1932

Abstract

The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that:

  • ▪   Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates.
  • ▪   Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above as expected from recent structure formation models.
  • ▪   Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state.
  • ▪   The advent of gravitational wave astronomy has enabled the detection of spin effects in merging binary black holes. Most of the premerger black holes are found to be slowly spinning, a notable exception being an object that may itself be a merger product.
  • ▪   The stark difference in spins between the black hole X-ray binary and the binary black hole populations shows that there is a diversity of formation mechanisms.

Given the array of new electromagnetic and gravitational wave capabilities currently being planned, the future of black hole spin studies is bright.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-112420-035022
2021-09-08
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/astro/59/1/annurev-astro-112420-035022.html?itemId=/content/journals/10.1146/annurev-astro-112420-035022&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott BP, Abbott R, Abbott TD et al. 2016a. Phys. Rev. Lett. 116:061102
    [Google Scholar]
  2. Abbott BP, Abbott R, Abbott TD et al. 2016b. Phys. Rev. Lett. 116:241103
    [Google Scholar]
  3. Abbott BP, Abbott R, Abbott TD et al. 2019. Phys. Rev. X 9:031040
    [Google Scholar]
  4. Abbott R, Abbott TD, Abraham S et al. 2020a. arXiv:2010.14527
  5. Abbott R, Abbott TD, Abraham S et al. 2020b. Ap. J. Lett. 896:L44
    [Google Scholar]
  6. Abbott R, Abbott TD, Abraham S et al. 2020c. Phys. Rev. D 102:043015
    [Google Scholar]
  7. Abramowicz MA, Kluźniak W. 2001. Astron. Astrophys. 374:L19–20
    [Google Scholar]
  8. Agís-González B, Miniutti G, Kara E et al. 2014. MNRAS 443:2862–73
    [Google Scholar]
  9. Agol E, Krolik J. 1999. Ap. J. 524:49–64
    [Google Scholar]
  10. Agol E, Krolik JH. 2000. Ap. J. 528:161–70
    [Google Scholar]
  11. Assef RJ, Denney KD, Kochanek CS et al. 2011. Ap. J. 742:93
    [Google Scholar]
  12. Atri P, Miller-Jones JCA, Bahramian A et al. 2020. MNRAS 493:L81–86
    [Google Scholar]
  13. Avara MJ, McKinney JC, Reynolds CS. 2016. MNRAS 462:636–48
    [Google Scholar]
  14. Baker JG, Centrella J, Choi DI, Koppitz M, van Meter J. 2006a. Phys. Rev. Lett. 96:111102
    [Google Scholar]
  15. Baker JG, Centrella J, Choi DI et al. 2006b. Ap. J. Lett. 653:L93–96
    [Google Scholar]
  16. Balbus SA, Hawley JF. 1991. Ap. J. 376:21422
    [Google Scholar]
  17. Ballantyne DR, Ross RR, Fabian AC. 2001. MNRAS 327:10–22
    [Google Scholar]
  18. Bambi C. 2018. Ann. Phys. 530:1700430
    [Google Scholar]
  19. Bardeen JM, Petterson JA. 1975. Ap. J. 195:L6567
    [Google Scholar]
  20. Bardeen JM, Press WH, Teukolsky SA. 1972. Ap. J. 178:347–70
    [Google Scholar]
  21. Basko MM. 1978. Ap. J. 223:268–81
    [Google Scholar]
