1932

Abstract

FF ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F head rotates with the central -subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit acting as a flexible hinge between F and the peripheral stalk. Subunit conducts protons to and from the -ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of F, resulting in a strong local field that generates torque to drive rotary catalysis in F. The structure of the chloroplast FF complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-110903
2019-06-20
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-110903.html?itemId=/content/journals/10.1146/annurev-biochem-013118-110903&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    von Ballmoos C, Wiedenmann A, Dimroth P 2009. Essentials for ATP synthesis by F1Fo ATP synthases. Annu. Rev. Biochem. 78:649–72
    [Google Scholar]
  2. 2. 
    Junge W, Nelson N. 2015. ATP synthase. Annu. Rev. Biochem. 84:631–57
    [Google Scholar]
  3. 3. 
    Walker JE. 2013. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41:1–16
    [Google Scholar]
  4. 4. 
    Kagawa Y, Racker E. 1966. Partial resolution of the enzymes catalyzing oxidative phosphorylation. X. Correlation of morphology and function in submitochondrial particles. J. Biol. Chem. 241:2475–82
    [Google Scholar]
  5. 5. 
    Penefsky HS, Pullman ME, Datta A, Racker E 1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. J. Biol. Chem. 235:3330–36
    [Google Scholar]
  6. 6. 
    Boyer PD. 1997. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66:717–49
    [Google Scholar]
  7. 7. 
    Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC 1977. Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 46:955–1026
    [Google Scholar]
  8. 8. 
    Walker JE. 1998. ATP synthesis by rotary catalysis (Nobel lecture). Angew. Chem. Int. Ed. Engl. 37:2308–19
    [Google Scholar]
  9. 9. 
    Nakamoto RK, Scanlon JAB, Al-Shawi MK 2008. The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 476:43–50
    [Google Scholar]
  10. 10. 
    Forgac M. 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8:917–29
    [Google Scholar]
  11. 11. 
    Müller V, Grüber G. 2003. ATP synthases: structure, function and evolution of unique energy converters. Cell. Mol. Life Sci. 60:474–94
    [Google Scholar]
  12. 12. 
    Wienisch M, Klingauf J. 2006. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9:1019–27
    [Google Scholar]
  13. 13. 
    Ohya Y, Umemoto N, Tanida I, Ohta A, Iida H, Anraku Y 1991. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet phenotype are ascribable to defects of vacuolar membrane H+-ATPase activity. J. Biol. Chem. 266:13971–77
    [Google Scholar]
  14. 14. 
    Grüber G, Manimekalai MS, Mayer F, Müller V 2014. ATP synthases from archaea: the beauty of a molecular motor. Biochim. Biophys. Acta 1837:940–52
    [Google Scholar]
  15. 15. 
    Kühlbrandt W. 2014. The resolution revolution. Science 343:1443–44
    [Google Scholar]
  16. 16. 
    Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH 2010. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–82
    [Google Scholar]
  17. 17. 
    Grigorieff N, Harrison SC. 2011. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr. Opin. Struct. Biol. 21:265–73
    [Google Scholar]
  18. 18. 
    Mills DJ, Vitt S, Strauss M, Shima S, Vonck J 2013. De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. eLife 2:e00218
    [Google Scholar]
  19. 19. 
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH 1990. A model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929
    [Google Scholar]
  20. 20. 
    Kühlbrandt W, Wang DN, Fujiyoshi Y 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–21
    [Google Scholar]
  21. 21. 
    Murata K, Mitsuoka K, Hirai T, Walz T, Agre P et al. 2000. Structural determinants of water permeation through aquaporin-1. Nature 407:599–605
    [Google Scholar]
  22. 22. 
    Faruqi AR, Henderson R. 2007. Electronic detectors for electron microscopy. Curr. Opin. Struct. Biol. 17:549–55
    [Google Scholar]
  23. 23. 
    Scheres SH. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:519–30
    [Google Scholar]
  24. 24. 
