1932

Abstract

The recent advancements in far-infrared (far-IR) astronomy brought about by the , SOFIA, and ALMA observatories have led to technological advancements in millimeterwave and submillimeterwave laboratory spectroscopy that is used to support molecular observations. This review gives an overview of rotational spectroscopy and its relationship with observational astronomy, as well as an overview of laboratory spectroscopic techniques focusing on both historical approaches and new advancements. Additional topics discussed include production and detection techniques for unstable molecular species of astrochemical interest, data analysis approaches that address spectral complexity and line confusion, and the current state of and limitations to spectral line databases. Potential areas for new developments in this field are also reviewed. To advance the field, the following challenges must be addressed:

  • ▪  Data acquisition speed, spectral sensitivity, and analysis approaches for complex mixtures and broadband spectra are the greatest limitations—and hold the greatest promise for advancement—in this field of research.
  • ▪  Full science return from far-IR observatories cannot be realized until laboratory spectroscopy catches up with the data rate for observations.
  • ▪  New techniques building on those used in the microwave and IR regimes are required to fill the terahertz gap.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-091918-104438
2019-08-18
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/astro/57/1/annurev-astro-091918-104438.html?itemId=/content/journals/10.1146/annurev-astro-091918-104438&mimeType=html&fmt=ahah

Literature Cited

  1. Abeysekera C, Zack LN, Park GB 2014. J. Chem. Phys. 141:214203
    [Google Scholar]
  2. Alligood DePrince B, Rocher BE, Carroll AM, Widicus Weaver SL 2013. Rev. Sci. Instrum. 84:075107
    [Google Scholar]
  3. Allodi MA, Ioppolo S, Kelley MJ 2014. Phys. Chem. Chem. Phys. 16:3442
    [Google Scholar]
  4. Asvany O, Ricken O, Müller HSP 2008. Phys. Rev. Lett. 100:233004
    [Google Scholar]
  5. Baker AAM, Walker B 1982. J. Phys. E: Sci. Instrum. 15:25
    [Google Scholar]
  6. Balle TJ, Flygare WH 1981. Rev. Sci. Instrum. 52:33
    [Google Scholar]
  7. Barber RJ, Tennyson J, Harris GJ, Tolchenov RN 2006. MNRAS 368:1087–94
    [Google Scholar]
  8. Bernath PF 2005.Spectra of Atoms and Molecules. Oxford, UK: Oxford Univ. Press
  9. Betz AL, Boreiko RT, Williams BS 2005. Opt. Lett. 30:1837–39
    [Google Scholar]
  10. Bizzocchi L, Lattanzi V, Laas J 2017. Astron. Astrophys. 602:A34
    [Google Scholar]
  11. Blake GA, Laughlin KB, Cohen RC 1991. Rev. Sci. Instrum. 62:1701–16
    [Google Scholar]
  12. Blake GA, Mundy LG, Carlstrom JE 1996. Ap. J. Lett. 472:L49
    [Google Scholar]
  13. Blake GA, Sutton EC, Masson CR, Phillips TG 1986. Ap. J. Suppl. 60:74 357–74
    [Google Scholar]
  14. Braakman R, Blake GA 2011. J. Appl. Phys. 209:063102
    [Google Scholar]
  15. Brown GG, Dian BC, Douglass KO 2008. Rev. Sci. Instrum. 79:053103
    [Google Scholar]
  16. Carroll PB, Drouin BJ, Widicus Weaver SL 2010. Ap. J. 723:845–49
    [Google Scholar]
  17. Carroll PB, McGuire BA, Zaleski D 2013. J. Mol. Spectrosc. 284:21–28
    [Google Scholar]
  18. Clarke RN, Rosenberg CB 1982. J. Phys. E: Sci. Instrum. 15:9
    [Google Scholar]