  22. Batta A, Ramirez-Ruiz E, Fryer C. 2017. Ap. J. Lett. 846:L15
    [Google Scholar]
  23. Begelman MC, Blandford RD, Rees MJ. 1984. Rev. Mod. Phys. 56:255–351
    [Google Scholar]
  24. Bentz MC, Denney KD, Cackett EM, Dietrich M, Fogel JKJ et al. 2006. Ap. J. 651:775–81
    [Google Scholar]
  25. Biscoveanu S, Isi M, Vitale S, Varma V. 2020. Phys. Rep. Lett. Accepted. arXiv:2007.09156
    [Google Scholar]
  26. Blandford RD, McKee CF. 1982. Ap. J. 255:419–39
    [Google Scholar]
  27. Blandford RD, Payne DG. 1982. MNRAS 199:883–903
    [Google Scholar]
  28. Blandford RD, Znajek RL. 1977. MNRAS 179:433–56
    [Google Scholar]
  29. Bonson K, Gallo LC. 2016. MNRAS 458:1927–38
    [Google Scholar]
  30. Brenneman L. 2013. Measuring the Angular Momentum of Supermassive Black Holes New York: Springer
    [Google Scholar]
  31. Brenneman LW, Reynolds CS. 2006. Ap. J. 652:1028–43
    [Google Scholar]
  32. Brenneman LW, Reynolds CS, Nowak MA et al. 2011. Ap. J. 736:103
    [Google Scholar]
  33. Buisson DJK, Parker ML, Kara E et al. 2018. MNRAS 480:3689–701
    [Google Scholar]
  34. Buonanno A, Damour T. 1999. Phys. Rev. D 59:084006
    [Google Scholar]
  35. Bustamante S, Springel V. 2019. MNRAS 490:4133–53
    [Google Scholar]
  36. Campanelli M, Lousto C, Zlochower Y, Merritt D. 2007. Ap. J. Lett. 659:L5–8
    [Google Scholar]
  37. Capellupo DM, Wafflard-Fernandez G, Haggard D. 2017. Ap. J. Lett. 836:L8
    [Google Scholar]
  38. Chamani W, Koljonen K, Savolainen T. 2020. Astron. Astrophys. 635:A172
    [Google Scholar]
  39. Chartas G, Krawczynski H, Zalesky L et al. 2017. Ap. J. 837:26
    [Google Scholar]
  40. Chen Z, Gou L, McClintock JE et al. 2016. Ap. J. 825:45
    [Google Scholar]
  41. Dabrowski Y, Fabian AC, Iwasawa K, Lasenby AN, Reynolds CS. 1997. MNRAS 288:L11–15
    [Google Scholar]
  42. Dai X, Steele S, Guerras E, Morgan CW, Chen B 2019. Ap. J. 879:35
    [Google Scholar]
  43. Daly RA. 2009. Ap. J. Lett. 696:L32–36
    [Google Scholar]
  44. Daly RA. 2011. MNRAS 414:1253–62
    [Google Scholar]
  45. Daly RA. 2019. Ap. J. 886:37
    [Google Scholar]
  46. Davis SW, Blaes OM, Hubeny I, Turner NJ. 2005. Ap. J. 621:372–87
    [Google Scholar]
  47. Davis SW, Hubeny I. 2006. Ap. J. Suppl. 164:530–35
    [Google Scholar]
  48. Davis SW, Laor A. 2011. Ap. J. 728:98
    [Google Scholar]
  49. Davis SW, Tchekhovskoy A. 2020. Annu. Rev. Astron. Astrophys. 58:407–39
    [Google Scholar]
  50. Done C, Jin C, Middleton M, Ward M. 2013. MNRAS 434:1955–63
    [Google Scholar]
  51. Dong Y, García JA, Steiner JF, Gou L. 2020. MNRAS 493:4409–17
    [Google Scholar]
  52. Draghis PA, Miller JM, Cackett EM et al. 2020. Ap. J. 900:78
    [Google Scholar]
  53. El-Batal AM, Miller JM, Reynolds MT et al. 2016. Ap. J. Lett. 826:L12
    [Google Scholar]
  54. Elvis M, Risaliti G, Zamorani G. 2002. Ap. J. Lett. 565:L75–77
    [Google Scholar]
  55. Event Horizon Telescope Collab., Akiyama K, Alberdi A et al. 2019a. Ap. J. Lett. 875:L1
    [Google Scholar]
