1932

Abstract

Although it has faded by a factor of ∼107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum. Today, the bolometric luminosity of the debris is dominated by a far-infrared (∼200μm) continuum from ∼0.5 M of dust grains in the interior debris. The dust is heated by UV, optical, and near-infrared (NIR) emission resulting from radioactive energy deposition by 44Ti.

The optical light of the supernova debris is now dominated by illumination of the debris by X-rays resulting from the impact of the outer supernova envelope with an equatorial ring (ER) of gas that was expelled some 20,000 years before the supernova explosion. X-ray and optical observations trace a complex system of shocks resulting from this impact, whereas radio observations trace synchrotron radiation from relativistic electrons accelerated by these shocks. The luminosity of the remnant is dominated by an NIR (∼20μm) continuum from dust grains in the ER heated by collisions with ions in the X-ray emitting gas.

With the Atacama Large Millimeter Array (ALMA), we can observe the interior debris at millimeter/submillimeter wavelengths, which are not absorbed by the interior dust. The ALMA observations reveal bright emission lines from rotational transitions of CO and SiO lines that provide a new window into the interior structure of the supernova debris. Optical, NIR, and ALMA observations all indicate strongly asymmetric ejecta.

Intensive searches have failed to yield any evidence for the compact object expected to reside at the center of the remnant. The current upper limit to the luminosity of such an object is a few tens of solar luminosities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-082615-105405
2016-09-19
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/astro/54/1/annurev-astro-082615-105405.html?itemId=/content/journals/10.1146/annurev-astro-082615-105405&mimeType=html&fmt=ahah

Literature Cited

  1. Abramowski A, Aharonian F, Ait Benkhali F. et al. 2015. Science 347:406–12 [Google Scholar]
  2. Arcavi I, Gal-Yam A, Cenko SB. et al. 2012. Ap. J. Lett. 756:L30 [Google Scholar]
  3. Arnett WD, Bahcall JN, Kirshner RP, Woosley SE. 1989. Annu. Rev. Astron. Astrophys. 27:629–700 [Google Scholar]
  4. Axelrod TS. 1980. Late time optical spectra from the Ni-56 model for type 1 supernovae PhD thesis, Univ. Calif., Santa Cruz [Google Scholar]
  5. Ball L, Crawford DF, Hunstead RW, Klamer I, McIntyre VJ. 2001. Ap. J. 549:599–607 [Google Scholar]
  6. Berezhko EG, Ksenofontov LT, Völk HJ. 2011. Ap. J. 732:58 [Google Scholar]
  7. Berezhko EG, Ksenofontov LT, Völk HJ. 2015. Ap. J. 810:63 [Google Scholar]
  8. Blinnikov S, Lundqvist P, Bartunov O, Nomoto K, Iwamoto K. 2000. Ap. J. 532:1132–49 [Google Scholar]
  9. Blondin JM, Borkowski KJ, Reynolds SP. 2001. Ap. J. 557:782–91 [Google Scholar]
  10. Boggs SE, Harrison FA, Miyasaka H. et al. 2015. Science 348:670–71 [Google Scholar]
  11. Borkowski KJ, Blondin JM, McCray R. 1997. Ap. J. Lett. 476:L31–34 [Google Scholar]
  12. Bouchet P, Danziger J. 2014. Supernova Environmental Impacts, Proc. IAU Symp. 296 A Ray, RA McCray 99–14 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  13. Bouchet P, Dwek E, Danziger J. et al. 2006. Ap. J. 650:212–27 [Google Scholar]
