatowicz T, Zinner E, Nittler LR. 2014. Ap. J. 790:9 [Google Scholar]
  112. Grossman L. 1972. Geochim. Cosmochim. Acta 36:597–619 [Google Scholar]
  113. Gyngard F, Amari S, Zinner E, Ott U. 2009. Ap. J. 694:359–66 [Google Scholar]
  114. Gyngard F, Nittler LR, Zinner E. et al. 2011. Proc. Lunar Planet. Sci. Conf., 42nd The Woodlands, TX, Abstr 2675 [Google Scholar]
  115. Gyngard F, Nittler LR, Zinner EK, Jose J. 2010a. Proc. Symp. Nuclei Cosmos, 11th. Heidelberg, Ger. 141 [Google Scholar]
  116. Gyngard F, Zinner E, Nittler LR. et al. 2010b. Ap. J. 717:107–20 [Google Scholar]
  117. Haisch KE Jr., Lada EA, Lada CJ. 2001. Ap. J. Lett. 553:L153–L56 [Google Scholar]
  118. Hammer NJ, Janka H-T, Müller E. 2010. Ap. J. 714:1371–85 [Google Scholar]
  119. Hartogh P, Lis DC, Bockelée-Morvan D. et al. 2011. Nature 478:218–20 [Google Scholar]
  120. Heck PR, Amari S, Hoppe P. et al. 2009a. Ap. J. 701:1415–25 [Google Scholar]
  121. Heck PR, Gyngard F, Ott U. et al. 2009b. Ap. J. 698:1155–64 [Google Scholar]
  122. Heck PR, Marhas KK, Hoppe P. et al. 2007. Ap. J. 656:1208–22 [Google Scholar]
  123. Hedrosa RP, Abia C, Busso M. et al. 2013. Ap. J. Lett. 768:L11 [Google Scholar]
  124. Henning T. 2010. Annu. Rev. Astron. Astrophys. 48:21–46 [Google Scholar]
  125. Herwig F, Pignatari M, Woodward PR. et al. 2011. Ap. J. 727:89 [Google Scholar]
  126. Hewins RH, Zanda B, Bendersky C. 2012. Geochim. Cosmochim. Acta 78:1–17 [Google Scholar]
  127. Höfner S. 2008. Astron. Astrophys. 491:L1–L4 [Google Scholar]
  128. Hoppe P, Strebel R, Eberhardt P. et al. 2000. Meteorit. Planet. Sci. 35:1157–76 [Google Scholar]
  129. Huss GR, Meyer BS, Srinivasan G. et al. 2009. Geochim. Cosmochim. Acta 73:4922–45 [Google Scholar]
  130. Hynes KM, Croat TK, Amari S. et al. 2010. Meteorit. Planet. Sci. 45:596–614 [Google Scholar]
  131. Indebetouw R, Matsuura M, Dwek E. et al. 2014. Ap. J. Lett. 782:L2 [Google Scholar]
  132. Jacobsen B, Yin Q-Z, Moynier F. et al. 2008. Earth Planet. Sci. Lett. 272:353–64 [Google Scholar]
  133. Jacobsen SB. 2005. See Krot et al. 2005b 548–57
  134. Jacquet E, Gounelle M, Fromang S. 2012. Icarus 220:162–73 [Google Scholar]
  135. Jadhav M, Amari S, Marhas KK. et al. 2008. Ap. J. 682:1479–85 [Google Scholar]
  136. Jadhav M, Pignatari M, Herwig F. et al. 2013. Ap. J. Lett. 777:L27 [Google Scholar]
  137. Joggerst CC, Almgren A, Woosley SE. 2010. Ap. J. 723:353–63 [Google Scholar]
  138. Johansen A, Oishi JS, Mac Low M-M. et al. 2007. Nature 448:1022–25 [Google Scholar]
  139. Johnson BC, Minton DA, Melosh HJ, Zuber MT. 2015. Nature 517:339–41 [Google Scholar]
  140. Jones AP, Nuth JA. 2011. Astron. Astrophys. 530:A44 [Google Scholar]
  141. Jones AP, Tielens AGGM, Hollenbach DJ. 1996. Ap. J. 469:740–64 [Google Scholar]
  142. Jones AP, Tielens AGGM, Hollenbach DJ, McKee CF. 1997. Astrophysical Implications of the Laboratory Study of Presolar Materials TJ Bernatowicz, E Zinner AIP Conf. Ser. 402595–613 St. Louis, MO: AIP [Google Scholar]
