1932

Abstract

X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-110744
2019-06-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-110744.html?itemId=/content/journals/10.1146/annurev-biochem-013118-110744&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Garman EF 2014. Developments in X-ray crystallographic structure determination of biological macromolecules. Science 343:1102–8
    [Google Scholar]
  2. 2. 
    Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T 2000. The Protein Data Bank. Nucleic Acids Res. 28:235–42
    [Google Scholar]
  3. 3. 
    Owen RL, Rudino-Pinera E, Garman EF 2006. Experimental determination of the radiation dose limit for cryocooled protein crystals. PNAS 103:4912–17
    [Google Scholar]
  4. 4. 
    Garman EF, Schneider TR 1997. Macromolecular cryocrystallography. J. Appl. Crystallogr. 30:211–37
    [Google Scholar]
  5. 5. 
    Dubochet J 2012. Cryo-EM—the first thirty years. J. Microsc. 245:221–24
    [Google Scholar]
  6. 6. 
    Elmlund D, Elmlund H 2015. Cryogenic electron microscopy and single-particle analysis. Annu. Rev. Biochem. 84:499–517
    [Google Scholar]
  7. 7. 
    Kühlbrandt W 2014. Cryo-EM enters a new era. eLife 3:03678
    [Google Scholar]
  8. 8. 
    Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ 2017. Short-wavelength free-electron laser sources and science: a review. Rep. Prog. Phys. 80:115901
    [Google Scholar]
  9. 9. 
    Wood L, Chapline G 1974. Towards gamma-ray lasers. Nature 252:447–50
    [Google Scholar]
  10. 10. 
    Chapline G, Wood L 1975. X-ray lasers. Phys. Today 28:40–48
    [Google Scholar]
  11. 11. 
    Breedlove JR, Trammell GT 1970. Molecular microscopy: fundamental limitations. Science 170:1310–13
    [Google Scholar]
  12. 12. 
    Solem JC, Baldwin GC 1982. Microholography of living organisms. Science 218:229–35
    [Google Scholar]
  13. 13. 
    Solem JC, Chapline GF 1984. X-ray biomicroholography. Opt. Eng. 23:193–203
    [Google Scholar]
  14. 14. 
    Solem JC 1986. Imaging biological specimens with high-intensity soft x rays. J. Opt. Soc. Am. B 3:1551–65
    [Google Scholar]
  15. 15. 
    London RA, Rosen MD, Trebes JE 1989. Wavelength choice for soft x-ray laser holography of biological samples. Appl. Opt. 28:3397–404
    [Google Scholar]
  16. 16. 
    Doniach S 1996. Studies of the structure of matter with photons from an X-ray free-electron laser. J. Synchrotron Radiat. 3:260–67
    [Google Scholar]
  17. 17. 
    Wilmanns M 2000. Future structural biology applications with a free-electron laser—more than wild dreams. J. Synchrotron Radiat. 7:41–46
    [Google Scholar]
  18. 18. 
    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:753–57
    [Google Scholar]
  19. 19. 
    Emma P, Akre R, Arthur J, Bionta R, Bostedt C 2010. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4:641–47
    [Google Scholar]
  20. 20. 
    Yabashi M, Tanaka H, Ishikawa T 2015. Overview of the SACLA facility. J. Synchrotron Radiat. 22:477–84
    [Google Scholar]
  21. 21. 
    Altarelli M, Brinkmann R, Chergui M, Decking W, Dobson B 2007. The European X-Ray Free-Electron Laser technical design report Tech. Rep., XFEL Proj. Team, DESY, Hamburg, Ger.
  22. 22. 
    Classen A, Ayyer K, Chapman HN, Röhlsberger R, von Zanthier J 2017. Incoherent diffractive imaging via intensity correlations of hard x rays. Phys. Rev. Lett. 119:053401
    [Google Scholar]
  23. 23. 
