1932

Abstract

We summarize our understanding of millisecond radio bursts from an extragalactic population of sources. Fast radio bursts (FRBs) occur at an extraordinary rate, thousands per day over the entire sky with radiation energy densities at the source about ten billion times larger than those from Galactic pulsars. We survey FRB phenomenology, source models and host galaxies, coherent radiation models, and the role of plasma propagation effects in burst detection. The FRB field is guaranteed to be exciting: New telescopes will expand the sample from the current ∼80 unique burst sources (and only a few secure localizations and redshifts) to thousands, with burst localizations that enable host-galaxy redshifts emerging directly from interferometric surveys.

  • ▪  FRBs are now established as an extragalactic phenomenon.
  • ▪  Only a few sources are known to repeat. Despite the failure to redetect other FRBs, they are not inconsistent with all being repeaters.
  • ▪  FRB sources may be new, exotic kinds of objects or known types in extreme circumstances. Many inventive models exist, ranging from alien spacecraft to cosmic strings, but those concerning compact objects and supermassive black holes have gained the most attention. A rapidly rotating magnetar is a promising explanation for FRB 121102 along with the persistent source associated with it, but alternative source models are not ruled out for it or other FRBs.
  • ▪  FRBs are powerful tracers of circumsource environments, “missing baryons” in the intergalactic medium (IGM), and dark matter.
  • ▪  The relative contributions of host galaxies and the IGM to propagation effects have yet to be disentangled, so dispersion measure distances have large uncertainties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-091918-104501
2019-08-18
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/astro/57/1/annurev-astro-091918-104501.html?itemId=/content/journals/10.1146/annurev-astro-091918-104501&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott BP, Abbott R, Abbott TD 2017. Ap. J. Lett. 848:L13
    [Google Scholar]
  2. Amy SW, Large MI, Vaughan AE 1989. Publ. Astron. Soc. Aust. 8:172–75
    [Google Scholar]
  3. Arzoumanian Z, Chernoff DF, Cordes JM 2002. Ap. J. 568:289–301
    [Google Scholar]
  4. Backer DC, Rankin JM, Campbell DB 1976. Nature 263:202–7
    [Google Scholar]
  5. Baird GA, Delaney TJ, Lawless BG 1975. Ap. J. Lett. 196:L11–13
    [Google Scholar]
  6. Bannister KW, Shannon RM, Macquart JP 2017. Ap. J. Lett. 841:L12
    [Google Scholar]
  7. Bannister KW, Stevens J, Tuntsov AV 2016. Science 351:354–56
    [Google Scholar]
  8. Barnard JJ, Arons J 1986. Ap. J. 302:138
    [Google Scholar]
  9. Barrau A, Rovelli C, Vidotto F 2014. Phys. Rev. D 90:127503
    [Google Scholar]
  10. Bassa CG, Tendulkar SP, Adams EAK 2017. Ap. J. Lett. 843:L8
    [Google Scholar]
  11. Beloborodov AM 2017. Ap. J. Lett. 843:L26
    [Google Scholar]
  12. Beskin VS, Philippov AA 2012. MNRAS 425:814–40
    [Google Scholar]
  13. Bhandari S, Keane EF, Barr ED 2018. MNRAS 475:1427–46
    [Google Scholar]