  56. Event Horizon Telescope Collab., Akiyama K, Alberdi A et al. 2019b. Ap. J. Lett. 875:L5
    [Google Scholar]
  57. Fabian AC. 2012. Annu. Rev. Astron. Astrophys. 50:455–89
    [Google Scholar]
  58. Fabian AC, Buisson DJ, Kosec P et al. 2020. MNRAS 493:5389–96
    [Google Scholar]
  59. Fabian AC, Rees MJ, Stella L, White NE 1989. MNRAS 238:729–36
    [Google Scholar]
  60. Fabian AC, Vaughan S, Nandra K et al. 2002. MNRAS 335:L1–5
    [Google Scholar]
  61. Fabian AC, Wilkins DR, Miller JM et al. 2012. MNRAS 424:217–23
    [Google Scholar]
  62. Fabian AC, Zoghbi A, Ross RR et al. 2009. Nature 459:540–42
    [Google Scholar]
  63. Falcke H, Melia F, Agol E 2000. Ap. J. Lett. 528:L13–16
    [Google Scholar]
  64. Farr WM, Stevenson S, Miller MC et al. 2017. Nature 548:426–29
    [Google Scholar]
  65. Fragile PC, Blaes OM, Anninos P, Salmonson JD. 2007. Ap. J. 668:417–29
    [Google Scholar]
  66. Fragos T, McClintock JE. 2015. Ap. J. 800:17
    [Google Scholar]
  67. Gammie CF. 1999. Ap. J. Lett. 522:L57–60
    [Google Scholar]
  68. Gandhi P, Rao A, Johnson MAC et al. 2019. MNRAS 485:2642–55
    [Google Scholar]
  69. García J, Dauser T, Lohfink A et al. 2014. Ap. J. 782:76
    [Google Scholar]
  70. García JA, Steiner JF, Grinberg V et al. 2018. Ap. J. 864:25
    [Google Scholar]
  71. George IM, Fabian AC. 1991. MNRAS 249:352–67
    [Google Scholar]
  72. Ghosh R, Dewangan GC, Mallick L, Raychaudhuri B. 2018. MNRAS 479:2464–75
    [Google Scholar]
  73. Gimon EG, Hořava P. 2009. Phys. Lett. B 672:299–302
    [Google Scholar]
  74. González JA, Sperhake U, Brügmann B, Hannam M, Husa S. 2007. Phys. Rev. Lett. 98:091101
    [Google Scholar]
  75. Gou L, McClintock JE, Reid MJ et al. 2011. Ap. J. 742:85
    [Google Scholar]
  76. Gou L, McClintock JE, Steiner JF et al. 2010. Ap. J. Lett. 718:L122–26
    [Google Scholar]
  77. Grier CJ, Pancoast A, Barth AJ et al. 2017. Ap. J. 849:146
    [Google Scholar]
  78. Hiemstra B, Méndez M, Done C et al. 2011. MNRAS 411:137–50
    [Google Scholar]
  79. Hubeny I, Blaes O, Krolik JH, Agol E. 2001. Ap. J. 559:680–702
    [Google Scholar]
  80. Ingram A, Done C, Fragile PC. 2009. MNRAS 397:L101–5
    [Google Scholar]
  81. Ingram A, van der Klis M, Middleton M et al. 2016. MNRAS 461:1967–80
    [Google Scholar]
  82. Ingram AR, Motta SE. 2019. New Astron 85:101524
    [Google Scholar]
  83. Isi M, Giesler M, Farr WM, Scheel MA, Teukolsky SA. 2019. Phys. Rev. Lett. 123:111102
    [Google Scholar]
  84. Iwasawa K, Fabian AC, Reynolds CS et al. 1996. MNRAS 282:1038–48
    [Google Scholar]
  85. Jiang J, Parker ML, Fabian AC et al. 2018. MNRAS 477:3711–26
    [Google Scholar]
  86. Jiang J, Walton DJ, Fabian AC, Parker ML. 2019. MNRAS 483:2958–67
    [Google Scholar]
  87. Jiang Y-F, Blaes O, Stone JM, Davis SW. 2019. Ap. J. 885:114
    [Google Scholar]
  88. Kammoun ES, Nardini E, Risaliti G. 2018. Astron. Astrophys. 614:A44
    [Google Scholar]
  89. Kara E, Alston WN, Fabian AC et al. 2016a. MNRAS 462:511–31
    [Google Scholar]