  143. Jones OC, Kemper F, Sargent BA. et al. 2012. MNRAS 427:3209–29 [Google Scholar]
  144. Jones OC, Kemper F, Srinivasan S. et al. 2014. MNRAS 440:631–51 [Google Scholar]
  145. José J, Hernanz M, Amari S. et al. 2004. Ap. J. 612:414–28 [Google Scholar]
  146. Käppeler F, Gallino R, Busso M. et al. 1990. Ap. J. 354:630–43 [Google Scholar]
  147. Keller LP, Messenger S. 2011. Geochim. Cosmochim. Acta 75:5336–65 [Google Scholar]
  148. Kemper F, Vriend WJ, Tielens AGGM. 2004. Ap. J. 609:826–37 [Google Scholar]
  149. Kinoshita N, Paul M, Kashiv Y. et al. 2012. Science 335:1614–17 [Google Scholar]
  150. Kita NT, Huss GR, Tachibana S. et al. 2005. See Krot et al. 2005b 558–87
  151. Kleine T, Münker C, Mezger K, Palme H. 2002. Nature 418:952–55 [Google Scholar]
  152. Kleine T, Touboul M, Bourdon B. et al. 2009. Geochim. Cosmochim. Acta 73:5150–88 [Google Scholar]
  153. Kobayashi C, Karakas AI, Umeda H. 2011. MNRAS 414:3231–50 [Google Scholar]
  154. Koehler P, Harvey JA, Guber K, Wiarda DA. 2008. Proc. Symp. Nuclei Cosmos, 10th Mackinac Island, MI 41 [Google Scholar]
  155. Kretke KA, Lin DNC. 2007. Ap. J. Lett. 664:L55–58 [Google Scholar]
  156. Krot AN, Amelin Y, Cassen P, Meibom A. 2005a. Nature 436:989–92 [Google Scholar]
  157. Krot AN, Nagashima K, Ciesla FJ. et al. 2010. Ap. J. 713:1159–66 [Google Scholar]
  158. Krot AN, Scott ERD, Reipurth B. 2005b. Chondrites and the Protoplanetary Disk, ASP Conf. Ser 341 San Francisco: ASP [Google Scholar]
  159. Krot AN, Yurimoto H, Hutcheon ID, MacPherson GJ. 2005c. Nature 434:998–1001 [Google Scholar]
  160. Kruijer TS, Kleine T, Fischer-Gödde M. et al. 2014. Earth Planet. Sci. Lett. 403:317–27 [Google Scholar]
  161. Lada CJ, Jugaku J. 1987. Star Forming Regions M Peimbert, J Jugaku, Int. Astron. Union Symp. 1–17 New York: Springer [Google Scholar]
  162. Lauretta DS, McSween HY Jr. 2006. Meteorites and the Early Solar System II Tucson: Univ. Ariz. Press [Google Scholar]
  163. Lecluse C, Robert F. 1994. Geochim. Cosmochim. Acta 58:2927–40 [Google Scholar]
  164. Lee T, Papanastassiou DA, Wasserburg GJ. 1976. Geophys. Res. Lett. 3:109–12 [Google Scholar]
  165. Lee T, Papanastassiou DA, Wasserburg GJ. 1977. Ap. J. Lett. 211:L107–10 [Google Scholar]
  166. Leitner J, Kodolányi J, Hoppe P, Floss C. 2012. Ap. J. Lett. 754L41 [Google Scholar]
  167. Lewis RS, Tang M, Wacker JF. et al. 1987. Nature 326:160–62 [Google Scholar]
  168. Lin Y, Gyngard F, Zinner E. 2010. Ap. J. 709:1157–73 [Google Scholar]
  169. Liu M-C. 2014. Ap. J. Lett. 781:L28 [Google Scholar]
  170. Liu M-C, Chaussidon M, Srinivasan G, McKeegan KD. 2012. Ap. J. 761:137 [Google Scholar]
  171. Liu M-C, Nittler LR, Alexander CMO'D, Lee T. 2010. Ap. J. Lett. 719:L99–103 [Google Scholar]
  172. Liu N, Gallino R, Bisterzo S. et al. 2014a. Ap. J. 788:163 [Google Scholar]
