1932

Abstract

A multitude of phenomena—such as the chemical enrichment of the Universe, the mass spectrum of planetary nebulae, white dwarfs and gravitational wave progenitors, the frequency distribution of supernovae, the fate of exoplanets, etc.—are highly regulated by the amounts of mass that stars expel through a powerful wind. For more than half a century, these winds of cool aging stars have been interpreted within the common interpretive framework of 1D models. I here discuss how that framework now appears to be highly problematic.

  • ▪   Current 1D mass-loss rate formulae differ by orders of magnitude, rendering contemporary stellar evolution predictions highly uncertain.

These stellar winds harbor 3D complexities that bridge 23 orders of magnitude in scale, ranging from the nanometer up to thousands of astronomical units. We need to embrace and understand these 3D spatial realities if we aim to quantify mass loss and assess its effect on stellar evolution. We therefore need to gauge the following:

  • ▪   The 3D life of molecules and solid-state aggregates: The gas-phase clusters that form the first dust seeds are not yet identified. This limits our ability to predict mass-loss rates using a self-consistent approach.
  • ▪   The emergence of 3D clumps: They contribute in a nonnegligible way to the mass loss, although they seem of limited importance for the wind-driving mechanism.
  • ▪   The 3D lasting impact of a (hidden) companion: Unrecognized binary interaction has biased previous mass-loss rate estimates toward values that are too large.

Only then will it be possible to drastically improve our predictive power of the evolutionary path in 4D (classical) spacetime of any star.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-090120-033712
2021-09-08
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/astro/59/1/annurev-astro-090120-033712.html?itemId=/content/journals/10.1146/annurev-astro-090120-033712&mimeType=html&fmt=ahah

Literature Cited

  1. Adam C, Ohnaka K. 2019. Astron. Astrophys. 628:A132
    [Google Scholar]
  2. Agúndez M, Cernicharo J, Guélin M. 2010. Ap. J. Lett. 724:L133–36
    [Google Scholar]
  3. Agúndez M, Cernicharo J, Guélin M. 2014. Astron. Astrophys. 570:A45
    [Google Scholar]
  4. Akerman CJ, Carigi L, Nissen PE, Pettini M, Asplund M. 2004. Astron. Astrophys. 414:931–42
    [Google Scholar]
  5. Alfvén H. 1942. Nature 150:405–6
    [Google Scholar]
  6. Arndt TU, Fleischer AJ, Sedlmayr E. 1997. Astron. Astrophys. 327:614–19
    [Google Scholar]
  7. Arroyo-Torres B, Wittkowski M, Chiavassa A et al. 2015. Astron. Astrophys. 575:A50
    [Google Scholar]
  8. Auer LH, Woolf NJ. 1965. Ap. J. 142:182–88
    [Google Scholar]
  9. Balick B, Frank A. 2002. Annu. Rev. Astron. Astrophys. 40:439–86
    [Google Scholar]
  10. Baud B, Habing HJ. 1983. Astron. Astrophys. 127:73–83
    [Google Scholar]
  11. Beasor ER, Davies B, Smith N et al. 2020. MNRAS 492:5994–6006
    [Google Scholar]
  12. Bennett PD. 2010. Publ. Astron. Soc. Pac. 425:181–90
    [Google Scholar]
  13. Bergeat J, Chevallier L. 2005. Astron. Astrophys. 429:235–46
    [Google Scholar]
  14. Bladh S, Liljegren S, Höfner S, Aringer B, Marigo P. 2019. Astron. Astrophys. 626:A100
    [Google Scholar]
  15. Blöcker T. 1995. Astron. Astrophys. 297:727–38
    [Google Scholar]
  16. Boersma C, Hony S, Tielens AGGM. 2006. Astron. Astrophys. 447:213–20
    [Google Scholar]
  17. Bondi H, Hoyle F. 1944. MNRAS 104:273–82
    [Google Scholar]
  18. Bose M, Floss C, Stadermann FJ. 2010. Ap. J. 714:1624–36
    [Google Scholar]
  19. Boulangier J. 2019. Developing a self-consistent AGB wind model PhD thesis, KU Leuven, Department of Physics and Astronomy
    [Google Scholar]
  20. Boulangier J, Gobrecht D, Decin L, de Koter A, Yates J. 2019. MNRAS 489:4890–911