  19. Cleeton CE, Williams NH 1934. Phys. Rev. 45:234–37
    [Google Scholar]
  20. Cossel KC, Waxman EM, Finneran IA 2017. J. Opt. Soc. Am. B 34:104–29
    [Google Scholar]
  21. Crabtree KN, Martin-Drumel M-A, Brown GG 2016. J. Chem. Phys. 144:124201
    [Google Scholar]
  22. Davis S, Anderson DT, Duxbury G, Nesbitt DJ 1997. J. Chem. Phys. 107:5661
    [Google Scholar]
  23. De Lucia FC 2010. J. Mol. Spectrosc. 261:1–17
    [Google Scholar]
  24. De Lucia FC, Herbst E, Plummer GM, Blake GA 1983. J. Chem. Phys. 78:2312
    [Google Scholar]
  25. Dixon TA, Woods RC 1975. Phys. Rev. Lett. 34:61–63
    [Google Scholar]
  26. Douglas AE, Herzberg G 1941. Ap. J. 94:381
    [Google Scholar]
  27. Douberly GE, Ricks AM, Ticknor BW 2007. J. Phys. Chem. A 1123:1897–906
    [Google Scholar]
  28. Drouin BJ 2017. J. Mol. Spectrosc. 340:1–15
    [Google Scholar]
  29. Drouin BJ, Tang A, Schlecht E 2016. J. Chem. Phys. 145:074201
    [Google Scholar]
  30. Du Bosq TW, Muravjov AV, Peale RE 2004. Terahertz for Military and Security Applications II RJ Hwu, DL WoolardProc. SPIE Conf. Ser. 5411167. Bellingham, WA: SPIE
    [Google Scholar]
  31. Duffy LM 2005. Rev. Sci. Instrum. 76:093104
    [Google Scholar]
  32. Duncan MA 2012. J. Phys. Chem A. 116:11477–91
    [Google Scholar]
  33. Endres CP, Schlemmer S, Schilke P 2016. J. Mol. Spectrosc. 327:95–104
    [Google Scholar]
  34. Farhoomand J, Blake GA, Frerking MA, Pickett HM 1985. J. Appl. Phys. 57:1763–66
    [Google Scholar]
  35. Fortenberry RC, Huang X, Schwenke DW, Lee TJ 2014. Spectrochem. Acta A 119:76
    [Google Scholar]
  36. Fortman SM, McMillan JP, Neese CF 2012. J. Mol. Spectrosc. 280:11–20
    [Google Scholar]
  37. Fukushima M, Chan M-C, Xu Y 1994. Chem. Phys. Lett. 230:561–66
    [Google Scholar]
  38. Gabrys CM, Uy D, Jagod M-F 1995. J. Phys. Chem. 99:15611–23
    [Google Scholar]
  39. Gerlich D, Borodi G 2009. Farday Discuss. 142:57–72
    [Google Scholar]
  40. Goldsmith PF, Langer WD 1999. Ap. J. 517:209–25
    [Google Scholar]
  41. Gopalsami N, Raptis AC, Meier J 2002. Rev. Sci. Instrum. 73:259
    [Google Scholar]
  42. Gordon JP, Zeiger HJ, Townes CH 1955. Phys. Rev. 99:1264–74
    [Google Scholar]
  43. Gordy W, Cook RL 1984. Microwave Molecular Spectra. New York: Wiley 3rd ed.
    [Google Scholar]
  44. Groner P 1997. J. Chem. Phys. 107:4483–98
    [Google Scholar]
  45. Gudeman CS, Begemann MH, Pfaff J, Saykally RJ 1983. Phys. Rev. Lett. 50:727
    [Google Scholar]
  46. Hartwig H, Dreizler H 1996. Z. Naturforsch 51a:923–32
    [Google Scholar]
  47. Hays BM, McCabe MN, Shipman ST, Widicus Weaver SL 2016. Rev. Sci. Instrum. 87:113109
    [Google Scholar]
  48. Hays BM, Wehres N, Alligood DePrince BA 2015. Chem. Phys. Lett. 630:18–26
    [Google Scholar]
  49. Herriott DR, Schulte HJ 1965. Appl. Opt. 4:883
    [Google Scholar]
  50. Hougen JT, Kleiner I, Godefroid M 1994. J. Mol. Spectrosc. 163:559–86
    [Google Scholar]
  51. Ilyushin VV, Kisiel Z, Pszczólkowski L 2010. J. Mol. Spectrosc. 259:26–38
    [Google Scholar]
  52. Jäger W, Gerry MCL 1995. J. Chem. Phys. 102:3587–92
    [Google Scholar]
  53. Jørgensen JK, van der Wiel MHD, Coutens A 2016. Astron. Astrophys. 595:A117
    [Google Scholar]
  54. Kaur D, de Souza AM, Wanna J 1990. Appl. Opt. 29:119–24
    [Google Scholar]