  90. Kara E, Fabian AC, Lohfink AM et al. 2015. MNRAS 449:234–42
    [Google Scholar]
  91. Kara E, Miller JM, Reynolds C, Dai L. 2016b. Nature 535:388–90
    [Google Scholar]
  92. Keck ML, Brenneman LW, Ballantyne DR et al. 2015. Ap. J. 806:149
    [Google Scholar]
  93. Kerr RP. 1963. Phys. Rev. Lett. 11:237–38
    [Google Scholar]
  94. King AL, Walton DJ, Miller JM et al. 2014. Ap. J. Lett. 784:L2
    [Google Scholar]
  95. Kinney AL, Schmitt HR, Clarke CJ et al. 2000. Ap. J. 537:152–77
    [Google Scholar]
  96. Klinch BE, Noble SC, Schnittman JD, Krolik JH. 2020. Ap. J. 904:117
    [Google Scholar]
  97. Klinch BE, Schnittman JD, Kallman TR, Krolik JH. 2016. Ap. J. 826:52
    [Google Scholar]
  98. Krolik JH. 1999. Ap. J. 515:L73–76
    [Google Scholar]
  99. Laor A, Davis SW. 2014. MNRAS 438:3024–38
    [Google Scholar]
  100. Li LX, Zimmerman ER, Narayan R, McClintock JE. 2005. Ap. J. Suppl. 157:335–70
    [Google Scholar]
  101. Liu J, McClintock JE, Narayan R, Davis SW, Orosz JA. 2008. Ap. J. Lett. 679:L37
    [Google Scholar]
  102. Mandel I, Fragos T. 2020. Ap. J. Lett 895:L28
    [Google Scholar]
  103. Marinucci A, Matt G, Miniutti G et al. 2014. Ap. J. 787:83
    [Google Scholar]
  104. Martocchia A, Matt G. 1996. MNRAS 282:L53–57
    [Google Scholar]
  105. McClintock JE, Narayan R, Steiner JF. 2014. Space Sci. Rev. 183:295–322
    [Google Scholar]
  106. McClintock JE, Shafee R, Narayan R et al. 2006. Ap. J. 652:518–39
    [Google Scholar]
  107. McKernan B, Yaqoob T, Reynolds CS. 2007. MNRAS 379:1359–72
    [Google Scholar]
  108. McKinney JC, Tchekhovskoy A, Blandford RD. 2012. MNRAS 423:3083–117
    [Google Scholar]
  109. McNamara BR, Kazemzadeh F, Rafferty DA et al. 2009. Ap. J. 698:594–605
    [Google Scholar]
  110. Middleton MJ, Parker ML, Reynolds CS, Fabian AC, Lohfink AM. 2016. MNRAS 457:1568–76
    [Google Scholar]
  111. Miller JM. 2007. Annu. Rev. Astron. Astrophys. 45:441–79
    [Google Scholar]
  112. Miller JM, Fabian AC, Kaastra J et al. 2015. Ap. J. 814:87
    [Google Scholar]
  113. Miller JM, Fabian AC, Reynolds CS et al. 2004. Ap. J. Lett. 606:L131–34
    [Google Scholar]
  114. Miller JM, Fabian AC, Wijnands R et al. 2002. Ap. J. Lett. 570:L69–73
    [Google Scholar]
  115. Miller JM, Homan J. 2005. Ap. J. Lett. 618:L107–10
    [Google Scholar]
  116. Miller JM, Reynolds CS, Fabian AC, Miniutti G, Gallo LC. 2009. Ap. J. 697:900–12
    [Google Scholar]
  117. Miller L, Turner TJ, Reeves JN. 2008. Astron. Astrophys. 483:437–52
    [Google Scholar]
  118. Miller MC, Hamilton DP. 2002. MNRAS 330:232–40
    [Google Scholar]
  119. Miller MC, Miller JM. 2015. Phys. Rep. 548:1–34
    [Google Scholar]
  120. Miller S, Callister TA, Farr WM. 2020. Ap. J. 895:128
    [Google Scholar]
  121. Miniutti G, Fabian AC. 2004. MNRAS 349:1435–48
    [Google Scholar]
  122. Miniutti G, Piconcelli E, Bianchi S, Vignali C, Bozzo E. 2010. MNRAS 401:1315–24
    [Google Scholar]
  123. Mirabel F. 2017. New Astron. Rev. 78:1–15
    [Google Scholar]