    [Google Scholar]
  21. Bowen GH. 1988. Ap. J. 329:299–317
    [Google Scholar]
  22. Bromley ST, Gómez Martn JC, Plane JMC 2016. Phys. Chem. Chem. Phys. (Incorporating Faraday Trans.) 18:26913–22
    [Google Scholar]
  23. Bujarrabal V, Alcolea J, Mikołajewska J, Castro-Carrizo A, Ramstedt S. 2018. Astron. Astrophys. 616:L3
    [Google Scholar]
  24. Bujarrabal V, Castro-Carrizo A, Alcolea J et al. 2016. Astron. Astrophys. 593:A92
    [Google Scholar]
  25. Bujarrabal V, Castro-Carrizo A, Alcolea J, Sánchez Contreras C 2001. Astron. Astrophys. 377:868–97
    [Google Scholar]
  26. Bujarrabal V, Fuente A, Omont A. 1994. Astron. Astrophys. 285:247–71
    [Google Scholar]
  27. Buscher DF, Haniff CA, Baldwin JE, Warner PJ. 1990. MNRAS 245:7P–11P
    [Google Scholar]
  28. Cameron AGW. 1973. Interstellar Dust and Related Topics, Proc. IAU Symp. 52 JM Greenberg, HC van de Hulst 545–47 Dordrecht, Neth: Reidel
    [Google Scholar]
  29. Cannon E, Montargès M, de Koter A, Decin L, Min M et al. 2021. MNRAS 502:369–82
    [Google Scholar]
  30. Cernicharo J, Cabezas C, Pardo JR et al. 2019a. Astron. Astrophys. 630:L2
    [Google Scholar]
  31. Cernicharo J, Marcelino N, Agúndez M, Guélin M. 2015. Astron. Astrophys. 575:A91
    [Google Scholar]
  32. Cernicharo J, Velilla-Prieto L, Agúndez M et al. 2019b. Astron. Astrophys. 627:L4
    [Google Scholar]
  33. Chen M, Felmy AR, Dixon DA. 2014. J. Phys. Chem. A 118:3136–46
    [Google Scholar]
  34. Chen Z, Frank A, Blackman EG, Nordhaus J, Carroll-Nellenback J. 2017. MNRAS 468:4465–77
    [Google Scholar]
  35. Chen Z, Ivanova N, Carroll-Nellenback J. 2020. Ap. J. 892:110
    [Google Scholar]
  36. Cherchneff I. 2006. Astron. Astrophys. 456:1001–12
    [Google Scholar]
  37. Cherchneff I. 2011. Astron. Astrophys. 526:L11
    [Google Scholar]
  38. Chiappini C, Romano D, Matteucci F. 2003. MNRAS 339:63–81
    [Google Scholar]
  39. Choi BG, Huss GR, Wasserburg GJ, Gallino R. 1998. Science 282:1284–89
    [Google Scholar]
  40. Cohen M, Van Winckel H, Bond HE, Gull TR. 2004. Astron. J. 127:2362–77
    [Google Scholar]
  41. Cotton DV, Bailey J, Horta AD, Norris BRM, Lomax JR. 2020. Res. Notes Am. Astron. Soc 4:39
    [Google Scholar]
  42. Cox NLJ, Kerschbaum F, van Marle AJ et al. 2012. Astron. Astrophys. 537:A35
    [Google Scholar]
  43. Cuppen HM, Walsh C, Lamberts T et al. 2017. Space Sci. Rev. 212:1–58
    [Google Scholar]
  44. Curtis HD. 1918. Publ. Lick Obs. 13:5774
    [Google Scholar]
  45. Danilovich T, De Beck E, Black JH, Olofsson H, Justtanont K 2016. Astron. Astrophys. 588:A119
    [Google Scholar]
  46. Danilovich T, Gottlieb CA, Decin L et al. 2020. Ap. J. 904:110
    [Google Scholar]
  47. Danilovich T, Teyssier D, Justtanont K et al. 2015. Astron. Astrophys. 581:A60
    [Google Scholar]
  48. Davies B, Beasor ER. 2020a. MNRAS 493:468–76
    [Google Scholar]
  49. Davies B, Beasor ER. 2020b. MNRAS 496:L142–46
    [Google Scholar]
  50. Davis AM. 2011. PNAS 108:19142–46
    [Google Scholar]
  51. De Beck E, Decin L, de Koter A et al. 2010. Astron. Astrophys. 523:A18
    [Google Scholar]
  52. De Beck E, Lombaert R, Agúndez M et al. 2012. Astron. Astrophys. 539:A108
    [Google Scholar]
  53. De Ceuster F, Bolte J, Homan W et al. 2020a. MNRAS 499:5194–204
    [Google Scholar]
  54. De Ceuster F, Homan W, Yates J et al. 2020b. MNRAS 492:1812–26
    [Google Scholar]
  55. de Jager C, Nieuwenhuijzen H, van der Hucht KA. 1988. Astron. Astrophys. Suppl. 72:259–89
    [Google Scholar]
  56. de Mijolla D, Viti S, Holdship J, Manolopoulou I, Yates J. 2019. Astron. Astrophys. 630:A117
    [Google Scholar]
  57. de Saint-Exupéry A 1943. Le Petit Prince Paris: Gallimard
    [Google Scholar]
  58. Decin L, Cherchneff I, Hony S et al. 2008. Astron. Astrophys. 480:431–38