  173. Liu N, Savina MR, Davis AM. et al. 2014b. Ap. J. 786:66 [Google Scholar]
  174. Liu N, Nittler LR, Alexander CMO'D. et al. 2016. Ap. J. 820:2140 [Google Scholar]
  175. Lugaro M, Davis AM, Gallino R. et al. 2003. Ap. J. 593:486–508 [Google Scholar]
  176. Lugaro M, Heger A, Osrin D. et al. 2014. Science 345:650–53 [Google Scholar]
  177. Lugaro M, Zinner E, Gallino R, Amari S. 1999. Ap. J. 527:369–94 [Google Scholar]
  178. Lyons JR, Young ED. 2005. Nature 435:317–20 [Google Scholar]
  179. MacPherson GJ, Davis AM, Zinner EK. 1995. Meteoritics 30:365–86 [Google Scholar]
  180. MacPherson GJ, Wark DA, Armstrong JT. 1988. Meteorites and the Early Solar System JF Kerridge, MS Matthews 746–807 Tucson: Univ. Ariz. Press [Google Scholar]
  181. Marhas KK, Amari S, Gyngard F. et al. 2008. Ap. J. 689:622–45 [Google Scholar]
  182. Marvin UB. 1995. Meteoritics 30:540–41 [Google Scholar]
  183. Matsuura M, Dwek E, Meixner M. et al. 2011. Science 333:1258–61 [Google Scholar]
  184. Matteucci F. 2003. The Chemical Evolution of the Galaxy Dordrecht, Ger: Kluwer Acad. [Google Scholar]
  185. Matzel JEP, Ishii HA, Joswiak D. et al. 2010. Science 328:483–86 [Google Scholar]
  186. McCoy TJ, Robinson MS, Nittler LR, Burbine TH. 2002. Chem. Erde 62:89–121 [Google Scholar]
  187. McKeegan KD, Aleon J, Bradley J. et al. 2006. Science 314:1724–28 [Google Scholar]
  188. McKeegan KD, Chaussidon M, Robert F. 2000. Science 289:1334–37 [Google Scholar]
  189. McKeegan KD, Kallio APA, Heber VS. et al. 2011. Science 332:1528–32 [Google Scholar]
  190. McWilliam A. 1997. Annu. Rev. Astron. Astrophys. 35:503–56 [Google Scholar]
  191. Messenger S. 2000. Nature 404:968–71 [Google Scholar]
  192. Messenger S, Keller LP, Lauretta DS. 2005. Science 309:737–41 [Google Scholar]
  193. Messenger S, Keller LP, Stadermann FJ. et al. 2003. Science 300:105–8 [Google Scholar]
  194. Meyer BS. 1994. Annu. Rev. Astron. Astrophys. 32:153–90 [Google Scholar]
  195. Meyer BS, Bojazi MJ, The L-S, El Eid MF. 2011. Meteorit. Planet. Sci. 74:Suppl.5457 [Google Scholar]
  196. Meyer BS, Clayton DD, The L-S. 2000. Ap. J. Lett. 540:L49–52 [Google Scholar]
  197. Morris MA, Boley AC, Desch SJ, Athanassiadou T. 2012. Ap. J. 752:27 [Google Scholar]
  198. Nakamura T, Noguchi T, Tanaka M. et al. 2011. Science 333:1113–16 [Google Scholar]
  199. Nakamura T, Noguchi T, Tsuchiyama A. et al. 2008. Science 321:1664–67 [Google Scholar]
  200. Nesvorný D, Jenniskens P, Levison HF. et al. 2010. Ap. J. 713:816–36 [Google Scholar]
  201. Nguyen AN, Keller LP, Rahman Z, Messenger S. 2011. Meteorit. Planet. Sci. 74:Suppl.5449 [Google Scholar]
  202. Nguyen AN, Messenger S. 2014. Ap. J. 784:149 [Google Scholar]
  203. Nguyen AN, Nittler LR, Stadermann FJ. et al. 2010. Ap. J. 719:166–89 [Google Scholar]
  204. Nguyen AN, Stadermann FJ, Zinner E. et al. 2007. Ap. J. 656:1223–40 [Google Scholar]