  14. Bonetti L, Ellis J, Mavromatos NE 2016. Phys. Lett. B 757:548–52
    [Google Scholar]
  15. Bower GC, Rao R, Krips M 2018. Astron. J. 155:227
    [Google Scholar]
  16. Bower GC, Wright MCH, Falcke H, Backer DC 2003. Ap. J. 588:331–37
    [Google Scholar]
  17. Caleb M, Flynn C, Bailes M 2016. MNRAS 458:718–25
    [Google Scholar]
  18. Caleb M, Flynn C, Bailes M 2017. MNRAS 468:3746–56
    [Google Scholar]
  19. Caleb M, Keane EF, van Straten W 2018. MNRAS 478:2046–55
    [Google Scholar]
  20. Champion DJ, Petroff E, Kramer M 2016. MNRAS 460:L30–34
    [Google Scholar]
  21. Chatterjee S, Law CJ, Wharton RS 2017. Nature 541:58–61
    [Google Scholar]
  22. Chawla P, Kaspi VM, Josephy A 2017. Ap. J. 844:140
    [Google Scholar]
  23. Chen L, Wu DJ, Zhao GQ, Tang JF 2017. J. Geophys. Res. (Space Phys.) 122:35–49
    [Google Scholar]
  24. CHIME/FRB Collab, Amiri M, Bandura K 2018. Ap. J. 863:48
    [Google Scholar]
  25. CHIME/FRB Collab, Amiri M, Bandura K 2019a. Nature 566:230–34
    [Google Scholar]
  26. CHIME/FRB Collab, Amiri M, Bandura K 2019b. Nature 566:235–38
    [Google Scholar]
  27. Connor L, Pen UL, Oppermann N 2016a. MNRAS 458:L89–93
    [Google Scholar]
  28. Connor L, Sievers J, Pen UL 2016b. MNRAS 458:L19–23
    [Google Scholar]
  29. Connor L, van Leeuwen J 2018. Astron. J. 156:256
    [Google Scholar]
  30. Cordes JM, Bhat NDR, Hankins TH 2004. Ap. J. 612:375–88
    [Google Scholar]
  31. Cordes JM, Lazio TJW 2002. arXiv:astro-ph/0207156
  32. Cordes JM, McLaughlin MA 2003. Ap. J. 596:1142–54
    [Google Scholar]
  33. Cordes JM, Rickett BJ 1998. Ap. J. 507:846–60
    [Google Scholar]
  34. Cordes JM, Shannon RM 2008. Ap. J. 682:1152–65
    [Google Scholar]
  35. Cordes JM, Wasserman I 2016. MNRAS 457:232–57
    [Google Scholar]
  36. Cordes JM, Wasserman I, Hessels JWT 2017. Ap. J. 842:35
    [Google Scholar]
  37. Cordes JM, Wharton RS, Spitler LG 2016. arXiv:1605.05890
  38. Dai ZG, Wang JS, Wu XF, Huang YF 2016. Ap. J. 829:27
    [Google Scholar]
  39. Dennison B 2014. MNRAS 443:L11–14
    [Google Scholar]
  40. Dessenne CAC, Green DA, Warner PJ 1996. MNRAS 281:977–84
    [Google Scholar]
  41. Desvignes G, Eatough RP, Pen UL 2018. Ap. J. Lett. 852:L12
    [Google Scholar]
  42. Dolag K, Gaensler BM, Beck AM, Beck MC 2015. MNRAS 451:4277–89
    [Google Scholar]
  43. Draine BT 2011. Physics of the Interstellar and Intergalactic Medium Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  44. Edwards PJ, Hurst RB, McQueen MPC 1974. Nature 247:444–46
    [Google Scholar]
  45. Eftekhari T, Berger E 2017. Ap. J. 849:162
    [Google Scholar]
  46. Eftekhari T, Berger E, Williams PKG, Blanchard PK 2018. Ap. J. 860:73
    [Google Scholar]
  47. Eichler D 2017. Ap. J. 850:159
    [Google Scholar]
  48. Falcke H, Rezzolla L 2014. Astron. Astrophys. 562:A137
    [Google Scholar]
  49. Farah W, Bailes M, Jameson A 2017. Astron. Telegr.#10867
    [Google Scholar]
  50. Farah W, Bailes M, Jameson A 2018. Astron. Telegr.#11675
    [Google Scholar]
  51. Fialkov A, Loeb A, Lorimer DR 2018. Ap. J. 863:132
    [Google Scholar]
  52. Fiedler RL, Dennison B, Johnston KJ, Hewish A 1987. Nature 326:675–78