    [Google Scholar]
  59. Decin L, Cox NLJ, Royer P et al. 2012. Astron. Astrophys. 548:A113
    [Google Scholar]
  60. Decin L, Danilovich T, Gobrecht D et al. 2018a. Ap. J. 855:113
    [Google Scholar]
  61. Decin L, De Beck E, Brünken S et al. 2010. Astron. Astrophys. 516:A69
    [Google Scholar]
  62. Decin L, Homan W, Danilovich T et al. 2019. Nat. Astron. 3:408–15
    [Google Scholar]
  63. Decin L, Hony S, de Koter A et al. 2006. Astron. Astrophys. 456:549–63
    [Google Scholar]
  64. Decin L, Montargès M, Richards AMS et al. 2020. Science 369:1497–500
    [Google Scholar]
  65. Decin L, Richards AMS, Danilovich T, Homan W, Nuth JA. 2018b. Astron. Astrophys. 615:A28
    [Google Scholar]
  66. Decin L, Richards AMS, Millar TJ et al. 2016. Astron. Astrophys. 592:A76
    [Google Scholar]
  67. Decin L, Richards AMS, Neufeld D et al. 2015. Astron. Astrophys. 574:A5
    [Google Scholar]
  68. Decin L, Richards AMS, Waters LBFM et al. 2017. Astron. Astrophys. 608:A55
    [Google Scholar]
  69. Decin L, Royer P, Cox NLJ et al. 2011. Astron. Astrophys. 534:A1
    [Google Scholar]
  70. Demyk K, van Heijnsbergen D, von Helden G, Meijer G. 2004. Astron. Astrophys. 420:547–52
    [Google Scholar]
  71. Deutsch AJ. 1956. Ap. J. 123:210–27
    [Google Scholar]
  72. Dickens C. 1837. The Posthumous Papers of the Pickwick Club, Containing a Faithful Record of the Perambulations, Perils, Travels, Adventures and Sporting Transactions of the Corresponding Members London: Chapman & Hall
    [Google Scholar]
  73. Dominik C, Sedlmayr E, Gail HP. 1993. Astron. Astrophys. 277:578–94
    [Google Scholar]
  74. Dyck HM, Benson JA, Ridgway ST, Dixon DJ. 1992. Astron. J. 104:1982–85
    [Google Scholar]
  75. Eggleton PP. 1983. Ap. J. 268:368–69
    [Google Scholar]
  76. Einstein A. 1905. Ann. Phys. 323:639–41
    [Google Scholar]
  77. Einstein A. 1915. Sitz. Königlich Preuß. Akad. Wiss. (Berlin) II:844–47
    [Google Scholar]
  78. Ekström S, Georgy C, Eggenberger P et al. 2012. Astron. Astrophys. 537:A146
    [Google Scholar]
  79. El Mellah I, Bolte J, Decin L, Homan W, Keppens R. 2020. Astron. Astrophys. 637:A91
    [Google Scholar]
  80. Eriksson K, Nowotny W, Höfner S, Aringer B, Wachter A. 2014. Astron. Astrophys. 566:A95
    [Google Scholar]
  81. Feynman RP. 1959. There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics Talk given at the annual meeting of the American Physical Society at the California Institute of Technology on Dec. 29, 1959. https://www.zyvex.com/nanotech/feynman.html
    [Google Scholar]
  82. Flower DR, Pineau des Forêts G. 2015. Astron. Astrophys. 578:A63
    [Google Scholar]
  83. Ford KES, Neufeld DA, Goldsmith PF, Melnick GJ. 2003. Ap. J. 589:430–38
    [Google Scholar]
  84. Ford KES, Neufeld DA, Schilke P, Melnick GJ. 2004. Ap. J. 614:990–1006
    [Google Scholar]
  85. Fox MW, Wood PR. 1982. Ap. J. 259:198–212
    [Google Scholar]
  86. Freytag B, Höfner S, Liljegren S. 2019. Why Galaxies Care About AGB Stars: A Continuing Challenge through Cosmic Time, Proc. IAU Symp. 343 F Kerschbaum, M Groenewegen, H Olofsson 9–18 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  87. Freytag B, Liljegren S, Höfner S. 2017. Astron. Astrophys. 600:A137
    [Google Scholar]
  88. Freytag B, Steffen M, Dorch B. 2002. Astron. Nachr. 323:213–19
    [Google Scholar]
  89. Fulton B. 2019. Frequency of gaseous planets beyond the ice line Presented at Extreme Solar Systems IV Reykjavik, Iceland:
    [Google Scholar]
  90. Fulton BJ, Petigura EA. 2018. Astron. J. 156:264
    [Google Scholar]
  91. Gail HP, Sedlmayr E. 1999. Astron. Astrophys. 347:594–616
    [Google Scholar]
  92. Gail HP, Sedlmayr E. 2013. Physics and Chemistry of Circumstellar Dust Shells Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  93. García-Segura G, Langer N, Różyczka M, Franco J. 1999. Ap. J. 517:767–81