  124. Mirbabayi M, Gruzinov A, Noreña J. 2020. J. Cosmol. Astropart. Phys. 2020:017
    [Google Scholar]
  125. Misner C, Thorne K, Wheeler J. 1973. Gravitation San Francisco: W.H. Freeman
    [Google Scholar]
  126. Morgan CW, Kochanek CS, Dai X, Morgan ND, Falco EE. 2008. Ap. J. 689:755–61
    [Google Scholar]
  127. Morgan CW, Kochanek CS, Morgan ND, Falco EE. 2010. Ap. J. 712:1129–36
    [Google Scholar]
  128. Morningstar WR, Miller JM, Reis RC, Ebisawa K. 2014. Ap. J. Lett. 784:L18
    [Google Scholar]
  129. Motta SE, Belloni TM, Stella L, Muñoz-Darias T, Fender R. 2014. MNRAS 437:2554–65
    [Google Scholar]
  130. Mummery A, Balbus SA. 2020. MNRAS 497:L13–18
    [Google Scholar]
  131. Nandra K, George IM, Mushotzky RF, Turner TJ, Yaqoob T. 1997. Ap. J. 477:602–22
    [Google Scholar]
  132. Narayan R, McClintock JE. 2012. MNRAS 419:L69–73
    [Google Scholar]
  133. Narayan R, Yi I, Mahadevan R 1995. Nature 374:623–25
    [Google Scholar]
  134. Nikołajuk M, Czerny B, Gurynowicz P. 2009. MNRAS 394:2141–52
    [Google Scholar]
  135. Noble SC, Krolik JH, Hawley JF 2010. 711:959–73
  136. Morningstar WR, Miller JM, Reis RC, Ebisawa K. 2014. Ap. J. Lett. 784:L18
    [Google Scholar]
  137. Novikov ID, Thorne KS 1973. Black Holes (Les Astres Occlus) C Dewitt, BS Dewitt pp. 343450 New York: Gordon & Breach
    [Google Scholar]
  138. Nowak MA, Wagoner RV, Begelman MC, Lehr DE. 1997. Ap. J. Lett. 477:L91–94
    [Google Scholar]
  139. Orosz JA, Groot PJ, van der Klis M et al. 2002. Ap. J. 568:845–61
    [Google Scholar]
  140. Orosz JA, McClintock JE, Narayan R et al. 2007. Nature 449:872–75
    [Google Scholar]
  141. Parker ML, Matzeu GA, Guainazzi M et al. 2018. MNRAS 480:2365–76
    [Google Scholar]
  142. Parker ML, Wilkins DR, Fabian AC et al. 2014. MNRAS 443:1723–32
    [Google Scholar]
  143. Penrose R. 1969. Riv. Nuovo Cim. 1:252–76
    [Google Scholar]
  144. Peterson BM, Ferrarese L, Gilbert KM et al. 2004. Ap. J. 613:682–99
    [Google Scholar]
  145. Pretorius F. 2005. Phys. Rev. Lett. 95:121101
    [Google Scholar]
  146. Pringle JE. 1981. Annu. Rev. Astron. Astrophys. 19:137–62
    [Google Scholar]
  147. Qin Y, Marchant P, Fragos T, Meynet G, Kalogera V. 2019. Ap. J. Lett. 870:L18
    [Google Scholar]
  148. Rees MJ, Begelman MC, Blandford RD, Phinney ES. 1982. Nature 295:17–21
    [Google Scholar]
  149. Reid MJ, McClintock JE, Narayan R et al. 2011. Ap. J. 742:83
    [Google Scholar]
  150. Reis RC, Fabian AC, Ross RR, Miller JM. 2009. MNRAS 395:1257–64
    [Google Scholar]
  151. Reis RC, Miller JM, Reynolds MT, Fabian AC, Walton DJ. 2012. Ap. J. 751:34
    [Google Scholar]
  152. Reis RC, Reynolds MT, Miller JM, Walton DJ. 2014. Nature 507:207–9
    [Google Scholar]
  153. Reis RC, Reynolds MT, Miller JM et al. 2013. Ap. J. 778:155
    [Google Scholar]
  154. Remillard RA, McClintock JE. 2006. Annu. Rev. Astron. Astrophys. 44:49–92
    [Google Scholar]
  155. Reynolds CS. 1997. MNRAS 286:513–37
    [Google Scholar]
  156. Reynolds CS. 2013. Class. Quantum Gravity 30:244004