    [Google Scholar]
  53. Fruchter AS, Levan AJ, Strolger L 2006. Nature 441:463–68
    [Google Scholar]
  54. Gajjar V, Siemion APV, Price DC 2018. Ap. J. 863:2
    [Google Scholar]
  55. Ghisellini G, Locatelli N 2018. Astron. Astrophys. 613:A61
    [Google Scholar]
  56. Graham Smith F, Lyne AG, Jordan C 2011. MNRAS 410:499–503
    [Google Scholar]
  57. Gu WM, Dong YZ, Liu T 2016. Ap. J. Lett. 823:L28
    [Google Scholar]
  58. Hankins TH, Eilek JA 2007. Ap. J. 670:693–701
    [Google Scholar]
  59. Hankins TH, Rickett BJ 1975. Methods in Computational Physics: Advances in Research and Applications, Volume 14—Radio Astronomy B Alder, S Fernbach, M Rotenberg55–129 New York: Academic
    [Google Scholar]
  60. Hessels JWT, Spitler LG, Seymour AD 2019. Ap. J. Lett. 876L23
    [Google Scholar]
  61. Huang YF, Geng JJ 2016. Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015 L QainASP Conf. Ser. 5021 San Francisco: ASP
    [Google Scholar]
  62. Hughes VA, Retallack DS 1973. Nature 242:105–7
    [Google Scholar]
  63. Huguenin GR, Moore EL 1974. Ap. J. Lett. 187:L57
    [Google Scholar]
  64. Hyman SD, Lazio TJW, Kassim NE 2005. Nature 434:50–52
    [Google Scholar]
  65. Inoue S 2004. MNRAS 348:999–1008
    [Google Scholar]
  66. Ioka K 2003. Ap. J. Lett. 598:L79–82
    [Google Scholar]
  67. Jackson JD 1962. Classical Electrodynamics. New York: Wiley
    [Google Scholar]
  68. Jessner A, Popov MV, Kondratiev VI 2010. Astron. Astrophys. 524:A60
    [Google Scholar]
  69. Karastergiou A, Chennamangalam J, Armour W 2015. MNRAS 452:1254–62
    [Google Scholar]
  70. Kashiyama K, Murase K 2017. Ap. J. Lett. 839:L3
    [Google Scholar]
  71. Katz JI 2014a. Phys. Rev. D 89:103009
    [Google Scholar]
  72. Katz JI 2014b. arXiv:1409.5766
  73. Katz JI 2016a. Mod. Phys. Lett. A 31:1630013
    [Google Scholar]
  74. Katz JI 2016b. Ap. J. 826:226
    [Google Scholar]
  75. Katz JI 2017. MNRAS 467:L96–99
    [Google Scholar]
  76. Keane EF, Barr ED, Jameson A 2018. MNRAS 473:116–35
    [Google Scholar]
  77. Keane EF, Johnston S, Bhandari S 2016. Nature 530:453–56
    [Google Scholar]
  78. Keane EF, Petroff E 2015. MNRAS 447:2852–56
    [Google Scholar]
  79. Kronberg PP, Bernet ML, Miniati F 2008. Ap. J. 676:70–79
    [Google Scholar]
  80. Kulkarni SR, Ofek EO, Neill JD 2015. arXiv:1511.09137
  81. Kulkarni SR, Ofek EO, Neill JD 2014. Ap. J. 797:70
    [Google Scholar]
  82. Lambert HC, Rickett BJ 1999. Ap. J. 517:299–317
    [Google Scholar]
  83. Law CJ, Abruzzo MW, Bassa CG 2017. Ap. J. 850:76
    [Google Scholar]
  84. Law CJ, Bower GC, Burke-Spolaor S 2015. Ap. J. 807:16
    [Google Scholar]
  85. Law CJ, Gaensler BM, Metzger BD 2018. Ap. J. Lett. 866:L22
    [Google Scholar]
  86. Lawrence E, Vander Wiel S, Law C 2017. Astron. J. 154:117
    [Google Scholar]
  87. Li LB, Huang YF, Geng JJ, Li B 2018a. Res. Astron. Astrophys. 18:061
    [Google Scholar]
  88. Li ZX, Gao H, Ding XH 2018b. Nat. Commun. 9:3833
    [Google Scholar]
  89. Lingam M, Loeb A 2017. Ap. J. Lett. 837:L23
    [Google Scholar]
  90. Linscott IR, Erkes JW 1980. Ap. J. Lett. 236:L109–13
    [Google Scholar]