  14. Brandner W, Chu YH, Eisenhauer F, Grebel EK, Points SD. 1997. Ap. J. Lett. 489:L153–56 [Google Scholar]
  15. Burrows A. 2013. Rev. Mod. Phys. 85:245–61 [Google Scholar]
  16. Burrows DN, Michael E, Hwang U. et al. 2000. Ap. J. Lett. 543:L149–52 [Google Scholar]
  17. Chevalier RA, Dwarkadas VV. 1995. Ap. J. Lett. 452:L45–48 [Google Scholar]
  18. Chita SM, Langer N, van Marle AJ, García-Segura G, Heger A. 2008. Astron. Astrophys. 488:L37–41 [Google Scholar]
  19. Chugai NN, Chevalier RA, Kirshner RP, Challis PM. 1997. Ap. J. 483:925–40 [Google Scholar]
  20. Couch SM, Chatzopoulos E, Arnett WD, Timmes FX. 2015. Ap. J. Lett. 808:L21 [Google Scholar]
  21. Crotts APS, Heathcote SR. 2000. Ap. J. 528:426–35 [Google Scholar]
  22. Culhane M, McCray R. 1995. Ap. J. 455:335–41 [Google Scholar]
  23. de Kool M, Li H, McCray R. 1998. Ap. J. 503:857–76 [Google Scholar]
  24. De Luca A. 2008. 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More C Bassa, Z Wang, A Cumming, VM Kaspi AIP Conf. Ser. 983311–19 Melville, NY: AIP [Google Scholar]
  25. Dessart L, Hillier DJ. 2010. MNRAS 405:2141–60 [Google Scholar]
  26. Dewey D, Zhekov SA, McCray R, Canizares CR. 2008. Ap. J. Lett. 676:L131–34 [Google Scholar]
  27. Dwarkadas VV. 2013. MNRAS 434:3368–77 [Google Scholar]
  28. Dwek E, Arendt RG. 2015. Ap. J. 10:75–85 [Google Scholar]
  29. Dwek E, Arendt RG, Bouchet P. et al. 2008. Ap. J. 676:1029–39 [Google Scholar]
  30. Dwek E, Arendt RG, Bouchet P. et al. 2010. Ap. J. 722:425–34 [Google Scholar]
  31. Ensman L, Burrows A. 1992. Ap. J. 393:742–55 [Google Scholar]
  32. Fischera J, Tuffs RJ, Völk HJ. 2002a. Astron. Astrophys. 386:517–30 [Google Scholar]
  33. Fischera J, Tuffs RJ, Völk HJ. 2002b. Astron. Astrophys. 395:189–200 [Google Scholar]
  34. France K, McCray R, Fransson C. et al. 2015. Ap. J. Lett. 801:L16 [Google Scholar]
  35. France K, McCray R, Heng K. et al. 2010. Science 329:1624–27 [Google Scholar]
  36. France K, McCray R, Penton SV. et al. 2011. Ap. J. 743:186 [Google Scholar]
  37. Frank KA, Dwek E, McCray R, Park S, Zhekov SA, Burrows DN. 2016. Ap. J. In press [Google Scholar]
  38. Fransson C, Cassatella A, Gilmozzi R. et al. 1989. Ap. J. 336:429–41 [Google Scholar]
  39. Fransson C, Kozma C. 1993. Ap. J. Lett. 408:L25–28 [Google Scholar]
  40. Fransson C, Kozma C. 2002. New Astron. Rev. 46:487–92 [Google Scholar]
  41. Fransson C, Larsson J, Migotto K. et al. 2015. Ap. J. Lett. 806:L19 [Google Scholar]
  42. Fransson C, Larsson J, Spyromilio J. et al. 2013. Ap. J. 768:88–110 [Google Scholar]
  43. Fransson C, Larsson J, Spyromilio J, Leibundgut B, McCray R, Jerkstrand A. 2016. Ap. J. Lett. 821L5 [Google Scholar]
  44. Gaensler BM, Slane P. 2006. Annu. Rev. Astron. Astrophys. 44:17–47 [Google Scholar]
  45. González-Gaitán S, Tominaga N, Molina J. et al. 2015. MNRAS 451:2212–29 [Google Scholar]
  46. Gould A, Uza O. 1998. Ap. J. 494:118–24 [Google Scholar]
  47. Graves GJM, Challis PM, Chevalier RA. et al. 2005. Ap. J. 629:944–59 [Google Scholar]
  48. Grebenev SA, Lutovinov AA, Tsygankov SS, Winkler C. 2012. Nature 490:373–75 [Google Scholar]