    [Google Scholar]
  157. Reynolds CS. 2014. Space Sci. Rev. 183:277–94
    [Google Scholar]
  158. Reynolds CS. 2019. Nat. Astron. 3:41–47
    [Google Scholar]
  159. Reynolds CS, Armitage PJ. 2001. Ap. J. Lett. 561:L81–84
    [Google Scholar]
  160. Reynolds CS, Begelman MC. 1997. Ap. J. 488:109–18
    [Google Scholar]
  161. Reynolds CS, Fabian AC. 2008. Ap. J. 675:1048–56
    [Google Scholar]
  162. Reynolds CS, Miller MC. 2009. Ap. J. 692:869–86
    [Google Scholar]
  163. Reynolds CS, Young AJ, Begelman MC, Fabian AC. 1999. Ap. J. 514:164–79
    [Google Scholar]
  164. Reynolds MT, Walton DJ, Miller JM, Reis RC. 2014. Ap. J. Lett. 792:L19
    [Google Scholar]
  165. Risaliti G, Harrison FA, Madsen KK et al. 2013. Nature 494:449–51
    [Google Scholar]
  166. Rodriguez CL, Kremer K, Grudić MY et al. 2020. Ap. J. Lett. 896:L10
    [Google Scholar]
  167. Ross RR, Fabian AC. 1993. MNRAS 261:74–82
    [Google Scholar]
  168. Roulet J, Zaldarriaga M. 2019. MNRAS 484:4216–29
    [Google Scholar]
  169. Russell DM, Gallo E, Fender RP. 2013. MNRAS 431:405–14
    [Google Scholar]
  170. Salvesen G, Miller JM. 2021. MNRAS 500:3640–66
    [Google Scholar]
  171. Schartel N, Rodríguez-Pascual PM, Santos-Lleó M et al. 2010. Astron. Astrophys. 512:A75
    [Google Scholar]
  172. Schee J, Stuchlík Z. 2013. J. Cosmol. Astropart. Phys. 2013:005
    [Google Scholar]
  173. Schmidt P, Ohme F, Hannam M. 2015. Phys. Rev. D 91:024043
    [Google Scholar]
  174. Sesana A, Barausse E, Dotti M, Rossi EM 2014. Ap. J. 794:104
    [Google Scholar]
  175. Shafee R, McClintock JE, Narayan R et al. 2006. Ap. J. Lett. 636:L113–16
    [Google Scholar]
  176. Shafee R, McKinney JC, Narayan R et al. 2008a. Ap. J. Lett. 687:L25
    [Google Scholar]
  177. Shafee R, Narayan R, McClintock JE. 2008b. Ap. J. 676:549–61
    [Google Scholar]
  178. Shakura NI, Sunyaev RA. 1973. Astron. Astrophys. 24:337–55
    [Google Scholar]
  179. Shankar F, Weinberg DH, Marsden C et al. 2020. MNRAS 493:1500–11
    [Google Scholar]
  180. Shreeram S, Ingram A. 2020. MNRAS 492:405–12
    [Google Scholar]
  181. Sluse D, Hutsemékers D, Courbin F, Meylan G, Wambsganss J. 2012. Astron. Astrophys. 544:A62
    [Google Scholar]
  182. Soltan A. 1982. MNRAS 200:115–22
    [Google Scholar]
  183. Steiner JF, McClintock JE, Orosz JA et al. 2014. Ap. J. Lett. 793:L29
    [Google Scholar]
  184. Steiner JF, McClintock JE, Remillard RA et al. 2010. Ap. J. Lett. 718:L117–21
    [Google Scholar]
  185. Steiner JF, Reis RC, Fabian AC et al. 2012. MNRAS 427:2552–61
    [Google Scholar]
  186. Steiner JF, Reis RC, McClintock JE et al. 2011. MNRAS 416:941–58
    [Google Scholar]
  187. Steiner JF, Walton DJ, García JA et al. 2016. Ap. J. 817:154
    [Google Scholar]
  188. Stella L, Vietri M. 1999. Phys. Rev. Lett. 82:17–20
    [Google Scholar]
  189. Straub O, Bursa M, Sadowski A et al. 2011. Astron. Astrophys. 533:A67
    [Google Scholar]
  190. Strohmayer TE. 2001. Ap. J. Lett. 552:L49–53
    [Google Scholar]