    [Google Scholar]
  94. Gauger A, Gail HP, Sedlmayr E. 1990. Astron. Astrophys. 235:345–61
    [Google Scholar]
  95. Gehrz RD, Woolf NJ. 1971. Ap. J. 165:285–94
    [Google Scholar]
  96. Gillett FC, Low FJ, Stein WA. 1968. Ap. J. 154:677–87
    [Google Scholar]
  97. Gilliland RL, Dupree AK. 1996. Ap. J. Lett. 463:L29–32
    [Google Scholar]
  98. Gilman RC. 1969. Ap. J. Lett. 155:L185–87
    [Google Scholar]
  99. Glass IS, Evans TL. 1981. Nature 291:303–4
    [Google Scholar]
  100. Glassgold AE. 1999. Asymptotic Giant Branch Stars, Proc. IAU Symp. 191 T Le Bertre, A Lébre, C Waelkens 337–46 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  101. Gobrecht D, Cherchneff I, Sarangi A, Plane JMC, Bromley ST. 2016. Astron. Astrophys. 585:A6
    [Google Scholar]
  102. Gobrecht D, Cristallo S, Piersanti L, Bromley ST. 2017. Ap. J. 840:117
    [Google Scholar]
  103. Gobrecht D, Decin L, Cristallo S, Bromley ST. 2018. Chem. Phys. Lett. 711:138–47
    [Google Scholar]
  104. Godard B, Pineau des Forêts G, Lesaffre P et al. 2019. Astron. Astrophys. 622:A100
    [Google Scholar]
  105. Goderis S, Chakrabarti R, Debaille V, Kodolányi J. 2016. J. Anal. At. Spectrom. 31:841–62
    [Google Scholar]
  106. Goldman SR, van Loon JT, Zijlstra AA et al. 2017. MNRAS 465:403–33
    [Google Scholar]
  107. Goldreich P, Scoville N. 1976. Ap. J. 205:144–54
    [Google Scholar]
  108. Goumans TPM, Bromley ST. 2012. MNRAS 420:3344–49
    [Google Scholar]
  109. Groenewegen MAT. 2014. Astron. Astrophys. 561:L11
    [Google Scholar]
  110. Groenewegen MAT, Sloan GC, Soszyński I, Petersen EA. 2009. Astron. Astrophys. 506:1277–96
    [Google Scholar]
  111. Groenewegen MAT, Vlemmings WHT, Marigo P et al. 2016. Astron. Astrophys. 596:A50
    [Google Scholar]
  112. Groh JH, Meynet G, Georgy C, Ekström S 2013. Astron. Astrophys. 558:A131
    [Google Scholar]
  113. Grossman L, Larimer JW. 1974. Rev. Geophys. Space Phys. 12:71–101
    [Google Scholar]
  114. Guélin M, Patel NA, Bremer M et al. 2018. Astron. Astrophys. 610:A4
    [Google Scholar]
  115. Guerrero MA, Chu YH, Manchado A, Kwitter KB. 2003. Astron. J. 125:3213–21
    [Google Scholar]
  116. Gustafsson B, Höfner S. 2003. Asymptotic Giant Branch Stars HJ Habing, H Olofsson 149–245 New York/Berlin: Springer
    [Google Scholar]
  117. Haniff CA, Buscher DF. 1998. Astron. Astrophys. 334:L5–8
    [Google Scholar]
  118. Henning T. 2010. Annu. Rev. Astron. Astrophys. 48:21–46
    [Google Scholar]
  119. Heras AM, Hony S. 2005. Astron. Astrophys. 439:171–82
    [Google Scholar]
  120. Hertzsprung E. 1905. Z. Wiss. Photogr. 3:442–49
    [Google Scholar]
  121. Hertzsprung E. 1911. Publ. Astrophys. Obs. Potsdam 22:A1–40.1
    [Google Scholar]
  122. Hinkle KH, Aringer B, Lebzelter T, Martin CL, Ridgway ST. 2000. Astron. Astrophys. 363:1065–80
    [Google Scholar]
  123. Höfner S. 2008. Astron. Astrophys. 491:L1–4
    [Google Scholar]
  124. Höfner S, Andersen AC. 2007. Astron. Astrophys. 465:L39–42
    [Google Scholar]
  125. Höfner S, Bladh S, Aringer B, Ahuja R. 2016. Astron. Astrophys. 594:A108
    [Google Scholar]
  126. Höfner S, Feuchtinger MU, Dorfi EA. 1995. Astron. Astrophys. 297:815–27
    [Google Scholar]
  127. Höfner S, Freytag B. 2019. Astron. Astrophys. 623:A158
    [Google Scholar]
  128. Höfner S, Olofsson H. 2018. Astron. Astrophys. Rev. 26:1
    [Google Scholar]
  129. Hohenberg P, Kohn W. 1964. Phys. Rev. 136:864–71
    [Google Scholar]
  130. Homan W, Danilovich T, Decin L et al. 2018a. Astron. Astrophys. 614:A113
    [Google Scholar]
  131. Homan W, Richards A, Decin L, de Koter A, Kervella P. 2018b. Astron. Astrophys. 616:A34
    [Google Scholar]
  132. Hoyle F, Lyttleton RA. 1939. Proc. Camb. Philos. Soc. 35:405–15