  49. Gröningsson P, Fransson C, Leibundgut B. et al. 2008. Astron. Astrophys. 492:481–91 [Google Scholar]
  50. Gröningsson P, Fransson C, Lundqvist P. et al. 2006. Astron. Astrophys. 456:581–89 [Google Scholar]
  51. Haas MR, Erickson EF, Lord SD. et al. 1990. Ap. J. 360:257–66 [Google Scholar]
  52. Hammer NJ, Janka HT, Müller E. 2010. Ap. J. 714:1371–85 [Google Scholar]
  53. Hanuschik RW, Thimm GJ. 1990. Astron. Astrophys. 231:77–84 [Google Scholar]
  54. Hashimoto M, Nomoto K, Shigeyama T. 1989. Astron. Astrophys. 210:L5–8 [Google Scholar]
  55. Hasinger G, Aschenbach B, Truemper J. 1996. Astron. Astrophys. 312:L9–12 [Google Scholar]
  56. Helder EA, Broos PS, Dewey D. et al. 2013. Ap. J. 764:11 [Google Scholar]
  57. Heng K, McCray R, Zhekov SA. et al. 2006. Ap. J. 644:959–70 [Google Scholar]
  58. Herant M, Benz W. 1991. Ap. J. Lett. 370:L81–84 [Google Scholar]
  59. Herant M, Benz W, Colgate S. 1992. Ap. J. 395:642–53 [Google Scholar]
  60. Herant M, Benz W, Hix WR, Fryer CL, Colgate SA. 1994. Ap. J. 435:339–61 [Google Scholar]
  61. Indebetouw R, Matsuura M, Dwek E. et al. 2014. Ap. J. Lett. 782:L2 [Google Scholar]
  62. Jäger C, Dorschner J, Mutschke H, Posch T, Henning T. 2003. Astron. Astrophys. 408:193–204 [Google Scholar]
  63. Janka HT. 2012. Annu. Rev. Nucl. Part. Sci. 62:407–51 [Google Scholar]
  64. Janka HT, Hanke F, Hüdepohl L. et al. 2012. Prog. Theor. Exp. Phys. 2012:01A309 [Google Scholar]
  65. Jerkstrand A, Fransson C, Kozma C. 2011. Astron. Astrophys. 530:A45 [Google Scholar]
  66. Jones FC, Ellison DC. 1991. Space Sci. Rev. 58:259–346 [Google Scholar]
  67. Kamenetzky J, McCray R, Indebetouw R. et al. 2013. Ap. J. Lett. 773:L34 [Google Scholar]
  68. Kirk JG, Duffy P, Gallant YA. 1996. Astron. Astrophys. 314:1010–16 [Google Scholar]
  69. Kjær K, Leibundgut B, Fransson C, Jerkstrand A, Spyromilio J. 2010. Astron. Astrophys. 517:A51 [Google Scholar]
  70. Kleiser IKW, Poznanski D, Kasen D. et al. 2011. MNRAS 415:372–82 [Google Scholar]
  71. Kozma C, Fransson C. 1992. Ap. J. 390:602–21 [Google Scholar]
  72. Kozma C, Fransson C. 1998a. Ap. J. 496:946–66 [Google Scholar]
  73. Kozma C, Fransson C. 1998b. Ap. J. 497:431–57 [Google Scholar]
  74. Lakićević M, van Loon JT, Stanke T, De Breuck C, Patat F. 2012a. Astron. Astrophys. 541:L1 [Google Scholar]
  75. Lakićević M, Zanardo G, van Loon JT. et al. 2012b. Astron. Astrophys 541:L2 [Google Scholar]
  76. Lamers HJGLM, Nota A, Panagia N, Smith LJ, Langer N. 2001. Ap. J. 551:764–80 [Google Scholar]
  77. Larsson J, Fransson C, Kjaer K. et al. 2013. Ap. J. 768:89 [Google Scholar]
  78. Larsson J, Fransson C, Östlin G. 2011. Nature 474:484–86 [Google Scholar]
  79. Lawrence SS, Sugerman BE, Bouchet P. et al. 2000. Ap. J. Lett. 537:L123–26 [Google Scholar]
  80. Li H, McCray R. 1993. Ap. J. 405:730–37 [Google Scholar]
  81. Li H, McCray R. 1996. Ap. J. 456:370–83 [Google Scholar]
  82. Li H, McCray R, Sunyaev RA. 1993. Ap. J. 419:824–36 [Google Scholar]
  83. Li W, Leaman J, Chornock R. et al. 2011. MNRAS 412:1441–72 [Google Scholar]
  84. Liu W, Dalgarno A. 1994. Ap. J. 428:769–76 [Google Scholar]
  85. Liu W, Dalgarno A. 1995. Ap. J. 454:472–79 [Google Scholar]