    Son SK, Young L, Santra R 2011. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A 83:033402
    [Google Scholar]
  24. 24. 
    Ziaja B, van der Spoel D, Szöke A, Hajdu J 2001. Auger-electron cascades in diamond and amorphous carbon. Phys. Rev. B 64:214104
    [Google Scholar]
  25. 25. 
    Caleman C, Ortiz C, Marklund E, Bultmark F, Gabrysch M 2009. Radiation damage in biological material: electronic properties and electron impact ionization in urea. EPL 88:29901
    [Google Scholar]
  26. 26. 
    Chapman HN, Caleman C, Timneanu N 2014. Diffraction before destruction. Phil. Trans. R. Soc. Lond. B 369:20130313
    [Google Scholar]
  27. 27. 
    Nass K, Foucar L, Barends TRM, Hartmann E, Botha S 2015. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron Radiat. 22:225–38
    [Google Scholar]
  28. 28. 
    Rudenko A, Inhester L, Hanasaki K, Li X, Robatjazi SJ 2017. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature 546:129–32
    [Google Scholar]
  29. 29. 
    Skinner CH, DiCicco DS, Kim D, Rosser RJ, Suckewer S 1990. Contact microscopy with a soft X-ray laser. J. Microsc. 159:51–60
    [Google Scholar]
  30. 30. 
    Da Silva L, Trebes J, Balhorn R, Mrowka S, Anderson E 1992. X-ray laser microscopy of rat sperm nuclei. Science 258:269–71
    [Google Scholar]
  31. 31. 
    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N 2007. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1:336–42
    [Google Scholar]
  32. 32. 
    Matthews D, Rosen M 1988. Soft-X-ray lasers. Sci. Am. 259:86–91
    [Google Scholar]
  33. 33. 
    Gati C, Oberthuer D, Yefanov O, Bunker RD, Stellato F 2017. Atomic structure of granulin determined from native nanocrystalline granulovirus using an x-ray free-electron laser. PNAS 114:2247–52
    [Google Scholar]
  34. 34. 
    Ekeberg T, Svenda M, Abergel C, Maia FRNC, Seltzer V 2015. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 114:098102
    [Google Scholar]
  35. 35. 
    Ekeberg T, Svenda M, Seibert MM, Abergel C, Maia FRNC 2016. Single-shot diffraction data from the mimivirus particle using an X-ray free-electron laser. Sci. Data 3:160060
    [Google Scholar]
  36. 36. 
    Wojtas DH, Ayyer K, Liang M, Mossou E, Romoli F 2017. Analysis of XFEL serial diffraction data from individual crystalline fibrils. IUCrJ 4:795–811
    [Google Scholar]
  37. 37. 
    Ayyer K, Yefanov OM, Oberthür D, Roy-Chowdhury S, Galli L 2016. Macromolecular diffractive imaging using imperfect crystals. Nature 530:202–6
    [Google Scholar]
  38. 38. 
    Chapman HN, Barty A, Bogan MJ, Boutet S, Frank M 2006. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2:839–43
    [Google Scholar]
  39. 39. 
    Bajt S, Chapman HN, Spiller EA, Alameda JB, Woods BW 2008. Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser. Appl. Opt. 47:1673–83
    [Google Scholar]
  40. 40. 
    Chapman HN, Hau-Riege SP, Bogan MJ, Bajt S, Barty A 2007. Femtosecond time-delay X-ray holography. Nature 448:676–79
    [Google Scholar]
  41. 41. 
    Bogan M, Benner W, Boutet S, Rohner U, Frank M 2008. Single particle X-ray diffractive imaging. Nano Lett. 8:310–16
    [Google Scholar]
  42. 42. 
    Treusch R, Feldhaus J 2010. Flash: new opportunities for (time-resolved) coherent imaging of nanostructures. New J. Phys. 12:035015
    [Google Scholar]
  43. 43. 