  191. Sun S, Guainazzi M, Ni Q et al. 2018. MNRAS 478:1900–10
    [Google Scholar]
  192. Svensson R, Zdziarski AA. 1994. Ap. J. 436:599–606
    [Google Scholar]
  193. Svoboda J, Beuchert T, Guainazzi M et al. 2015. Astron. Astrophys. 578:A96
    [Google Scholar]
  194. Tanaka Y, Nandra K, Fabian AC et al. 1995. Nature 375:659–61
    [Google Scholar]
  195. Tao L, Tomsick JA, Qu J et al. 2019. Ap. J. 887:184
    [Google Scholar]
  196. Taylor C, Reynolds CS. 2018. Ap. J. 855:120
    [Google Scholar]
  197. Tchekhovskoy A, Narayan R, McKinney JC. 2010. Ap. J. 711:50–63
    [Google Scholar]
  198. Thorne KS, Price RH. 1975. Ap. J. Lett. 195:L101–5
    [Google Scholar]
  199. Tiwari V, Fairhurst S, Hannam M. 2018. Ap. J. 868:140
    [Google Scholar]
  200. Tripathi A, Zhou M, Abdikamalov AB et al. 2020. Ap. J. 897:84
    [Google Scholar]
  201. Tsai YD, Palmese A, Profumo S, Jeltema T. 2020. FERMILAB-PUB-20-261-AE-PPD-T. arXiv:2007.03686
  202. Vasudevan RV, Fabian AC, Gandhi P, Winter LM, Mushotzky RF. 2010. MNRAS 402:1081–98
    [Google Scholar]
  203. Vasudevan RV, Fabian AC, Reynolds CS et al. 2016. MNRAS 458:2012–23
    [Google Scholar]
  204. Vestergaard M, Peterson BM. 2006. Ap. J. 641:689–709
    [Google Scholar]
  205. Vitale S, Gerosa D, Haster CJ, Chatziioannou K, Zimmerman A. 2017. Phys. Rev. Lett. 119:251103
    [Google Scholar]
  206. Volonteri M, Madau P, Quataert E, Rees MJ. 2005. Ap. J. 620:69–77
    [Google Scholar]
  207. Walton DJ, Alston WN, Kosec P et al. 2020. MNRAS 499:1480–98
    [Google Scholar]
  208. Walton DJ, Brightman M, Risaliti G et al. 2018. MNRAS 473:4377–91
    [Google Scholar]
  209. Walton DJ, Mooley K, King AL et al. 2017. Ap. J. 839:110
    [Google Scholar]
  210. Walton DJ, Nardini E, Gallo LC et al. 2019. MNRAS 484:2544–55
    [Google Scholar]
  211. Walton DJ, Risaliti G, Harrison FA et al. 2014. Ap. J. 788:76
    [Google Scholar]
  212. Wang F, Du P, Hu C et al. 2016. Ap. J. 824:149
    [Google Scholar]
  213. Wen S, Jonker PG, Stone NC, Zabludoff AL, Psaltis D. 2020. Ap. J. 897:80
    [Google Scholar]
  214. Williams RK. 1995. Phys. Rev. D 51:5387–427
    [Google Scholar]
  215. Wills BJ, Brotherton MS. 1995. Ap. J. Lett. 448:L81–84
    [Google Scholar]
  216. Wilms J, Reynolds CS, Begelman MC et al. 2001. MNRAS 328:L27–31
    [Google Scholar]
  217. Young AJ, Ross RR, Fabian AC. 1998. MNRAS 300:L11–15
    [Google Scholar]
  218. Zel'dovich YB, Novikov ID 1966. Sov. Astron. 43:758–60
    [Google Scholar]
  219. Zevin M, Berry CPL, Coughlin S, Chatziioannou K, Vitale S. 2020. Ap. J. Lett. 899:L17
    [Google Scholar]
  220. Zhang SN, Cui W, Chen W 1997. Ap. J. Lett. 482:L155–58
    [Google Scholar]
  221. Zhang X, Lu Y. 2019. Ap. J. 873:101
    [Google Scholar]
  222. Zhu Y, Davis SW, Narayan R et al. 2012. MNRAS 424:2504–21
    [Google Scholar]
/content/journals/10.1146/annurev-astro-112420-035022
Loading
/content/journals/10.1146/annurev-astro-112420-035022
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error