  86. Liu W, Dalgarno A, Lepp S. 1992. Ap. J. 396:679–85 [Google Scholar]
  87. Lundqvist P, Fransson C. 1991. Ap. J. 380:575–92 [Google Scholar]
  88. Lundqvist P, Fransson C. 1996. Ap. J. 464:924–42 [Google Scholar]
  89. Lundqvist P, Sollerman J, Kozma C. et al. 1999. Astron. Astrophys. 347:500–7 [Google Scholar]
  90. Luo D, McCray R, Slavin J. 1994. Ap. J. 430:264–76 [Google Scholar]
  91. Mathis JS, Rumpl W, Nordsieck KH. 1977. Ap. J. 217:425–33 [Google Scholar]
  92. Manchester RN, Gaensler BM, Wheaton VC. et al. 2002. Publ. Astron. Soc. Aust. 19:207–21 [Google Scholar]
  93. Matsuura M, Dwek E, Barlow MJ. et al. 2015. Ap. J. 800:50 [Google Scholar]
  94. Matsuura M, Dwek E, Meixner M. et al. 2011. Science 333:1258–61 [Google Scholar]
  95. Mattila S, Lundqvist P, Gröningsson P. et al. 2010. Ap. J. 717:1140–56 [Google Scholar]
  96. McCray R. 1993. Annu. Rev. Astron. Astrophys. 31:175–216 [Google Scholar]
  97. McCray R. 2007. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters S Immler, K Weiler, R McCray AIP Conf. Ser. 9373–14 Melville, NY: AIP [Google Scholar]
  98. Michael E, McCray R, Chevalier R. et al. 2003. Ap. J. 593:809–30 [Google Scholar]
  99. Michael E, McCray R, Pun CSJ. et al. 1998. Ap. J. Lett. 509:L117–20 [Google Scholar]
  100. Michael E, Zhekov S, McCray R. et al. 2002. Ap. J. 574:166–78 [Google Scholar]
  101. Morris T, Podsiadlowski P. 2007. Science 315:1103–5 [Google Scholar]
  102. Morris T, Podsiadlowski P. 2009. MNRAS 399:515–38 [Google Scholar]
  103. Ng CY, Gaensler BM, Staveley-Smith L. et al. 2008. Ap. J. 684:481–97 [Google Scholar]
  104. Ng CY, Zanardo G, Potter TM. et al. 2013. Ap. J. 777:131 [Google Scholar]
  105. Nisenson P, Papaliolios C, Karovska M, Noyes R. 1987. Ap. J. Lett. 320:L15–18 [Google Scholar]
  106. Nota A, Pasquali A, Clampin M. et al. 1996. Ap. J. 473:946–62 [Google Scholar]
  107. O'Dell CR, Handron KD. 1996. Astron. J. 111:1630–779 [Google Scholar]
  108. Orlando S, Miceli M, Pumo ML, Bocchino F. 2015. Ap. J. 810:168–84 [Google Scholar]
  109. Panagia N, Gilmozzi R, Macchetto F, Adorf HM, Kirshner RP. 1991. Ap. J. Lett. 380:L23–26 [Google Scholar]
  110. Papaliolios C, Karovska M, Koechlin L. et al. 1989. Nature 338:565–66 [Google Scholar]
  111. Pastorello A, Pumo ML, Navasardyan H. et al. 2012. Astron. Astrophys. 537:A141 [Google Scholar]
  112. Pinto PA, Woosley SE, Ensman LM. 1988. Ap. J. Lett. 331:L101–4 [Google Scholar]
  113. Potter TM, Staveley-Smith L, Reville B. et al. 2014. Ap. J. 794:174 [Google Scholar]
  114. Pun CSJ, Michael E, Zhekov SA. et al. 2002. Ap. J. 572:906–31 [Google Scholar]
  115. Racusin JL, Park S, Zhekov S. et al. 2009. Ap. J. 703:1752–59 [Google Scholar]
  116. Sana H, de Mink SE, de Koter A. et al. 2013. 370 Years of Astronomy in Utrecht G Pugliese, A de Koter, M Wijburg ASP Conf. Ser. 470141–45 San Francisco: ASP [Google Scholar]
  117. Sapir N, Halbertal D. 2014. Ap. J. 796:145 [Google Scholar]
  118. Sapir N, Katz B, Waxman E. 2013. Ap. J. 774:79 [Google Scholar]
  119. Sarangi A, Cherchneff I. 2015. Astron. Astrophys. 575:A95 [Google Scholar]
  120. Seitenzahl IR, Taubenberger S, Sim SA. 2009. MNRAS 400:531–35 [Google Scholar]