  55. Kisiel Z, Pszczólkowski L, Medvedev I 2005. J. Mol. Spectrosc. 233:231–43
    [Google Scholar]
  56. Kleiner I, Hougen JT 2003. J. Chem. Phys. 119:5505
    [Google Scholar]
  57. Kolbe WF, Leskovar B 1985. Rev. Sci. Instrum. 56:1577
    [Google Scholar]
  58. Konen IM, Pollack IB, Li EXJ 2003. J. Chem. Phys. 122:094320
    [Google Scholar]
  59. Laas JC, Hays BM, Widicus Weaver SL 2013. J. Phys. Chem. A 117:9548–54
    [Google Scholar]
  60. Laas JC, Widicus Weaver SL 2017. Ap. J. 835:46
    [Google Scholar]
  61. Lavrich RJ, Hight Walker AR, Plusquellic DF 2003. J. Chem. Phys. 119:5497–504
    [Google Scholar]
  62. Loomis RA, Zaleski DP, Steber AL 2013. Ap. J. Lett. 765:L9
    [Google Scholar]
  63. Lucas R, Liszt HS 1993. Astron. Astrophys. 276:L33–36
    [Google Scholar]
  64. Maret S, Hily-Blant P, Pety J 2011. Astron. Astrophys. 526:A47
    [Google Scholar]
  65. Markov VN, Xu Y, Jäger W 1998. Rev. Sci. Instrum. 69:4061–67
    [Google Scholar]
  66. Martin-Drumel M-A, McCarthy MC, Patterson D 2016. J. Chem. Phys. 144:124202
    [Google Scholar]
  67. Martin-Drumel M-A, McCarthy MC, Patterson D 2017. Presented at Int. Symp. Mol. Spectrosc., 72nd, Champaign, IL (Abstr. #RA03)
  68. McCarthy MC, Gottlieb CA, Gupta H, Thaddeus P 2006. Ap. J. Lett. 652:L141–44
    [Google Scholar]
  69. McGuire BA, Martin-Drumel M-A, Thorwirth S 2016. Phys. Chem. Chem. Phys. 18:22693
    [Google Scholar]
  70. Medvedev IR, De Lucia FC 2007. Ap. J. 656:621–28
    [Google Scholar]
  71. Medvedev IR, Winnewisser M, Winnewisser BP 2005. J. Mol. Struct. 742:229–36
    [Google Scholar]
  72. Meshkov AI, De Lucia FC 2005. Rev. Sci. Instrum. 76:083103
    [Google Scholar]
  73. Möller T, Bernst I, Panoglou D 2013. Astron. Astrophys. 549:A21
    [Google Scholar]
  74. Neill JL, Harris BJ, Steber AL 2013. Opt. Express 21:19743
    [Google Scholar]
  75. Nemchick DJ, Drouin BJ, Cich MJ 2018. Rev. Sci. Instrum. 89:073109
    [Google Scholar]
  76. Novick SE 2016. J. Mol. Spectrosc. 329:1–7
    [Google Scholar]
  77. Nummelin A, Bergman P, Hjalmarson Å 1998. Ap. J. Suppl. 117:427–529
    [Google Scholar]
  78. Nummelin A, Bergman P, Hjalmarson Å 2000. Ap. J. Suppl. 128:213–43
    [Google Scholar]
  79. Odashima H, Zink LR, Evenson KM 1999. Opt. Lett. 24:406–7
    [Google Scholar]
  80. Oka T 1980. Phys. Rev. Lett. 45:531–34
    [Google Scholar]
  81. O'Keefe A, Deacon DAG 1988. Rev. Sci. Instrum. 59:2544
    [Google Scholar]
  82. Patterson D, Schenll M, Doyle JM 2013. Nature 497:475
    [Google Scholar]
  83. Petkie DT, Goyette TM, Bettens RPA 1997. Rev. Sci. Instrum. 68:1675
    [Google Scholar]
  84. Pickett HM 1997. J. Chem. Phys. 107:6732
    [Google Scholar]
  85. Pickett HM, Poynter RL, Cohen EA 1998. J. Quant. Spectrosc. Radiat. Trans. 60:883–90
    [Google Scholar]
  86. Pollack IB, Konen IM, Li EXJ, Lester MI 2003. J. Chem. Phys. 119:9981
    [Google Scholar]
  87. Prozument K, Shaver RG, Ciuba MA 2013. Faraday Discuss. 163:33
    [Google Scholar]
  88. Rad ML, Zou L, Sanders JL, Widicus Weaver SL 2016. Astron. Astrophys. 585:A23
    [Google Scholar]
  89. Roenitz K, Hays B, Powers C 2018. J. Phys. Chem. A 122:6321
    [Google Scholar]
  90. Rybicki GB, Lightman AP 1985. Radiative Processes in Astrophysics. New York: Wiley
    [Google Scholar]
  91. Schilke P, Groesbeck TD, Blake GA, Phillips TG 1997. Ap. J. Suppl. 108:301–37