    Loh ND, Bogan MJ, Elser V, Barty A, Boutet S 2010. Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns. Phys. Rev. Lett. 104:225501
    [Google Scholar]
  44. 44. 
    Strüder L, Epp S, Rolles D, Hartmann R, Holl P 2010. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods A 614:483–96
    [Google Scholar]
  45. 45. 
    Spence JCH, Doak RB 2004. Single molecule diffraction. Phys. Rev. Lett. 92:198102
    [Google Scholar]
  46. 46. 
    Spence JCH, Schmidt K, Wu JS, Hembree G, Weierstall U 2005. Diffraction and imaging from a beam of laser-aligned proteins: resolution limits. Acta Crystallogr. A 61:237–45
    [Google Scholar]
  47. 47. 
    Ganan-Calvo AM, Gonzalez-Prieto R, Riesco-Chueca P, Herrada MA, Flores-Mosquera M 2007. Focusing capillary jets close to the continuum limit. Nat. Phys. 3:737–42
    [Google Scholar]
  48. 48. 
    DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41:195505
    [Google Scholar]
  49. 49. 
    Chapman HN, Fromme P, Barty A, White TA, Kirian RA 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:73–77
    [Google Scholar]
  50. 50. 
    Barty A, Caleman C, Aquila A, Timneanu N, Lomb L 2012. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photon. 6:35–40
    [Google Scholar]
  51. 51. 
    Lomb L, Barends TR, Kassemeyer S, Aquila A, Epp SW 2011. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Phys. Rev. B 84:214111
    [Google Scholar]
  52. 52. 
    Hau-Riege SP, Bennion BJ 2015. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses. Phys. Rev. E 91:022705
    [Google Scholar]
  53. 53. 
    Seibert MM, Ekeberg T, Maia FRNC, Svenda M, Andreasson J 2011. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–81
    [Google Scholar]
  54. 54. 
    Aquila A, Barty A, Bostedt C, Boutet S, Carini G 2015. The linac coherent light source single particle imaging road map. Struct. Dyn. 2:041701
    [Google Scholar]
  55. 55. 
    Sun Z, Fan J, Li H, Jiang H 2018. Current status of single particle imaging with X-ray lasers. Appl. Sci. 8:132
    [Google Scholar]
  56. 56. 
    Spence JCH, Chapman HN 2014. The birth of a new field. Phil. Trans. R. Soc. Lond. B 369:20130309
    [Google Scholar]
  57. 57. 
    Liang M, Williams GJ, Messerschmidt M, Seibert MM, Montanez PA 2015. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22:514–19
    [Google Scholar]
  58. 58. 
    Boutet S, Lomb L, Williams GJ, Barends TRM, Aquila A 2012. High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–64
    [Google Scholar]
  59. 59. 
    Wang D, Weierstall U, Pollack L, Spence J 2014. Double-focusing mixing jet for XFEL study of chemical kinetics. J. Synchrotron Radiat. 21:1364–66
    [Google Scholar]
  60. 60. 
    Kirian RA, Wang X, Weierstall U, Schmidt KE, Spence JCH 2010. Femtosecond protein nanocrystallography—data analysis methods. Opt. Express 18:5713–23
    [Google Scholar]
  61. 61. 
    White TA, Kirian RA, Martin AV, Aquila A, Nass K 2012. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45:335–41
    [Google Scholar]
  62. 62. 
    White TA, Mariani V, Brehm W, Yefanov O, Barty A 2016. Recent developments in CrystFEL. J. Appl. Crystallogr. 49:680–89
    [Google Scholar]
  63. 63. 
    Sauter NK, Hattne J, Grosse-Kunstleve RW, Echols N 2013. New Python-based methods for data processing. Acta Crystallogr. D 69:1274–82
    [Google Scholar]
  64. 64. 