    Abrahams JP, Leslie AG, Lutter R, Walker JE 1994. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–28
    [Google Scholar]
  25. 25. 
    Stock D, Leslie AGW, Walker JE 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–5
    [Google Scholar]
  26. 26. 
    Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE 2006. On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25:2911–18
    [Google Scholar]
  27. 27. 
    Meier T, Polzer P, Diederichs K, Welte W, Dimroth P 2005. Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. . Science 308:659–62
    [Google Scholar]
  28. 28. 
    Rubinstein JL, Walker JE, Henderson R 2003. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22:6182–92
    [Google Scholar]
  29. 29. 
    Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ et al. 2016. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–8
    [Google Scholar]
  30. 30. 
    Parsons DF. 1963. Mitochondrial structure: two types of subunits on negatively stained mitochondrial membranes. Science 140:985–87
    [Google Scholar]
  31. 31. 
    Wilkens S, Capaldi RA. 1998. ATP synthase's second stalk comes into focus. Nature 393:29
    [Google Scholar]
  32. 32. 
    Dimroth P. 1997. Primary sodium ion translocating enzymes. Biochim. Biophys. Acta 1318:11–51
    [Google Scholar]
  33. 33. 
    Krah A, Pogoryelov D, Langer JD, Bond PJ, Meier T, Faraldo-Gomez JD 2010. Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors. Biochim. Biophys. Acta 1797:763–72
    [Google Scholar]
  34. 34. 
    Fillingame RH, Steed PR. 2014. Half-channels mediating H transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim. Biophys. Acta 1837:1063–68
    [Google Scholar]
  35. 35. 
    Steed PR, Kraft KA, Fillingame RH 2014. Interacting cytoplasmic loops of subunits a and c of Escherichia coli F1Fo ATP synthase gate H+ transport to the cytoplasm. PNAS 111:16730–35
    [Google Scholar]
  36. 36. 
    Jiang W, Fillingame RH. 1998. Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. PNAS 95:6607–12
    [Google Scholar]
  37. 37. 
    Vik SB, Dao NN. 1992. Prediction of transmembrane topology of Fo proteins from Escherichia coli F1Fo ATP synthase using variational and hydrophobic moment analyses. Biochim. Biophys. Acta 1140:199–207
    [Google Scholar]
  38. 38. 
    Lightowlers RN, Howitt SM, Hatch L, Gibson F, Cox GB 1987. The proton pore in the Escherichia coli FoF1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim. Biophys. Acta 894:399–406
    [Google Scholar]
  39. 39. 
    Howitt SM, Cox GB. 1992. Second-site revertants of an arginine-210 to lysine mutation in the a-subunit of the FoF1-ATPase from Escherichia-coli: implications for structure. PNAS 89:9799–803
    [Google Scholar]
  40. 40. 
    Weber J, Senior AE. 1997. Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta 1319:19–58
    [Google Scholar]
  41. 41. 
    Futai M, Omote H, Sambongi Y, Wada Y 2000. Synthase (H+ ATPase): coupling between catalysis, mechanical work, and proton translocation. Biochim. Biophys. Acta 1458:276–88
    [Google Scholar]
  42. 42. 
    Wächter A, Bi Y, Dunn SD, Cain BD, Sielaff H et al. 2011. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. PNAS 108:3924–29
    [Google Scholar]
  43. 43. 
    Noji H, Yasuda R, Yoshida M, Kinosita K Jr 1997. Direct observation of the rotation of F1-ATPase. Nature 386:299–302
    [Google Scholar]
  44. 44. 
    Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H 2001. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904
    [Google Scholar]
  45. 45. 
    Fischer S, Etzold C, Turina P, Deckershebestreit G, Altendorf K, Gräber P 1994. ATP synthesis catalyzed by the ATP synthase of Escherichia coli reconstituted into liposomes. Eur. J. Biochem. 225:167–72
    [Google Scholar]
  46. 46. 
    Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D et al. 2016. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 5:e21598
    [Google Scholar]
  47. 46a. 
    Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C 2019. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 8:e43864
    [Google Scholar]
  48. 47. 
    Guo H, Suzuki T, Rubinstein JL 2019. Structure of a bacterial ATP synthase. eLife 8:e43128
  49. 48. 
    Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W 2018. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360:eaat4318
    [Google Scholar]
  50. 49. 
    Cingolani G, Duncan TM. 2011. Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat. Struct. Mol. Biol. 18:701–7
    [Google Scholar]
  51. 50. 
    Morales-Rios E, Montgomery MG, Leslie AG, Walker JE 2015. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. PNAS 112:13231–36
    [Google Scholar]
  52. 51. 
    Böttcher B, Gräber P. 2000. The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochim. Biophys. Acta 1458:404–16
    [Google Scholar]
  53. 52. 
    Mellwig C, Böttcher B. 2003. A unique resting position of the ATP-synthase from chloroplasts. J. Biol. Chem. 278:18544–49
    [Google Scholar]
  54. 53. 
    Daum B, Nicastro D, Austin J 2nd, McIntosh JR, Kühlbrandt W 2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–312
    [Google Scholar]
  55. 54. 
    Daum B, Kühlbrandt W. 2011. Electron tomography of plant thylakoid membranes. J. Exp. Bot. 62:2393–402
    [Google Scholar]
  56. 55. 
    Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H 1998. Yeast mitochondrial F1Fo-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–78
    [Google Scholar]
  57. 56. 
    Minauro-Sanmiguel F, Wilkens S, Garcia JJ 2005. Structure of dimeric mitochondrial ATP synthase: novel Fo bridging features and the structural basis of mitochondrial cristae biogenesis. PNAS 102:12356–58
    [Google Scholar]
  58. 57. 
    Dudkina NV, Heinemeyer J, Keegstra W, Boekema EJ, Braun HP 2005. Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett 579:5769–72
    [Google Scholar]
  59. 58. 
    Dudkina NV, Sunderhaus S, Braun HP, Boekema EJ 2006. Characterization of dimeric ATP synthase and cristae membrane ultrastructure from Saccharomyces and Polytomella mitochondria. FEBS Lett 580:3427–32
    [Google Scholar]
  60. 59. 
    Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W 2008. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–60
    [Google Scholar]
  61. 60. 
    Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD et al. 2011. Macromolecular organization of ATP synthase and complex I in whole mitochondria. PNAS 108:14121–26
    [Google Scholar]
  62. 61. 
    Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kühlbrandt W 2012. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. PNAS 109:13602–7
    [Google Scholar]
  63. 62. 
    Daum B, Walter A, Horst A, Osiewacz HD, Kühlbrandt W 2013. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. PNAS 110:15301–6
    [Google Scholar]
  64. 63. 
    van Lis R, Gonzalez-Halphen D, Atteia A 2005. Divergence of the mitochondrial electron transport chains from the green alga Chlamydomonas reinhardtii and its colorless close relative Polytomella sp. Biochim. Biophys. Acta 1708:23–34
    [Google Scholar]
  65. 64. 
    van Lis R, Mendoza-Hernandez G, Groth G, Atteia A 2007. New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. . Plant Physiol 144:1190–99
    [Google Scholar]
  66. 65. 
    Vazquez-Acevedo M, Cardol P, Cano-Estrada A, Lapaille M, Remacle C, Gonzalez-Halphen D 2006. The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex. J. Bioenerg. Biomembr. 38:271–82
    [Google Scholar]
  67. 66. 
    Cano-Estrada A, Vazquez-Acevedo M, Villavicencio-Queijeiro A, Figueroa-Martinez F, Miranda-Astudillo H et al. 2010. Subunit–subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. Biochim. Biophys. Acta 1797:1439–48
    [Google Scholar]
  68. 67. 