  205. Nittler LR. 2005. Ap. J. 618:281–96 [Google Scholar]
  206. Nittler LR. 2009. Pub. Astron. Soc. Aust. 26:271–77 [Google Scholar]
  207. Nittler LR. 2013. Meteorit. Planet. Sci. 48:Suppl.5144 [Google Scholar]
  208. Nittler LR, Alexander CMO'D. 2003. Geochim. Cosmochim. Acta 67:4961–80 [Google Scholar]
  209. Nittler LR, Alexander CMO'D, Gallino R. et al. 2008. Ap. J. 682:1450–78 [Google Scholar]
  210. Nittler LR, Alexander CMO'D, Gao X. et al. 1997. Ap. J. 483:475–95 [Google Scholar]
  211. Nittler LR, Amari S, Zinner E. et al. 1996. Ap. J. Lett. 462:L31–34 [Google Scholar]
  212. Nittler LR, Cowsik R. 1997. Phys. Rev. Lett. 78:175–78 [Google Scholar]
  213. Nittler LR, Dauphas ND. 2006. See Lauretta & McSween Jr. 2006 127–46
  214. Nittler LR, Gaidos E. 2012. Meteorit. Planet. Sci. 47:2031–48 [Google Scholar]
  215. Nittler LR, Hoppe P. 2005. Ap. J. Lett. 631:L89–L92 [Google Scholar]
  216. Nittler LR, Hoppe P, Stroud RM. 2007. Proc. Lunar Planet. Sci. Conf., 38th League City, TX, Abstr. 2321 [Google Scholar]
  217. Nollett KM, Busso M, Wasserburg GJ. 2003. Ap. J. 582:1036–58 [Google Scholar]
  218. Norris BRM, Tuthill PG, Ireland MJ. et al. 2012. Nature 484:220–22 [Google Scholar]
  219. Nozawa T, Kozasa T, Habe A. et al. 2007. Ap. J. 666:955–66 [Google Scholar]
  220. Nucci MC, Busso M. 2014. Ap. J. 787:141 [Google Scholar]
  221. Ott U, Begemann F. 2000. Meteorit. Planet. Sci. 35:53–63 [Google Scholar]
  222. Ouellette N, Desch SJ, Hester JJ. 2007. Ap. J. 662:1268–81 [Google Scholar]
  223. Pagel BEJ. 1997. Nucleosynthesis and Chemical Evolution of Galaxies Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  224. Palme H, Hezel DC, Ebel DS. 2015. Earth Planet. Sci. Lett. 411:11–19 [Google Scholar]
  225. Palmerini S, La Cognata M, Cristallo S, Busso M. 2011. Ap. J. 729:3 [Google Scholar]
  226. Pan L, Desch SJ, Scannapieco E, Timmes FX. 2012. Ap. J. 756:102 [Google Scholar]
  227. Persson MV, Jørgensen JK, van Dishoeck EF, Harsono D. 2014. Astron. Astrophys. 563:74 [Google Scholar]
  228. Pettini M, Smith LJ, Hunstead RW, King DL. 1994. Ap. J. 426:79–96 [Google Scholar]
  229. Pignatari M, Wiescher M, Timmes FX. et al. 2013a. Ap. J. Lett. 767:L22 [Google Scholar]
  230. Pignatari M, Zinner E, Bertolli MG. et al. 2013b. Ap. J. Lett. 771:L7 [Google Scholar]
  231. Pignatari M, Zinner E, Hoppe P. et al. 2015. Ap. J. Lett. 808:L43 [Google Scholar]
  232. Podosek FA. 1970. Earth Planet. Sci. Lett. 8:183–87 [Google Scholar]
  233. Preibisch T, Brown AGA, Bridges T, Guenther E, Zinnecker H. 2002. Astron. J. 124:404–16 [Google Scholar]
  234. Qin L, Alexander CMO'D, Carlson RW. et al. 2010. Geochim. Cosmochim. Acta 74:1122–45 [Google Scholar]
  235. Qin L, Nittler LR, Alexander CMO'D. et al. 2011. Geochim. Cosmochim. Acta 75:629–44 [Google Scholar]
  236. Rauscher T, Heger A, Hoffman RD, Woosley SE. 2002. Ap. J. 576:323–48 [Google Scholar]