    [Google Scholar]
  133. Hoyle F, Wickramasinghe NC. 1962. MNRAS 124:417–33
    [Google Scholar]
  134. Ivanova N, Justham S, Chen X et al. 2013. Astron. Astrophys. Rev. 21:59
    [Google Scholar]
  135. Jaeger C, Molster FJ, Dorschner J et al. 1998. Astron. Astrophys. 339:904–16
    [Google Scholar]
  136. Jeffers SV, Min M, Waters LBFM et al. 2014. Astron. Astrophys. 572:A3
    [Google Scholar]
  137. Jeong KS, Chang C, Sedlmayr E, Sülzle D. 2000. J. Phys. B At. Mol. Phys. 33:3417–30
    [Google Scholar]
  138. Jeong KS, Winters JM, Le Bertre T, Sedlmayr E 2003. Astron. Astrophys. 407:191–206
    [Google Scholar]
  139. Josselin E, Plez B. 2007. Astron. Astrophys. 469:671–80
    [Google Scholar]
  140. Justtanont K, Feuchtgruber H, de Jong T et al. 1998. Astron. Astrophys. 330:L17–20
    [Google Scholar]
  141. Kamiński T. 2019. Astron. Astrophys. 627:A114
    [Google Scholar]
  142. Kamiński T, Müller HSP, Schmidt MR et al. 2017. Astron. Astrophys. 599:A59
    [Google Scholar]
  143. Karovicova I, Wittkowski M, Ohnaka K et al. 2013. Astron. Astrophys. 560:A75
    [Google Scholar]
  144. Karovska M, Nisenson P, Beletic J. 1993. Ap. J. 402:311–13
    [Google Scholar]
  145. Kee N, Sundqvist J, Decin L, de Koter A, Sana H. 2021. Astron. Astrophys. 646:A180
    [Google Scholar]
  146. Kervella P, Gallenne A, Remage Evans N et al. 2019. Astron. Astrophys. 623:A116
    [Google Scholar]
  147. Kervella P, Homan W, Richards AMS et al. 2016. Astron. Astrophys. 596:A92
    [Google Scholar]
  148. Khouri T, Maercker M, Waters LBFM et al. 2016. Astron. Astrophys. 591:A70
    [Google Scholar]
  149. Khouri T, Waters LBFM, de Koter A et al. 2015. Astron. Astrophys. 577:A114
    [Google Scholar]
  150. Kim H, Liu SY, Hirano N et al. 2015. Ap. J. 814:61
    [Google Scholar]
  151. Kim H, Liu SY, Taam RE. 2019. Ap. J. Suppl. 243:35
    [Google Scholar]
  152. Kim H, Taam RE. 2012. Ap. J. 759:59
    [Google Scholar]
  153. Kochanek CS, Khan R, Dai X. 2012. Ap. J. 759:20
    [Google Scholar]
  154. Kristyan S. 2013. J. Theor. Appl. Phys. 7:61
    [Google Scholar]
  155. Lagadec E, Zijlstra AA. 2008. MNRAS 390:L59–63
    [Google Scholar]
  156. Lamers HJGLM, Cassinelli JP. 1999. Introduction to Stellar Winds Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  157. Lamiel-Garcia O, Cuko A, Calatayud M, Illas F, Bromley ST. 2017. Nanoscale 9:1049–58
    [Google Scholar]
  158. Lee G, Helling C, Giles H, Bromley ST. 2015. Astron. Astrophys. 575:A11
    [Google Scholar]
  159. Lee GKH, Blecic J, Helling C. 2018. Astron. Astrophys. 614:A126
    [Google Scholar]
  160. Lesaffre P, Pineau des Forêts G, Godard B et al. 2013. Astron. Astrophys. 550:A106
    [Google Scholar]
  161. Lewis RS, Ming T, Wacker JF, Anders E, Steel E 1987. Nature 326:160–62
    [Google Scholar]
  162. Li R, Cheng L. 2012. Comput. Theor. Chem. 996:125–31
    [Google Scholar]
  163. Li X, Millar TJ, Walsh C, Heays AN, van Dishoeck EF. 2014. Astron. Astrophys. 568:A111
    [Google Scholar]
  164. Liljegren S, Höfner S, Freytag B, Bladh S. 2018. Astron. Astrophys. 619:A47
    [Google Scholar]
  165. Liu ZW, Stancliffe RJ, Abate C, Matrozis E. 2017. Ap. J. 846:117
    [Google Scholar]
  166. Lodders K, Amari S. 2005. Chem. Erde/Geochem. 65:93–166
    [Google Scholar]
  167. Lombaert R, Decin L, Royer P et al. 2016. Astron. Astrophys. 588:A124
    [Google Scholar]
  168. Maercker M, Mohamed S, Vlemmings WHT et al. 2012. Nature 490:232–34
    [Google Scholar]
  169. Martínez L, Santoro G, Merino P et al. 2020. Nat. Astron. 4:97–105
    [Google Scholar]
  170. Mastrodemos N, Morris M. 1999. Ap. J. 523:357–80
    [Google Scholar]
  171. Matsuura M, Sloan GC, Zijlstra AA et al. 2007. Publ. Astron. Soc. Pac. 378:450–55
    [Google Scholar]