    Ginn HM, Evans G, Sauter NK, Stuart DI 2016. On the release of cppxfel for processing X-ray free-electron laser images. J. Appl. Crystallogr. 49:1065–72
    [Google Scholar]
  65. 65. 
    Redecke L, Nass K, DePonte DP, White TA, Rehders D 2013. Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–30
    [Google Scholar]
  66. 66. 
    Colletier JP, Sawaya MR, Gingery M, Rodriguez JA, Cascio D 2016. De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature 539:43–47
    [Google Scholar]
  67. 67. 
    Kern J, Alonso-Mori R, Tran R, Hattne J, Gildea RJ 2013. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340:491–95
    [Google Scholar]
  68. 68. 
    Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA 2014. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–65
    [Google Scholar]
  69. 69. 
    Kern J, Chatterjee R, Young ID, Fuller FD, Lassalle L 2018. Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature 563:421–25
    [Google Scholar]
  70. 70. 
    Johansson LC, Arnlund D, Katona G, White TA, Barty A 2013. Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat. Commun. 4:2911
    [Google Scholar]
  71. 71. 
    Fukuda Y, Tse KM, Nakane T, Nakatsu T, Suzuki M 2016. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. PNAS 113:2928–33
    [Google Scholar]
  72. 72. 
    Sierra RG, Gati C, Laksmono H, Dao EH, Gul S 2015. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat. Meth. 13:59–62
    [Google Scholar]
  73. 73. 
    Oberthuer D, Knoška J, Wiedorn MO, Beyerlein KR, Bushnell DA 2017. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 7:44628
    [Google Scholar]
  74. 74. 
    Weierstall U, James D, Wang C, White TA, Wang D 2014. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5:3309
    [Google Scholar]
  75. 75. 
    Stauch B, Cherezov V 2018. Serial femtosecond crystallography of G protein–coupled receptors. Annu. Rev. Biophys. 47:377–97
    [Google Scholar]
  76. 76. 
    Mueller C, Marx A, Epp SW, Zhong Y, Kuo A 2015. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct. Dyn. 2:054302
    [Google Scholar]
  77. 77. 
    Roedig P, Vartiainen I, Duman R, Panneerselvam S, Stübe N 2015. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 5:10451
    [Google Scholar]
  78. 78. 
    Hirata K, Shinzawa-Itoh K, Yano N, Takemura S, Kato K 2014. Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat. Meth. 11:734–36
    [Google Scholar]
  79. 79. 
    Keedy DA, Kenner LR, Warkentin M, Woldeyes RA, Hopkins JB 2015. Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. eLife4:e07574
    [Google Scholar]
  80. 80. 
    Boutet S, Cohen AE, Wakatsuki S 2016. The new macromolecular femtosecond crystallography (MFX) instrument at LCLS. Synchrotron Radiat. News 29:23–28
    [Google Scholar]
  81. 81. 
    Cohen AE, Soltis SM, González A, Aguila L, Alonso-Mori R 2014. Goniometer-based femtosecond crystallography with X-ray free electron lasers. PNAS11(48):17122–27
    [Google Scholar]
  82. 82. 
    Grünbein ML, Bielecki J, Gorel A, Stricker M, Bean R 2018. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9:3487
    [Google Scholar]
  83. 83. 
    Wiedorn MO, Oberthür D, Bean R, Schubert R, Werner N 2018. Megahertz serial crystallography. Nat. Commun. 9:4025
    [Google Scholar]
  84. 84. 
    Allahgholi A, Becker J, Bianco L, Delfs A, Dinapoli R 2015. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum.10:C01023
    [Google Scholar]
  85. 85. 
    Aquila A, Hunter MS, Doak RB, Kirian RA, Fromme P 2012. Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt. Express 20:2706–16
    [Google Scholar]
  86. 86. 
    Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D 2014. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–46
    [Google Scholar]
  87. 87. 
    Harmand M, Coffee R, Bionta MR, Chollet M, French D 2013. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photon. 7:215–18
    [Google Scholar]
  88. 88. 