  121. Sinnott B, Welch DL, Rest A, Sutherland PG, Bergmann M. 2013. Ap. J. 767:45 [Google Scholar]
  122. Smartt SJ, Lennon DJ, Kudritzki RP. et al. 2002. Astron. Astrophys. 391:979–91 [Google Scholar]
  123. Smith N. 2007. Astron. J. 133:1034–40 [Google Scholar]
  124. Smith N, Arnett WD, Bally J, Ginsburg A, Filippenko AV. 2013. MNRAS 429:1324–41 [Google Scholar]
  125. Smith N, Zhekov SA, Heng K. et al. 2005. Ap. J. Lett. 635:L41–44 [Google Scholar]
  126. Soker N. 1998. Ap. J. 496:833–41 [Google Scholar]
  127. Sonneborn G, Fransson C, Lundqvist P. et al. 1997. Ap. J. 477:848–64 [Google Scholar]
  128. Sonneborn G, Pun CSJ, Kimble RA. et al. 1998. Ap. J. Lett. 492:L139–42 [Google Scholar]
  129. Spyromilio J, Meikle WPS, Allen DA. 1990. MNRAS 242:669–73 [Google Scholar]
  130. Staveley-Smith L, Potter TM, Zanardo G, Gaensler BM, Ng CY. 2014. Supernova Environmental Impacts, Proc. IAU Symp. 296 A Ray, RA McCray 915–22 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  131. Sturm R, Haberl F, Aschenbach B, Hasinger G. 2010. Astron. Astrophys. 515:A5 [Google Scholar]
  132. Sukhbold T, Ertl T, Woosley SE, Brown JM, Janka HT. 2016. Ap. J. 82138 [Google Scholar]
  133. Sugerman BEK, Crotts APS, Kunkel WE, Heathcote SR, Lawrence SS. 2005. Ap. J. Suppl. 159:60–99 [Google Scholar]
  134. Taddia F, Sollerman J, Razza A. et al. 2013. Astron. Astrophys. 558:A143 [Google Scholar]
  135. Taddia F, Stritzinger MD, Sollerman J. et al. 2012. Astron. Astrophys. 537:A140 [Google Scholar]
  136. Tanaka T, Washimi H. 2002. Science 296:321–22 [Google Scholar]
  137. Turtle AJ, Campbell-Wilson D, Manchester RN, Staveley-Smith L, Kesteven MJ. 1990. IAU Circ. 5086:2 [Google Scholar]
  138. Tziamtzis A, Lundqvist P, Gröningsson P, Nasoudi-Shoar S. 2011. Astron. Astrophys. 527:A35 [Google Scholar]
  139. Utrobin V, Wongwathanarat A, Janka HT, Müller E. 2015. Astron. Astrophys. 581:40–58 [Google Scholar]
  140. Utrobin VP, Chugai NN. 2005. Astron. Astrophys. 441:271–81 [Google Scholar]
  141. Wang L, Wheeler JC, Höflich P. et al. 2002. Ap. J. 579:671–77 [Google Scholar]
  142. Wesson R, Barlow MJ, Matsuura M, Ercolano B. 2015. MNRAS 446:2089–101 [Google Scholar]
  143. Wongwathanarat A, Müller E, Janka HT. 2015. Astron. Astrophys. 577:A48 [Google Scholar]
  144. Wooden DH, Rank DM, Bregman JD. et al. 1993. Ap. J. Suppl. 88:477–507 [Google Scholar]
  145. Woosley SE. 1988. Ap. J. 330:218–53 [Google Scholar]
  146. Woosley SE, Hartmann D, Pinto PA. 1989. Ap. J. 346:395–404 [Google Scholar]
  147. Xu Y, McCray R. 1991. Ap. J. 375:190–201 [Google Scholar]
  148. Zanardo G, Staveley-Smith L, Ball L. et al. 2010. Ap. J. 710:1515–29 [Google Scholar]
  149. Zanardo G, Staveley-Smith L, Indebetouw R. et al. 2014. Ap. J. 796:82 [Google Scholar]
  150. Zhekov SA, McCray R, Borkowski KJ, Burrows DN, Park S. 2005. Ap. J. Lett. 628:L127–30 [Google Scholar]
  151. Zhekov SA, McCray R, Borkowski KJ, Burrows DN, Park S. 2006. Ap. J. 645:293–302 [Google Scholar]
/content/journals/10.1146/annurev-astro-082615-105405
Loading
/content/journals/10.1146/annurev-astro-082615-105405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error