  91. Loeb A, Shvartzvald Y, Maoz D 2014. MNRAS 439:L46–50
    [Google Scholar]
  92. Lorimer DR, Bailes M, McLaughlin MA 2007. Science 318:777–80
    [Google Scholar]
  93. Lu W, Kumar P 2018. MNRAS 477:2470–93
    [Google Scholar]
  94. Luan J, Goldreich P 2014. Ap. J. Lett. 785:L26
    [Google Scholar]
  95. Luo Q, Melrose D 2007. MNRAS 378:1481–90
    [Google Scholar]
  96. Luo Q, Melrose DB 1992. MNRAS 258:616–20
    [Google Scholar]
  97. Luo R, Lee K, Lorimer DR, Zhang B 2018. MNRAS 481:2320–37
    [Google Scholar]
  98. Lyubarsky Y 2014. MNRAS 442:L9–13
    [Google Scholar]
  99. Lyutikov M, Burzawa L, Popov SB 2016. MNRAS 462:941–50
    [Google Scholar]
  100. Macquart JP, Ekers R 2018a. MNRAS 480:4211–30
    [Google Scholar]
  101. Macquart JP, Ekers RD 2018b. MNRAS 474:1900–8
    [Google Scholar]
  102. Macquart JP, Johnston S 2015. MNRAS 451:3278–86
    [Google Scholar]
  103. Macquart JP, Keane E, Grainge K 2015. Proceedings of Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, June 9–13, 2014 id.055. Proceedings of Science. https://pos.sissa.it/215/055/pdf
    [Google Scholar]
  104. Macquart JP, Koay JY 2013. Ap. J. 776:125
    [Google Scholar]
  105. MAGIC Collab., Acciari VA, Ansoldi S 2018. MNRAS 481:2479–86
    [Google Scholar]
  106. Mahony EK, Ekers RD, Macquart JP 2018. Ap. J. 867:L10
    [Google Scholar]
  107. Main R, Yang IS, Chan V 2018. Nature 557:522–25
    [Google Scholar]
  108. Manchester RN, Hobbs GB, Teoh A, Hobbs M 2005. Astron. J. 129:1993–2006
    [Google Scholar]
  109. Maoz D, Loeb A 2017. MNRAS 467:3920–23
    [Google Scholar]
  110. Maoz D, Loeb A, Shvartzvald Y 2015. MNRAS 454:2183–89
    [Google Scholar]
  111. Marcote B, Paragi Z, Hessels JWT 2017. Ap. J. Lett. 834:L8
    [Google Scholar]
  112. Margalit B, Metzger BD 2018. Ap. J. Lett. 868:L4
    [Google Scholar]
  113. Margalit B, Metzger BD, Berger E 2018. MNRAS 481:2407–26
    [Google Scholar]
  114. Marrone DP, Moran JM, Zhao JH, Rao R 2007. Ap. J. Lett. 654:L57–60
    [Google Scholar]
  115. Masui K, Lin HH, Sievers J 2015. Nature 528:523–25
    [Google Scholar]
  116. Masui KW, Sigurdson K 2015. Phys. Rev. Lett. 115:121301
    [Google Scholar]
  117. McLaughlin MA, Lyne AG, Lorimer DR 2006. Nature 439:817–20
    [Google Scholar]
  118. McQuinn M 2014. Ap. J. Lett. 780:L33
    [Google Scholar]
  119. Metzger BD, Berger E, Margalit B 2017. Ap. J. 841:14
    [Google Scholar]
  120. Michilli D, Seymour A, Hessels JWT 2018. Nature 553:182–85
    [Google Scholar]
  121. Mottez F, Zarka P 2014. Astron. Astrophys. 569:A86
    [Google Scholar]
  122. Muñoz JB, Kovetz ED, Dai L, Kamionkowski M 2016. Phys. Rev. Lett. 117:091301
    [Google Scholar]
  123. Murase K, Kashiyama K, Mészáros P 2016. MNRAS 461:1498–511
    [Google Scholar]
  124. Narayan R 1992. Philos. Trans. R. Soc. A 341:151–65
    [Google Scholar]
  125. Nicastro F, Kaastra J, Krongold Y 2018. Nature 558:406–9
    [Google Scholar]
  126. Nicholl M, Williams PKG, Berger E 2017. Ap. J. 843:84
    [Google Scholar]
  127. Ofek EO 2017. Ap. J. 846:44
    [Google Scholar]
  128. Olausen SA, Kaspi VM 2014. Ap. J. Suppl. 212:6