    Pande K, Hutchison CDM, Groenhof G, Aquila A, Robinson JS 2016. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–29
    [Google Scholar]
  89. 89. 
    Nogly P, Weinert T, James D, Carbajo S, Ozerov D 2018. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:eaat0094
    [Google Scholar]
  90. 90. 
    Suga M, Akita F, Hirata K, Ueno G, Murakami H 2015. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103
    [Google Scholar]
  91. 91. 
    Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S 2017. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–46
    [Google Scholar]
  92. 92. 
    Schmidt M 2013. Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Cond. Matt. Phys. 2013:167276
    [Google Scholar]
  93. 93. 
    Perutz MF, Bolton W, Diamond R, Muirhead H, Watson HC 1964. Structure of haemoglobin: an X-ray examination of reduced horse haemoglobin. Nature 203:687–90
    [Google Scholar]
  94. 94. 
    Moffat K 1987. Time-resolved macromolecular crystallography. Annu. Rev. Biophys. Biophys. Chem. 18:309–32
    [Google Scholar]
  95. 95. 
    Gati C, Bourenkov G, Klinge M, Rehders D, Stellato F 2014. Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94
    [Google Scholar]
  96. 96. 
    Stellato F, Oberthür D, Liang M, Bean R, Gati C 2014. Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–12
    [Google Scholar]
  97. 97. 
    Beyerlein KR, Dierksmeyer D, Mariani V, Kuhn M, Sarrou I 2017. Mix-and-diffuse serial synchrotron crystallography. IUCrJ 4:769–77
    [Google Scholar]
  98. 98. 
    Leonarski F, Redford S, Mozzanica A, Lopez-Cuenca C, Panepucci E 2018. Jungfrau detector: accurate data for macromolecular crystallography. Nat. Meth. 15:799–804
    [Google Scholar]
  99. 99. 
    White TA, Barty A, Stellato F, Holton JM, Kirian RA 2013. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D 69:1231–40
    [Google Scholar]
  100. 100. 
    Dejoie C, McCusker LB, Baerlocher C, Abela R, Patterson BD 2013. Using a non-monochromatic microbeam for serial snapshot crystallography. J. Appl. Crystallogr. 46:791–94
    [Google Scholar]
  101. 101. 
    Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I 2017. Pink-beam serial crystallography. Nat. Commun. 8:1281
    [Google Scholar]
  102. 102. 
    Wierman JL, Lan TY, Tate MW, Philipp HT, Elser V, Gruner SM 2016. Protein crystal structure from non-oriented, single-axis sparse X-ray data. IUCrJ 3:43–50
    [Google Scholar]
  103. 103. 
    Roedig P, Duman R, Sanchez-Weatherby J, Vartiainen I, Burkhardt A 2016. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J. Appl. Crystallogr. 49:968–75
    [Google Scholar]
  104. 104. 
    Nogly P, James D, Wang D, White TA, Zatsepin N 2015. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–76
    [Google Scholar]
  105. 105. 
    Botha S, Nass K, Barends TRM, Kabsch W, Latz B 2015. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr. D 71:387–97
    [Google Scholar]
  106. 106. 
    Liu W, Wacker D, Gati C, Han GW, James D 2013. Serial femtosecond crystallography of G protein–coupled receptors. Science 342:1521–24
    [Google Scholar]
  107. 107. 
    Nakane T, Song C, Suzuki M, Nango E, Kobayashi J 2015. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr. D 71:2519–25
    [Google Scholar]
  108. 108. 
    Pedrini B, Tsai CJ, Capitani G, Padeste C, Hunter MS 2014. 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source. Phil. Trans. R. Soc. Lond. B 369:20130500
    [Google Scholar]
  109. 109. 
    Seuring C, Ayyer K, Filippaki E, Barthelmess M, Longchamp JN 2018. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nat. Commun. 9:1836
    [Google Scholar]
  110. 110. 