    Dudkina NV, Oostergetel GT, Lewejohann D, Braun HP, Boekema EJ 2010. Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochim. Biophys. Acta 1797:272–77
    [Google Scholar]
  69. 68. 
    Blum TB, Hahn A, Meier T, Davies KM, Kühlbrandt W 2019. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. PNAS 116:4250–55
    [Google Scholar]
  70. 69. 
    Vazquez-Acevedo M, Vega-deLuna F, Sanchez-Vasquez L, Colina-Tenorio L, Remacle C et al. 2016. Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. Biochim. Biophys. Acta 1857:1183–90
    [Google Scholar]
  71. 70. 
    Allen RD. 1995. Membrane tubulation and proton pumps. Protoplasma 189:1–8
    [Google Scholar]
  72. 71. 
    Mühleip AW, Joos F, Wigge C, Frangakis AS, Kühlbrandt W, Davies KM 2016. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria. PNAS 113:8442–47
    [Google Scholar]
  73. 72. 
    Mühleip AW, Dewar CE, Schnaufer A, Kühlbrandt W, Davies KM 2017. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. PNAS 114:992–97
    [Google Scholar]
  74. 73. 
    Montgomery MG, Gahura O, Leslie AGW, Zikova A, Walker JE 2018. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. PNAS 115:2102–7
    [Google Scholar]
  75. 74. 
    Davies KM, Kühlbrandt W. 2018. Structure of the catalytic F1 head of the F1Fo ATP synthase from Trypanosoma brucei. . PNAS 115:E2906–7
    [Google Scholar]
  76. 75. 
    Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG et al. 2015. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 4:e10180
    [Google Scholar]
  77. 76. 
    Srivastava AP, Luo M, Zhou W, Symersky J, Bai D et al. 2018. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360:eaas9699
    [Google Scholar]
  78. 77. 
    Vinothkumar KR, Montgomery MG, Liu S, Walker JE 2016. Structure of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-microscopy. PNAS 113:12709–14
    [Google Scholar]
  79. 78. 
    Guo H, Bueler SA, Rubinstein JL 2017. Atomic model for the dimeric Fo region of mitochondrial ATP synthase. Science 358:936–40
    [Google Scholar]
  80. 79. 
    Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V et al. 2016. Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol. Cell 63:445–56
    [Google Scholar]
  81. 80. 
    Klusch N, Murphy BJ, Mills DJ, Yildiz Ö, Kühlbrandt W 2017. Structural basis of proton translocation and force generation in mitochondrial ATP synthase. eLife 6:e33274
    [Google Scholar]
  82. 81. 
    Murphy BJ, Klusch N, Langer JD, Mills DJ, Yildiz Ö, Kühlbrandt W 2019. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science. In press. https://doi.org/10.1126/science.aaw9128
    [Crossref]
  83. 82. 
    Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V et al. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–30
    [Google Scholar]
  84. 83. 
    Allegretti M, Klusch N, Mills DJ, Vonck J, Kühlbrandt W, Davies KM 2015. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521:237–40
    [Google Scholar]
  85. 84. 
    Symersky J, Osowski D, Walters DE, Mueller DM 2012. Oligomycin frames a common drug-binding site in the ATP synthase. PNAS 109:13961–65
    [Google Scholar]
  86. 85. 
    Martin JL, Ishmukhametov R, Spetzler D, Hornung T, Frasch WD 2018. Elastic coupling power stroke mechanism of the F1-ATPase molecular motor. PNAS 115:5750–55
    [Google Scholar]
  87. 86. 
    Heineke D, Riens B, Grosse H, Hoferichter P, Peter U et al. 1991. Redox transfer across the inner chloroplast envelope membrane. Plant Physiol 95:1131–37
    [Google Scholar]
  88. 87. 