    [Google Scholar]
  129. Omand CMB, Kashiyama K, Murase K 2018. MNRAS 474:573–79
    [Google Scholar]
  130. Oostrum LC, van Leeuwen J, Attema J 2017. Astron. Telegr.#10693
    [Google Scholar]
  131. Oppermann N, Connor LD, Pen UL 2016. MNRAS 461:984–87
    [Google Scholar]
  132. O'Sullivan JD, Ekers RD, Shaver PA 1978. Nature 276:590
    [Google Scholar]
  133. Palaniswamy D, Li Y, Zhang B 2018. Ap. J. Lett. 854:L12
    [Google Scholar]
  134. Palaniswamy D, Wayth RB, Trott CM 2014. Ap. J. 790:63
    [Google Scholar]
  135. Palmer DM 1993. Ap. J. Lett. 417:L25–28
    [Google Scholar]
  136. Patel C, Agarwal D, Bhardwaj M 2018. Ap. J. 869:181
    [Google Scholar]
  137. Pen UL, Connor L 2015. Ap. J. 807:179
    [Google Scholar]
  138. Perley DA, Levan AJ, Tanvir NR 2013. Ap. J. 778:128
    [Google Scholar]
  139. Petroff E, Bailes M, Barr ED 2015a. MNRAS 447:246–55
    [Google Scholar]
  140. Petroff E, Barr ED, Jameson A 2016. Publ. Astron. Soc. Aust. 33:e045
    [Google Scholar]
  141. Petroff E, Burke-Spolaor S, Keane EF 2017a. MNRAS 469:4465–82
    [Google Scholar]
  142. Petroff E, Houben L, Bannister K 2017b. arXiv:1710.08155
  143. Petroff E, Johnston S, Keane EF 2015b. MNRAS 454:457–62
    [Google Scholar]
  144. Petroff E, Keane EF, Barr ED 2015c. MNRAS 451:3933–40
    [Google Scholar]
  145. Petroff E, van Straten W, Johnston S 2014. Ap. J. Lett. 789:L26
    [Google Scholar]
  146. Piro AL 2016. Ap. J. Lett. 824:L32
    [Google Scholar]
  147. Popov SB, Pons JA, Miralles JA 2010. MNRAS 401:2675–86
    [Google Scholar]
  148. Popov SB, Postnov KA 2010. Evolution of Cosmic Objects through their Physical Activity HA Harutyunian, AM Mickaelian, Y Terzian129–33 Yerevan: Natl. Acad. Sci. Repub. Armen.
    [Google Scholar]
  149. Popov SB, Postnov KA, Pshirkov MS 2018. Phys.-Uspekhi 61101063–79
    [Google Scholar]
  150. Popov SB, Pshirkov MS 2016. MNRAS 462:L16–20
    [Google Scholar]
  151. Price DC, Gajjar V, Dhar A 2018. Astron. Telegr.#11376
    [Google Scholar]
  152. Prochaska JX, Neeleman M 2018. MNRAS 474:318–25
    [Google Scholar]
  153. Ramachandran R, Mitra D, Deshpande AA 1997. MNRAS 290:260–64
    [Google Scholar]
  154. Ravi V, Shannon RM, Bailes M 2016. Science 354:1249–52
    [Google Scholar]
  155. Read JI, Trentham N 2005. Philos. Trans. R. Soc. Lond. Ser. A 3632693–710
    [Google Scholar]
  156. Rees MJ 1977. Nature 266:333–34
    [Google Scholar]
  157. Reines AE, Sivakoff GR, Johnson KE, Brogan CL 2011. Nature 470:66–68
    [Google Scholar]
  158. Rickett BJ 1990. Annu. Rev. Astron. Astrophys. 28:561–605
    [Google Scholar]
  159. Scholz P, Bogdanov S, Hessels JWT 2017. Ap. J. 846:80
    [Google Scholar]
  160. Scholz P, Spitler LG, Hessels JWT 2016. Ap. J. 833:177
    [Google Scholar]
  161. Seth AC, van den Bosch R, Mieske S 2014. Nature 513:398–400
    [Google Scholar]
  162. Shannon RM, Macquart JP, Bannister KW 2018. Nature 562:386–90
    [Google Scholar]
  163. Shao L, Zhang B 2017. Phys. Rev. D 95:123010
    [Google Scholar]
  164. Shull JM, Danforth CW 2018. Ap. J. Lett. 852:L11
    [Google Scholar]
  165. Siemion APV, Bower GC, Foster G 2012. Ap. J. 744:109