  172. Mauney C, Buongiorno Nardelli M, Lazzati D 2015. Ap. J. 800:30
    [Google Scholar]
  173. Mauron N, Huggins PJ. 1999. Astron. Astrophys. 349:203–8
    [Google Scholar]
  174. Mauron N, Huggins PJ. 2006. Astron. Astrophys. 452:257–68
    [Google Scholar]
  175. Maury AC, Pickering EC. 1897. Ann. Harv. Coll. Obs. 28:1–128
    [Google Scholar]
  176. McDonald I, Trabucchi M. 2019. MNRAS 484:4678–82
    [Google Scholar]
  177. McDonald I, Zijlstra AA. 2015. MNRAS 448:502–21
    [Google Scholar]
  178. McDonald I, Zijlstra AA. 2016. Ap. J. Lett. 823:L38
    [Google Scholar]
  179. McGuire BA. 2018. Ap. J. Suppl. 239:17
    [Google Scholar]
  180. Melnick GJ, Neufeld DA, Ford KES, Hollenbach DJ, Ashby MLN. 2001. Nature 412:160–63
    [Google Scholar]
  181. Menut JL, Gendron E, Schartmann M et al. 2007. MNRAS 376:L6–10
    [Google Scholar]
  182. Mihalas D, Hummer DG. 1974. Ap. J. Suppl. 28:343–72
    [Google Scholar]
  183. Miszalski B, Acker A, Moffat AFJ, Parker QA, Udalski A. 2009. Astron. Astrophys. 496:813–25
    [Google Scholar]
  184. Moe M, Di Stefano R. 2017. Ap. J. Suppl. 230:15
    [Google Scholar]
  185. Molster FJ, Waters LBFM, Tielens AGGM, Barlow MJ. 2002. Astron. Astrophys. 382:184–221
    [Google Scholar]
  186. Molster FJ, Waters LBFM, Trams NR et al. 1999a. Astron. Astrophys. 350:163–80
    [Google Scholar]
  187. Molster FJ, Yamamura I, Waters LBFM et al. 1999b. Nature 401:563–65
    [Google Scholar]
  188. Montargès M, Cannon E, Lagadec E et al. 2021. Nature In press. http://hdl.handle.net/10871/125362
    [Google Scholar]
  189. Montargès M, Homan W, Keller D et al. 2019. MNRAS 485:2417–30
    [Google Scholar]
  190. Neri R, Kahane C, Lucas R, Bujarrabal V, Loup C. 1998. Astron. Astrophys. Suppl. 130:1–64
    [Google Scholar]
  191. Nielsen EL, De Rosa RJ, Macintosh B et al. 2019. Astron. J. 158:13
    [Google Scholar]
  192. Nieuwenhuijzen H, de Jager C. 1990. Astron. Astrophys. 231:134–36
    [Google Scholar]
  193. Nittler LR, Alexander CMO, Gallino R et al. 2008. Ap. J. 682:1450–78
    [Google Scholar]
  194. Nittler LR, Ciesla F. 2016. Annu. Rev. Astron. Astrophys. 54:53–93
    [Google Scholar]
  195. Norris BR, Tuthill PG, Ireland MJ et al. 2012. Nature 484:220–22
    [Google Scholar]
  196. O'Dell CR, Balick B, Hajian AR, Henney WJ, Burkert A. 2002. Astron. J. 123:3329–47
    [Google Scholar]
  197. O'Dell CR, McCullough PR, Meixner M. 2004. Astron. J. 128:2339–56
    [Google Scholar]
  198. O'Gorman E, Kervella P, Harper GM et al. 2017. Astron. Astrophys. 602:L10
    [Google Scholar]
  199. Ohnaka K. 2014. Astron. Astrophys. 568:A17
    [Google Scholar]
  200. Ohnaka K, Driebe T, Hofmann KH et al. 2006. Astron. Astrophys. 445:1015–29
    [Google Scholar]
  201. Ohnaka K, Weigelt G, Hofmann KH. 2017a. Astron. Astrophys. 597:A20
    [Google Scholar]
  202. Ohnaka K, Weigelt G, Hofmann KH. 2017b. Nature 548:310–12
    [Google Scholar]
  203. Olofsson H 2005. Astrochemistry: Recent Successes and Current Challenges, Proc. IAU Symp. 231 DC Lis, GA Blake, E Herbst 499–508 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  204. Olofsson H, Maercker M, Eriksson K, Gustafsson B, Schöier F. 2010. Astron. Astrophys. 515:A27
    [Google Scholar]
  205. Onaka T, de Jong T, Willems FJ. 1989. Astron. Astrophys. 218:169–79
    [Google Scholar]
  206. Paczyński B. 1970. Acta Astron 20:47–58
    [Google Scholar]
  207. Paczyński B. 1971. Annu. Rev. Astron. Astrophys. 9:183–208
    [Google Scholar]
  208. Paladini C, Baron F, Jorissen A et al. 2018. Nature 553:310–12
    [Google Scholar]
  209. Parker EN. 1958. Ap. J. 128:664–76
    [Google Scholar]
  210. Parker EN. 1960. Ap. J. 132:821–66
    [Google Scholar]
  211. Parker QA, Acker A, Frew DJ et al. 2006. MNRAS 373:79–94
    [Google Scholar]