    Yanagisawa S, Frasch WD. 2017. Protonation-dependent stepped rotation of the F-type ATP synthase c-ring observed by single-molecule measurements. J. Biol. Chem. 292:17093–100
    [Google Scholar]
  89. 88. 
    Okazaki K, Hummer G. 2015. Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase. PNAS 112:10720–25
    [Google Scholar]
  90. 89. 
    Wilkens S, Borchardt D, Weber J, Senior AE 2005. Structural characterization of the interaction of the δ and α subunits of the Escherichia coli F1Fo-ATP synthase by NMR spectroscopy. Biochemistry 44:11786–94
    [Google Scholar]
  91. 90. 
    Rees DM, Leslie AG, Walker JE 2009. The structure of the membrane-extrinsic region of bovine ATP synthase. PNAS 106:21597–601
    [Google Scholar]
  92. 91. 
    Hohmann-Marriott MF, Blankenship RE. 2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62:515–48
    [Google Scholar]
  93. 92. 
    Rand DM, Haney RA, Fry AJ 2004. Cytonuclear coevolution: the genomics of cooperation. Trends Ecol. Evol. 19:645–53
    [Google Scholar]
  94. 93. 
    Lau WC, Rubinstein JL. 2012. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481:214–18
    [Google Scholar]
  95. 94. 
    Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R 2018. ATP synthase diseases of mitochondrial genetic origin. Front. Physiol. 9:329
    [Google Scholar]
  96. 95. 
    He J, Ford HC, Carroll J, Douglas C, Gonzales E et al. 2018. Assembly of the membrane domain of ATP synthase in human mitochondria. PNAS 115:2988–93
    [Google Scholar]
  97. 96. 
    Pullman ME, Monroy GC. 1963. A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J. Biol. Chem. 238:3762–69
    [Google Scholar]
  98. 97. 
    Bason JV, Montgomery MG, Leslie AG, Walker JE 2014. Pathway of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-ATPase. PNAS 111:11305–10
    [Google Scholar]
  99. 98. 
    Gledhill JR, Montgomery MG, Leslie AG, Walker JE 2007. How the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria. PNAS 104:15671–76
    [Google Scholar]
  100. 99. 
    Cabezon E, Montgomery MG, Leslie AGW, Walker JE 2003. The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Nat. Struct. Biol. 10:744–50
    [Google Scholar]
  101. 100. 
    Cabezon E, Arechaga I, Butler PJG, Walker JE 2000. Dimerization of bovine F1-ATPase by binding the inhibitor protein, IF1. J. Biol. Chem. 275:28353–55
    [Google Scholar]
  102. 101. 
    Tanigawara M, Tabata KV, Ito Y, Ito J, Watanabe R et al. 2012. Role of the DELSEED loop in torque transmission of F1-ATPase. Biophys. J. 103:970–78
    [Google Scholar]
  103. 102. 
    Junesch U, Gräber P. 1987. Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis hydrolysis. Biochim. Biophys. Acta 893:275–88
    [Google Scholar]
  104. 103. 
    Nalin CM, McCarty RE. 1984. Role of a disulfide bond in the gamma subunit in activation of the ATPase of chloroplast coupling factor 1. J. Biol. Chem. 259:7275–80
    [Google Scholar]
  105. 104. 
    Bernardi P, Di Lisa F 2015. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell Cardiol. 78:100–6
    [Google Scholar]
  106. 105. 
    Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE 2010. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. PNAS 107:16823–27
    [Google Scholar]
  107. 106. 
    Saroussi S, Schushan M, Ben-Tal N, Junge W, Nelson N 2012. Structure and flexibility of the C-ring in the electromotor of rotary FOF1-ATPase of pea chloroplasts. PLOS ONE 7:e43045
    [Google Scholar]
  108. 107. 
    Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Müller DJ 2005. The c15 ring of the Spirulina platensis F-ATP synthase: F1/Fo symmetry mismatch is not obligatory. EMBO Rep 6:1040–44
    [Google Scholar]
  109. 108. 