    [Google Scholar]
  92. Schiwon R, Schwaab G, Bründermann E, Havenith M 2002. Appl. Phys. Lett. 73:259
    [Google Scholar]
  93. Schmitz D, Shubert VA, Patterson D 2015. J. Phys. Chem. Lett. 6:1493–98
    [Google Scholar]
  94. Schmuttenmaer CA, Cohen RC, Heath NPJR 1990. Science 249:897
    [Google Scholar]
  95. Seifert NA, Finneran IA, Perez C 2015. J. Mol. Spectrosc. 312:13–21
    [Google Scholar]
  96. Suma K, Funato W, Sumiyoshi Y, Endo Y 2005. J. Chem. Phys. 122:184302
    [Google Scholar]
  97. Suma K, Sumiyoshi Y, Endo Y 2004. J. Chem. Phys. 121:8351–59
    [Google Scholar]
  98. Sumiyoshi Y, Katsunuma H, Suma K, Endo Y 2005. J. Chem. Phys. 123:054324
    [Google Scholar]
  99. Sutton EC, Blake GA, Masson CR, Phillips TG 1985. Ap. J. Suppl. 58:341–78
    [Google Scholar]
  100. Swings P, Rosenfeld L 1937. Ap. J. 86:483–86
    [Google Scholar]
  101. Tanarro I, Alemán B, de Vicente P 2018. Astron. Astrophys. 609:A15
    [Google Scholar]
  102. Thaddeus P, McCarthy MC 2001. Spectrochem. Acta A 57:757–74
    [Google Scholar]
  103. Townes CH, Schawlow AL 1975. Microwave Spectroscopy. Mineola New York: Dover
    [Google Scholar]
  104. Truitt K, O'Neal R, Bracewell J, Duffy LM 2018. Presented at New Spectroscopic Techniques for Astrochemistry. Am. Chem. Soc. Div. Phys. Chem., 256th, Boston. (Abstr. #PHYS 134)
    [Google Scholar]
  105. van den Heuvel FC, Dymanus A 1982. Chem. Phys. Lett. 92:219–22
    [Google Scholar]
  106. Verhoeve P, Zwart E, Versluis M 1990. Rev. Sci. Instrum. 61:1612
    [Google Scholar]
  107. Watson JKG 1968. J. Chem. Phys. 48:4517
    [Google Scholar]
  108. Wehres N, Cross T, Radhuber ML 2014. J. Mol. Spectrosc. 30:1–5
    [Google Scholar]
  109. Wehres N, Heyne B, Lewen F 2017. Astrochemistry VII: Through the Cosmos from Galaxies to Planets, Proc. IAU Symp. S332 M Cunningham, T Millar, Y Aikawa332–45 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  110. Wehres N, Maßen J, Borisov K 2018. Phys. Chem. Chem. Phys. 20:5530–44
    [Google Scholar]
  111. White JU 1942. J. Opt. Soc. Am. 32:285
    [Google Scholar]
  112. Widicus Weaver SL 2005. Rotational spectroscopy and observational astronomy of prebiotic molecules, PhD Thesis, Calif. Inst. Technol.
    [Google Scholar]
  113. Widicus Weaver SL, Laas JC, Zou L 2017. Ap. J. Suppl. 232:3
    [Google Scholar]
  114. Willey DR, Crownover RL, Bittner DN, De Lucia FC 1988a. J. Chem. Phys. 89:1923
    [Google Scholar]
  115. Willey DR, Crownover RL, Bittner DN, De Lucia FC 1988b. J. Chem. Phys. 89:6147
    [Google Scholar]
  116. Xu Y, Fukushima M, Amano T, McKellar ARW 1995. Chem. Phys. Lett. 242:126–31
    [Google Scholar]
  117. Yocum K, Smith HH, Milam SN, Widicus Weaver SL 2018. Int. Symp. Mol. Spectrosc. 73rd, Champaign, IL (Abstr. #WL05)
    [Google Scholar]
  118. Zaleski DP, Neill JL, Muckle MT 2012. J. Mol. Spectrosc. 280:68–75
    [Google Scholar]
  119. Zaleski DP, Prozument K 2018. J. Chem. Phys. 149:104106
    [Google Scholar]
  120. Ziurys LM, Barclay WL, Anderson MA 1992. Ap. J. Lett. 381:L63–66
    [Google Scholar]
  121. Zou L, Hays B, Widicus Weaver SL 2016. J. Phys. Chem. A 120:657
    [Google Scholar]
/content/journals/10.1146/annurev-astro-091918-104438
Loading
/content/journals/10.1146/annurev-astro-091918-104438
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error