  212. Patzer A. 1998. Non-equilibrium effects on chemistry and dust formation in circumstellar outflows Ph.D. thesis, Tech. Univ. Berlin
    [Google Scholar]
  213. Podsiadlowski P, Mohamed S 2007. Balt. Astron. 16:26–33
    [Google Scholar]
  214. Poe EA 1845. In Graham's Magazine. 28:5193200
    [Google Scholar]
  215. Ramstedt S, Maercker M, Olofsson G, Olofsson H, Schöier FL. 2011. Astron. Astrophys. 531:A148
    [Google Scholar]
  216. Ramstedt S, Mohamed S, Olander T et al. 2018. Astron. Astrophys. 616:A61
    [Google Scholar]
  217. Ramstedt S, Mohamed S, Vlemmings WHT et al. 2014. Astron. Astrophys. 570:L14
    [Google Scholar]
  218. Ramstedt S, Schöier FL, Olofsson H, Lundgren AA. 2008. Astron. Astrophys. 487:645–57
    [Google Scholar]
  219. Randall SK, Trejo A, Humphreys EML et al. 2020. Astron. Astrophys. 636:A123
    [Google Scholar]
  220. Reimers D. 1975. Mem. Soc. R. Sci. Liege 8:369–82
    [Google Scholar]
  221. Renzini A 1981. Physical Processes in Red Giants I Eben, A Renzini Ap. Space Sci. Libr 88431–46 Dordrecht, Neth: Springer
    [Google Scholar]
  222. Ryde N, Eriksson K, Gustafsson B, Lindqvist M, Olofsson H. 1998. Ap. Space Sci. 255:301–2
    [Google Scholar]
  223. Sabach E, Soker N. 2018. MNRAS 479:2249–55
    [Google Scholar]
  224. Safonov B, Dodin A, Burlak M et al. 2020. arXiv:2005.05215
  225. Sahai R, Morris MR, Villar GG. 2011. Astron. J. 141:134
    [Google Scholar]
  226. Saladino MI, Pols OR. 2019. Astron. Astrophys. 629:A103
    [Google Scholar]
  227. Saladino MI, Pols OR, van der Helm E, Pelupessy I, Portegies Zwart S 2018. Astron. Astrophys. 618:A50
    [Google Scholar]
  228. Salasnich B, Bressan A, Chiosi C. 1999. Astron. Astrophys. 342:131–52
    [Google Scholar]
  229. Sana H, de Mink SE, de Koter A et al. 2012. Science 337:444–46
    [Google Scholar]
  230. Schöier FL, Olofsson H, Lundgren AA. 2006. Astron. Astrophys. 454:247–55
    [Google Scholar]
  231. Schöier FL, Ramstedt S, Olofsson H et al. 2013. Astron. Astrophys. 550:A78
    [Google Scholar]
  232. Schöier FL, Ryde N, Olofsson H. 2002. Astron. Astrophys. 391:577–86
    [Google Scholar]
  233. Schröder KP, Smith RC. 2008. MNRAS 386:155–63
    [Google Scholar]
  234. Schwarzschild M. 1975. Ap. J. 195:137–44
    [Google Scholar]
  235. Scicluna P, Siebenmorgen R, Wesson R et al. 2015. Astron. Astrophys. 584:L10
    [Google Scholar]
  236. Shawl SJ. 1972. Observations and Models of Polarization in Late - Stars. PhD Thesis, Univ. Texas at Austin
    [Google Scholar]
  237. Simis YJW, Icke V, Dominik C. 2001. Astron. Astrophys. 371:205–21
    [Google Scholar]
  238. Smartt SJ, Eldridge JJ, Crockett RM, Maund JR. 2009. MNRAS 395:1409–37
    [Google Scholar]
  239. Smolders K, Acke B, Verhoelst T et al. 2010. Astron. Astrophys. 514:L1
    [Google Scholar]
  240. Soker N. 1998. Ap. J. 496:833–41
    [Google Scholar]
  241. Soker N. 2001. Ap. J. 558:157–64
    [Google Scholar]
  242. Soker N, Harpaz A. 1992. Publ. Astron. Soc. Pac. 104:923
    [Google Scholar]
  243. Solomon P, Jefferts KB, Penzias AA, Wilson RW. 1971. Ap. J. Lett. 163:L53–56
    [Google Scholar]
  244. Srinivasan S, Meixner M, Leitherer C, Vijh U, Volk K et al. 2009. Astron. J. 137:4810–23
    [Google Scholar]
  245. Straniero O, Chieffi A, Limongi M et al. 1997. Ap. J. 478:332–39
    [Google Scholar]
  246. Stroud RM, Nittler LR, Alexander CMO. 2004. Science 305:1455–57
    [Google Scholar]
  247. Su KYL, Chu YH, Rieke GH et al. 2007. Ap. J. Lett. 657:L41–45
    [Google Scholar]
  248. Tielens AGGM 1990. From Miras to Planetary Nebulae: Which Path for Stellar Evolution? MO Mennessier, A Omont Lausanne, Switz: Editions Frontiéres
    [Google Scholar]
  249. Tielens AGGM. 2005. The Physics and Chemistry of the Interstellar Medium Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  250. Tielens AGGM, Waters LBFM, Molster FJ, Justtanont K. 1998. Ap. Space Sci. 255:415–26