    Pogoryelov D, Yildiz Ö, Faraldo-Gomez JD, Meier T 2009. High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat. Struct. Mol. Biol. 16:1068–73
    [Google Scholar]
  110. 109. 
    Schulz S, Wilkes M, Mills DJ, Kühlbrandt W, Meier T 2017. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. . EMBO Rep 18:526–35
    [Google Scholar]
  111. 110. 
    Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE 2005. Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. . Science 308:654–59
    [Google Scholar]
  112. 111. 
    Pogoryelov D, Klyszejko AL, Krasnoselska GO, Heller EM, Leone V et al. 2012. Engineering rotor ring stoichiometries in the ATP synthase. PNAS 109:E1599–608
    [Google Scholar]
  113. 112. 
    Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ et al. 2013. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. PNAS 110:7874–79
    [Google Scholar]
  114. 113. 
    Vonck J, Krug von Nidda T, Meier T, Matthey U, Mills DJ et al. 2002. Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. J. Mol. Biol. 321:307–16
    [Google Scholar]
  115. 114. 
    Dibrova DV, Galperin MY, Mulkidjanian AY 2010. Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase. Bioinformatics 26:1473–76
    [Google Scholar]
  116. 115. 
    Zhao J, Benlekbir S, Rubinstein JL 2015. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–45
    [Google Scholar]
  117. 116. 
    Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S et al. 2016. Atomic model for the membrane-embedded Vo motor of a eukaryotic V-ATPase. Nature 539:118–22
    [Google Scholar]
  118. 117. 
    Kühlbrandt W, Davies KM. 2016. Rotary ATPases: a new twist to an ancient machine. Trends Biochem. Sci. 41:106–16
    [Google Scholar]
  119. 118. 
    Cain BD, Simoni RD. 1986. Impaired proton conductivity resulting from mutations in the a subunit of F1Fo ATPase in Escherichia coli. J. Biol. . Chem 261:10043–50
    [Google Scholar]
  120. 119. 
    Ho BK, Gruswitz F. 2008. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8:49
    [Google Scholar]
  121. 120. 
    Vik SB, Antonio BJ. 1994. A mechanism of proton translocation by F1Fo ATP synthases suggested by double mutants of the a subunit. J. Biol. Chem. 269:30364–69
    [Google Scholar]
  122. 121. 
    Allegretti M, Mills DJ, McMullan G, Kühlbrandt W, Vonck J 2014. Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3:e01963
    [Google Scholar]
  123. 122. 
    Bartesaghi A, Matthies D, Banerjee S, Merk A, Subramaniam S 2014. Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy. PNAS 111:11709–14
    [Google Scholar]
  124. 123. 
    Preiss L, Yildiz Ö, Hicks DB, Krulwich TA, Meier T 2010. A new type of proton coordination in an F1Fo-ATP synthase rotor ring. PLOS Biol 8:e1000443
    [Google Scholar]
  125. 124. 
    Symersky J, Pagadala V, Osowski D, Krah A, Meier T et al. 2012. Structure of the c10 ring of the yeast mitochondrial ATP synthase in the open conformation. Nat. Struct. Mol. Biol. 19:485–91
    [Google Scholar]
  126. 125. 
    Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gomez JD, Meier T 2010. Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nat. Chem. Biol. 6:891–99
    [Google Scholar]
  127. 126. 
    Mitchell P. 2011. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim. Biophys. Acta 1807:1507–38
    [Google Scholar]
  128. 127. 
    Junesch U, Gräber P. 1991. The rate of ATP-synthesis as a function of ΔpH and Δψ catalyzed by the active, reduced H+-ATPase from chloroplasts. FEBS Lett 294:275–78
    [Google Scholar]
  129. 128. 
    Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM 2001. Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Δψ and ΔpH by ionic strength. Biochemistry 40:1226–37
    [Google Scholar]
  130. 129. 