    [Google Scholar]
  166. Spitler LG, Cordes JM, Hessels JWT 2014. Ap. J. 790:101
    [Google Scholar]
  167. Spitler LG, Herrmann W, Bower GC 2018. Ap. J. 863:150
    [Google Scholar]
  168. Spitler LG, Scholz P, Hessels JWT 2016. Nature 531:202–5
    [Google Scholar]
  169. Suresh A, Cordes JM 2019. Ap. J. 870:29
    [Google Scholar]
  170. Tanenbaum BS, Zeissig GA, Drake FD 1968. Science 160:760
    [Google Scholar]
  171. Taylor JH, Huguenin GR, Hirsch RM 1972. Ap. J. Lett. 172:L17
    [Google Scholar]
  172. Tendulkar SP, Bassa CG, Cordes JM 2017. Ap. J. Lett. 834:L7
    [Google Scholar]
  173. Thompson C 2017a. Ap. J. 844:65
    [Google Scholar]
  174. Thompson C 2017b. Ap. J. 844:162
    [Google Scholar]
  175. Thornton D, Stappers B, Bailes M 2013. Science 341:53–56
    [Google Scholar]
  176. Tominaga N, Niino Y, Totani T 2018. Publ. Astron. Soc. Jpn. 706103
    [Google Scholar]
  177. Treumann RA 2006. Astron. Astrophys. Rev. 13:229–315
    [Google Scholar]
  178. Tuntsov AV 2014. MNRAS 441:L26–30
    [Google Scholar]
  179. van Waerbeke L, Zhitnitsky A 2019. Phys. Rev. D 99:043535
    [Google Scholar]
  180. Vazza F, Brüggen M, Hinz PM 2018. MNRAS 480:3907–15
    [Google Scholar]
  181. Vedantham HK, Ravi V, Hallinan G, Shannon RM 2016a. Ap. J. 830:75
    [Google Scholar]
  182. Vedantham HK, Ravi V, Mooley K 2016b. Ap. J. Lett. 824:L9
    [Google Scholar]
  183. Vergani SD, Salvaterra R, Japelj J 2015. Astron. Astrophys. 581:A102
    [Google Scholar]
  184. Voit GM, Evrard AE, Bryan GL 2001. Ap. J. Lett. 548:L123–26
    [Google Scholar]
  185. Vorgul I, Kellett BJ, Cairns RA 2011. Phys. Plasmas 18:056501
    [Google Scholar]
  186. Wang C, Lai D, Han J 2010. MNRAS 403:569–88
    [Google Scholar]
  187. Wang YK, Wang FY 2018. Astron. Astrophys. 614:A50
    [Google Scholar]
  188. Waxman E 2017. Ap. J. 842:34
    [Google Scholar]
  189. Weber J 1970. Phys. Rev. Lett. 25:180–84
    [Google Scholar]
  190. Williams PKG, Berger E 2016. Ap. J. Lett. 821:L22
    [Google Scholar]
  191. Wolszczan A, Cordes JM 1987. Ap. J. Lett. 320:L35–39
    [Google Scholar]
  192. Wu XF, Zhang SB, Gao H 2016. Ap. J. Lett. 822:L15
    [Google Scholar]
  193. Xu S, Zhang B 2016. Ap. J. 832:199
    [Google Scholar]
  194. Yamasaki S, Totani T, Kiuchi K 2018. Publ. Astron. Soc. Jpn. 70:39
    [Google Scholar]
  195. Yang YP, Luo R, Li Z, Zhang B 2017. Ap. J. Lett. 839:L25
    [Google Scholar]
  196. Yao JM, Manchester RN, Wang N 2017. Ap. J. 835:29
    [Google Scholar]
  197. Yu YW, Cheng KS, Shiu G, Tye H 2014. J. Cosmol. Astropart. Phys. 11:040
    [Google Scholar]
  198. Zhang B 2017. Ap. J. Lett. 836:L32
    [Google Scholar]
  199. Zhang B 2018. Ap. J. Lett. 854:L21
    [Google Scholar]
  200. Zhang YG, Gajjar V, Foster G 2018. Ap. J. 8662) 149
    [Google Scholar]
  201. Zheng Z, Ofek EO, Kulkarni SR 2014. Ap. J. 797:71
    [Google Scholar]
  202. Zhou B, Li X, Wang T 2014. Phys. Rev. D 89:107303
    [Google Scholar]
/content/journals/10.1146/annurev-astro-091918-104501
Loading
/content/journals/10.1146/annurev-astro-091918-104501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error