    [Google Scholar]
  251. Trabucchi M, Wood PR, Montalbán J et al. 2017. Ap. J. 847:139
    [Google Scholar]
  252. Trabucchi M, Wood PR, Montalbán J et al. 2019. MNRAS 482:929–49
    [Google Scholar]
  253. Ueta T, Murakawa K, Meixner M. 2007. Astron. J. 133:1345–60
    [Google Scholar]
  254. Van de Sande M, Decin L, Lombaert R et al. 2018a. Astron. Astrophys. 609:A63
    [Google Scholar]
  255. Van de Sande M, Millar TJ. 2019. Ap. J. 873:36
    [Google Scholar]
  256. Van de Sande M, Sundqvist JO, Millar TJ et al. 2018b. Astron. Astrophys. 616:A106
    [Google Scholar]
  257. van Loon JT, Cioni MRL, Zijlstra AA, Loup C. 2005. Astron. Astrophys. 438:273–89
    [Google Scholar]
  258. van Marle AJ, Meliani Z, Keppens R, Decin L. 2011. Ap. J. Lett. 734:L26
    [Google Scholar]
  259. Vassiliadis E, Wood PR. 1993. Ap. J. 413:641–57
    [Google Scholar]
  260. Velilla Prieto L, Cernicharo J, Quintana-Lacaci G et al. 2015. Ap. J. Lett. 805:L13
    [Google Scholar]
  261. Verhoelst T, van der Zypen N, Hony S et al. 2009. Astron. Astrophys. 498:127–38
    [Google Scholar]
  262. Walmswell JJ, Eldridge JJ. 2012. MNRAS 419:2054–62
    [Google Scholar]
  263. Waters LBFM, Molster FJ, Hony S et al. 2000. Publ. Astron. Soc. Pac. 196:3–14
    [Google Scholar]
  264. Weaver H, Williams DRW, Dieter NH, Lum WT. 1965. Nature 208:29–31
    [Google Scholar]
  265. Weigelt G, Balega Y, Bloecker T et al. 1998. Astron. Astrophys. 333:L51–54
    [Google Scholar]
  266. Weinberg S. 1994. Dreams of a Final Theory New York: Vintage:
    [Google Scholar]
  267. Weymann R. 1962a. Ap. J. 136:476–86
    [Google Scholar]
  268. Weymann R. 1962b. Ap. J. 136:844–65
    [Google Scholar]
  269. Wickramasinghe NC, Donn BD, Stecher TP. 1966. Ap. J. 146:590–92
    [Google Scholar]
  270. Wiegert J, Groenewegen MAT, Jorissen A, Decin L, Danilovich T. 2020. Astron. Astrophys. 642:A142
    [Google Scholar]
  271. Wildt R. 1933. Z. Astrophys. 6:345–54
    [Google Scholar]
  272. Willacy K, Cherchneff I. 1998. Astron. Astrophys. 330:676–84
    [Google Scholar]
  273. Willacy K, Millar TJ. 1997. Astron. Astrophys. 324:237–48
    [Google Scholar]
  274. Willson LA. 2000. Annu. Rev. Astron. Astrophys. 38:573–611
    [Google Scholar]
  275. Wilson WJ, Barrett AH. 1968. Science 161:778–79
    [Google Scholar]
  276. Wittgenstein L. 1921. Tractatus Logico-Philosophicus New York: Harcourt, Brace & Co.
    [Google Scholar]
  277. Wittkowski M, Hofmann KH, Höfner S et al. 2017. Astron. Astrophys. 601:A3
    [Google Scholar]
  278. Woitke P. 2006a. Astron. Astrophys. 452:537–49
    [Google Scholar]
  279. Woitke P. 2006b. Astron. Astrophys. 460:L9–12
    [Google Scholar]
  280. Wong KT, Kamiński T, Menten KM, Wyrowski F. 2016. Astron. Astrophys. 590:A127
    [Google Scholar]
  281. Wood PR. 1990. Publ. Astron. Soc. Pac. 11:355–64
    [Google Scholar]
  282. Wood PR. 2015. MNRAS 448:3829–43
    [Google Scholar]
  283. Wood PR, Alcock C, Allsman RA et al. 1999. Asymptotic Giant Branch Stars, Proc. IAU Symp. 191 T Le Bertre, A Lébre, C Waelkens 151–58 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  284. Woolf NJ, Ney EP. 1969. Ap. J. Lett. 155:L181–84
    [Google Scholar]
  285. Woosley SE, Heger A. 2012. Ap. J. 752:32
    [Google Scholar]
  286. Yoon SC, Cantiello M. 2010. Ap. J. Lett. 717:L62–65
    [Google Scholar]
  287. Zhang B, Reid MJ, Menten KM, Zheng XW. 2012. Ap. J. 744:23
    [Google Scholar]
  288. Zijlstra AA, Lagadec E, Sloan G, Matsuura M. 2009. Publ. Astron. Soc. Pac. 412:65–80
    [Google Scholar]
/content/journals/10.1146/annurev-astro-090120-033712
Loading
/content/journals/10.1146/annurev-astro-090120-033712
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error