    Daurer BJ, Okamoto K, Bielecki J, Maia FRNC, Mühlig K 2017. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ 4:251–62
    [Google Scholar]
  111. 111. 
    Huldt G, Szoke A, Hajdu J 2003. Diffraction imaging of single particles and biomolecules. J. Struct. Biol. 144:219–27
    [Google Scholar]
  112. 112. 
    Loh NTD, Elser V 2009. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E 80:026705
    [Google Scholar]
  113. 113. 
    Scheres SHW, Gao H, Valle M, Herman GT, Eggermont PPB 2007. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Meth. 4:27–29
    [Google Scholar]
  114. 114. 
    Ayyer K, Geloni G, Kocharyan V, Saldin E, Serkez S 2015. Perspectives for imaging single protein molecules with the present design of the European XFEL. Struct. Dyn. 2:041702
    [Google Scholar]
  115. 115. 
    Casadei CM, Tsai CJ, Barty A, Hunter MS, Zatsepin NA 2018. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ 5:103–17
    [Google Scholar]
  116. 116. 
    Pardini T, Aquila A, Boutet S, Cocco D, Hau-Riege SP 2017. Numerical simulations of the hard X-ray pulse intensity distribution at the Linac Coherent Light Source. J. Synchrotron Radiat. 24:738–43
    [Google Scholar]
  117. 117. 
    Munke A, Andreasson J, Aquila A, Awel S, Ayyer K 2016. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Sci. Data 3:160064
    [Google Scholar]
  118. 118. 
    Mimura H, Yumoto H, Matsuyama S, Koyama T, Tono K 2014. Generation of hard X-ray laser pulses with two-stage reflective focusing system. Nat. Commun. 5:3539
    [Google Scholar]
  119. 119. 
    Geloni G, Kocharyan V, Saldin E 2010. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL. arXiv:1007.2743 [physics.acc-ph]
    [Google Scholar]
  120. 120. 
    Uervirojnangkoorn M, Zeldin OB, Lyubimov AY, Hattne J, Brewster AS 2015. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. eLife4:e05421
    [Google Scholar]
  121. 121. 
    Barends TRM, Foucar L, Botha S, Doak RB, Shoeman RL 2014. De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505:244–47
    [Google Scholar]
  122. 122. 
    Nass K, Meinhart A, Barends TRM, Foucar L, Gorel A 2016. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3:180–91
    [Google Scholar]
  123. 123. 
    Hart P, Boutet S, Carini G, Dubrovin M, Duda B 2012. The CSPAD megapixel x-ray camera at LCLS. Proceedings of SPIE Optical Engineering + Applications, San Diego art. 85040C Bellingham, WA: SPIE
    [Google Scholar]
  124. 124. 
    Kameshima T, Ono S, Kudo T, Ozaki K, Kirihara Y 2014. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev. Sci. Instrum. 85:033110
    [Google Scholar]
  125. 125. 
    Miao J, Hodgson KO, Sayre D 2001. An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. PNAS 98:6641–45
    [Google Scholar]
  126. 126. 
    Awel S, Kirian RA, Wiedorn MO, Beyerlein KR, Roth N 2018. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. J. Appl. Crystallogr. 51:133–39
    [Google Scholar]
  127. 127. 
    Reddy HKN, Yoon CH, Aquila A, Awel S, Ayyer K 2017. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source. Sci. Data 4:170079
    [Google Scholar]
  128. 128. 
    Roth N, Awel S, Horke DA, Küpper J 2018. Optimizing aerodynamic lenses for single-particle imaging. J. Aerosol Sci. 124:17–29
    [Google Scholar]
  129. 129. 
    Wierman JL, Alden JS, Kim CU, McEuen PL, Gruner SM 2013. Graphene as a protein crystal mounting material to reduce background scatter. J. Appl. Crystallogr. 46:1501–7
    [Google Scholar]
  130. 130. 