  237. Remusat L, Palhol F, Robert F. et al. 2006. Earth Planet. Sci. Lett. 243:15–25 [Google Scholar]
  238. Reynolds JH. 1960. Phys. Rev. Lett. 4:351–54 [Google Scholar]
  239. Reynolds JH, Turner G. 1964. J. Geophys. Res. 69:3263–81 [Google Scholar]
  240. Rho J, Kozasa T, Reach WT. et al. 2008. Ap. J. 673:271–82 [Google Scholar]
  241. Rotundi A, Baratta GA, Borg J. et al. 2008. Meteorit. Planet. Sci. 43:367–97 [Google Scholar]
  242. Rugel G, Faestermann T, Knie K. et al. 2009. Phys. Rev. Lett. 103:72502 [Google Scholar]
  243. Safier PN. 1993. Ap. J. 408:115–59 [Google Scholar]
  244. Sakamoto N, Seto Y, Itoh S. et al. 2007. Science 317:231–33 [Google Scholar]
  245. Savina MR, Davis AM, Tripa CE. et al. 2004. Science 303:649–52 [Google Scholar]
  246. Savina MR, Tripa CE, Pellin MJ. et al. 2003. Proc. Lunar Planet. Sci. Conf., 34th League City, TX, Abstr. 2079 [Google Scholar]
  247. Schramm DN, Wasserburg GJ. 1970. Ap. J. 162:57–69 [Google Scholar]
  248. Scott ERD. 2007. Annu. Rev. Earth Planet. Sci. 35:577–620 [Google Scholar]
  249. Scott ERD, Krot AN. 2005. Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets Davis AM. 143–200 Oxford, UK: Elsevier-Pergamon [Google Scholar]
  250. Seab CG, Shull JM. 1983. Ap. J. 275:652–60 [Google Scholar]
  251. Sengupta S, Izzard RG, Lau HHB. 2013. Astron. Astrophys. 559:66 [Google Scholar]
  252. Silvia DW, Smith BD, Shull JM. 2010. Ap. J. 715:1575–90 [Google Scholar]
  253. Smith VV, Lambert DL. 1990. Ap. J. Suppl. 72:387–416 [Google Scholar]
  254. Speck AK, Barlow MJ, Skinner CJ. 1997. MNRAS 288:431–56 [Google Scholar]
  255. Stadermann FJ, Croat TK, Bernatowicz TJ. et al. 2005. Geochim. Cosmochim. Acta 69:177–88 [Google Scholar]
  256. Stammler SM, Dullemond CP. 2014. Icarus 242:1–10 [Google Scholar]
  257. Stroud RM, Chisholm MF, Heck PR. et al. 2011. Ap. J. Lett. 738:L27 [Google Scholar]
  258. Stroud RM, De Gergorio BT, Nittler LR, Alexander CMO'D. 2014. Proc. Lunar Planet. Sci. Conf., 45th The Woodlands, TX, Abstr. 2806 [Google Scholar]
  259. Stroud RM, Nittler LR, Alexander CMO'D. 2004a. Science 305:1455–57 [Google Scholar]
  260. Stroud RM, Nittler LR, Alexander CMO'D. 2006. Meteorit. Planet. Sci. 41:Suppl.5360 [Google Scholar]
  261. Stroud RM, Nittler LR, Alexander CMO'D. 2013. Proc. Lunar Planet. Sci. Conf., 44th The Woodlands, TX, Abstr. 2315 [Google Scholar]
  262. Stroud RM, Nittler LR, Hoppe P. 2004b. Meteorit. Planet. Sci. 39:Suppl.5039 [Google Scholar]
  263. Takigawa A, Stroud RM, Nittler LR. et al. 2014. Proc. Lunar Planet. Sci. Conf., 45th The Woodlands, TX, Abstr. 1465 [Google Scholar]
  264. Tan JC, Chatterjee S, Hu X, Zhu Z, Mohanty S. 2015. Proc. 29th IAU GA Focus Meet. 1: Dynamical Problems in Extrasolar Planets Sci. A Morbidelli, et al. In press arXiv:1510.06703 [Google Scholar]
  265. Tang H, Dauphas N. 2012. Earth Planet. Sci. Lett. 359:248–63 [Google Scholar]