    Hunter MS, Segelke B, Messerschmidt M, Williams GJ, Zatsepin NA 2014. Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci. Rep. 4:6026
    [Google Scholar]
  131. 131. 
    Gruner SM, Lattman EE 2015. Biostructural science inspired by next-generation X-ray sources. Annu. Rev. Biophys. 44:33–51
    [Google Scholar]
  132. 132. 
    Deponte D, McKeown J, Weierstall U, Doak R, Spence J 2011. Towards ETEM serial crystallography: electron diffraction from liquid jets. Ultramicroscopy 111:824–27
    [Google Scholar]
  133. 133. 
    Koralek JD, Kim JB, Bruza P, Curry CB, Chen Z 2018. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 9:1353
    [Google Scholar]
  134. 134. 
    Popp D, Loh ND, Zorgati H, Ghoshdastider U, Liow LT 2017. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. Cytoskeleton 74:472–81
    [Google Scholar]
  135. 135. 
    Stapelfeldt H, Seideman T 2003. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75:543–57
    [Google Scholar]
  136. 136. 
    Stern S, Holmegaard L, Filsinger F, Rouzee A, Rudenko A 2014. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. Faraday Discuss. 171:393–481
    [Google Scholar]
  137. 137. 
    Kirian RA, Schmidt KE, Wang X, Doak RB, Spence JCH 2011. Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering. Phys. Rev. E 84:011921
    [Google Scholar]
  138. 138. 
    Kurta RP, Donatelli JJ, Yoon CH, Berntsen P, Bielecki J 2017. Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses. Phys. Rev. Lett. 119:158102
    [Google Scholar]
  139. 139. 
    Mendez D, Lane TJ, Sung J, Sellberg J, Levard C 2014. Observation of correlated X-ray scattering at atomic resolution. Phil. Trans. R. Soc. Lond. B 369:20130315
    [Google Scholar]
  140. 140. 
    Donatelli JJ, Sethian JA, Zwart PH 2017. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase. PNAS 114:7222–27
    [Google Scholar]
  141. 141. 
    Shintake T 2008. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons. Phys. Rev. E 78:041906
    [Google Scholar]
  142. 142. 
    Boutet S, Bogan MJ, Barty A, Frank M, Benner WH 2008. Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles. J. Electron Spectrosc. Rel. Phenom.166– 67:65–73
    [Google Scholar]
  143. 143. 
    Lan TY, Li PN, Lee TK 2014. Method to enhance the resolution of x-ray coherent diffraction imaging for non-crystalline bio-samples. New J. Phys. 16:033016
    [Google Scholar]
  144. 144. 
    Gorkhover T, Ulmer A, Ferguson K, Bucher M, Maia FRNC 2018. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nat. Photon. 12:150–53
    [Google Scholar]
  145. 145. 
    Hoshino M, Khutia A, Xing H, Inokuma Y, Fujita M 2016. The crystalline sponge method updated. IUCrJ 3:139–51
    [Google Scholar]
  146. 146. 
    Dashti A, Schwander P, Langlois R, Fung R, Li W 2014. Trajectories of the ribosome as a Brownian nanomachine. PNAS 111:17492–97
    [Google Scholar]
  147. 147. 
    Frank J, Ourmazd A 2016. Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 100:61–67
    [Google Scholar]
  148. 148. 
    Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B 2018. Structure and conformational dynamics of the human spliceosomal Bact complex. Cell 172:454–64.e11
    [Google Scholar]
  149. 149. 
    Spence JCH 2017. XFELs for structure and dynamics in biology. IUCrJ 4:322–39
    [Google Scholar]
  150. 150. 
    Thibault P, Elser V 2010. X-ray diffraction microscopy. Annu. Rev. Cond. Matt. Phys. 1:237–55
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-110744
Loading
/content/journals/10.1146/annurev-biochem-013118-110744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error