  266. Timmes FX, Clayton DD. 1996. Ap. J. 472:723–41 [Google Scholar]
  267. Timmes FX, Woosley SE, Weaver TA. 1995. Ap. J. Suppl. 98:617–58 [Google Scholar]
  268. Tinsley BM. 1977. Ap. J. 216:548–59 [Google Scholar]
  269. Tinsley BM. 1980. Fundam. Cosmic Phys. 5:287–388 [Google Scholar]
  270. Travaglio C, Gallino R, Amari S. et al. 1999. Ap. J. 510:325–54 [Google Scholar]
  271. Trinquier A, Elliott T, Ulfbeck D. et al. 2009. Science 324:374–76 [Google Scholar]
  272. van der Marel N, van Dishoeck EF, Bruderer S. et al. 2013. Science 340:1199–202 [Google Scholar]
  273. Vollmer C, Brenker FE, Hoppe P, Stroud RM. 2009. Ap. J. 700:774–82 [Google Scholar]
  274. Vollmer C, Hoppe P, Brenker FE. 2013. Ap. J. 769:61 [Google Scholar]
  275. Vollmer C, Hoppe P, Brenker FE, Holzapfel C. 2007. Ap. J. Lett. 666:L49–L52 [Google Scholar]
  276. Voss F, Wisshak K, Guber K. et al. 1994. Phys. Rev. C 50:2582–602 [Google Scholar]
  277. Wanajo S, Janka H-T, Müller B. 2011. Ap. J. Lett. 726:L15 [Google Scholar]
  278. Wasserburg GJ, Boothroyd AI, Sackmann I-J. 1995. Ap. J. Lett. 447:L37–40 [Google Scholar]
  279. Wasserburg GJ, Busso M, Gallino R, Nollett KM. 2006. Nucl. Phys. A 777:5–69 [Google Scholar]
  280. Weidenschilling SJ. 1980. Icarus 44:807–9 [Google Scholar]
  281. Weidenschilling SJ. 1984. Icarus 60:553–67 [Google Scholar]
  282. Weidenschilling SJ. 1997. From Stardust to Planetesimals YJ Pendleton, AGGM Tielens ASP Conf. Ser. 122281–93 San Francisco: ASP [Google Scholar]
  283. Weidenschilling SJ, Spaute D, Davis DR. et al. 1997. Icarus 128:429–55 [Google Scholar]
  284. Weidenschilling SW. 1977. MNRAS 180:57–70 [Google Scholar]
  285. Whittet DCB. 2002. Dust in the Galactic Environment. Bristol, UK: Inst. Phys. [Google Scholar]
  286. Winteler C, Käppeli R, Perego A. et al. 2012. Ap. J. Lett. 750:L22 [Google Scholar]
  287. Yang L, Ciesla FJ. 2012. Meteorit. Planet. Sci. 47:99–119 [Google Scholar]
  288. Yang L, Ciesla FJ, Alexander CMO'D. 2013. Icarus 226:256–67 [Google Scholar]
  289. Young ED. 2014. Earth Planet. Sci. Lett. 392:16–27 [Google Scholar]
  290. Yurimoto H, Kuramoto K. 2004. Science 305:1763–66 [Google Scholar]
  291. Zega TJ, Alexander CMO'D, Nittler LR, Stroud RM. 2011. Ap. J. 730:83–92 [Google Scholar]
  292. Zega TJ, Haenecour P, Floss C, Stroud RM. 2015. Ap. J. 808:55 [Google Scholar]
  293. Zega TJ, Nittler LR, Gyngard F. et al. 2014. Geochim. Cosmochim. Acta 124:152–69 [Google Scholar]
  294. Zhang X, Jeffery CS. 2013. MNRAS 430:2113–20 [Google Scholar]
  295. Zhukovska S, Gail HP, Trieloff M. 2008. Astron. Astrophys. 479:453–80 [Google Scholar]
  296. Zinner E. 2014. See Davis 2014 181–213
  297. Zinner E, Jadhav M, Gyngard F, Nittler LR. 2011. Proc. Lunar Planet. Sci. Conf., 42nd The Woodlands, TX, Abstr. 1070 [Google Scholar]
  298. Zolensky ME, Zega TJ, Yano H. et al. 2006. Science 314:1735–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error