    Schutz CN, Warshel A. 2001. What are the dielectric “constants” of proteins and how to validate electrostatic models?. Proteins 44:400–17
    [Google Scholar]
  131. 130. 
    Gilson MK, Honig BH. 1986. The dielectric constant of a folded protein. Biopolymers 25:2097–119
    [Google Scholar]
  132. 131. 
    Kinosita K, Yasuda R, Noji H, Adachi K 2000. A rotary molecular motor that can work at near 100% efficiency. Philos. Trans. R. Soc. B 355:473–89
    [Google Scholar]
  133. 132. 
    Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W 2001. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys. J. 81:1220–33
    [Google Scholar]
  134. 133. 
    Spetzler D, York J, Daniel D, Fromme R, Lowry D, Frasch W 2006. Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45:3117–24
    [Google Scholar]
  135. 134. 
    Miller JH Jr, Rajapakshe KI, Infante HL, Claycomb JR. 2013. Electric field driven torque in ATP synthase. PLOS ONE 8:e74978
    [Google Scholar]
  136. 135. 
    Junge W, Lill H, Engelbrecht S 1997. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22:420–23
    [Google Scholar]
  137. 136. 
    Baker LA, Watt IN, Runswick MJ, Walker JE, Rubinstein JL 2012. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. PNAS 109:11675–80
    [Google Scholar]
  138. 137. 
    Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S et al. 2015. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 4:e06119
    [Google Scholar]
  139. 138. 
    Anselmi C, Davies KM, Faraldo-Gomez JD 2018. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force. J. Gen. Physiol. 150:763–70
    [Google Scholar]
  140. 139. 
    Brandt T, Mourier A, Tain LS, Partridge L, Larsson NG, Kühlbrandt W 2017. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. . eLife 6:e24662
    [Google Scholar]
  141. 140. 
    Bornhövd C, Vogel F, Neupert W, Reichert AS 2006. Mitochondrial membrane potential is dependent on the oligomeric state of F1Fo-ATP synthase supracomplexes. J. Biol. Chem. 281:13990–98
    [Google Scholar]
  142. 141. 
    Saddar S, Dienhart MK, Stuart RA 2008. The F1Fo-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J. Biol. Chem. 283:6677–86
    [Google Scholar]
  143. 142. 
    Davies KM, Blum TB, Kühlbrandt W 2018. Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. PNAS 115:3024–29
    [Google Scholar]
  144. 143. 
    Rieger B, Junge W, Busch KB 2014. Lateral pH gradient between OXPHOS complex IV and F0F1 ATP-synthase in folded mitochondrial membranes. Nat. Commun. 5:3103
    [Google Scholar]
  145. 144. 
    Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY 1998. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. PNAS 95:6803–8
    [Google Scholar]
  146. 145. 
    Teixeira FK, Sanchez CG, Hurd TR, Seifert JRK, Czech B et al. 2015. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat. Cell Biol. 17:689–96
    [Google Scholar]
  147. 146. 
    Preiss L, Langer JD, Yildiz Ö, Eckhardt-Strelau L, Guillemont JEG et al. 2015. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv. 1:e1500106
    [Google Scholar]
  148. 147. 
    Rühle T, Leister D. 2015. Assembly of F1Fo-ATP synthases. Biochim. Biophys. Acta 1847:849–60
    [Google Scholar]
  149. 148. 
    Stoldt S, Wenzel D, Kehrein K, Riedel D, Ott M, Jakobs S 2018. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 20:528–34
    [Google Scholar]
  150. 149. 
    Sousa FL, Nelson-Sathi S, Martin WF 2016. One step beyond a ribosome: the ancient anaerobic core. Biochim. Biophys. Acta 1857:1027–38
    [Google Scholar]
  151. 150. 
    Nelson N. 1992. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100:109–24
    [Google Scholar]
  152. 151. 
    Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV 2007. Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat. Rev. Microbiol. 5:892–99
    [Google Scholar]
  153. 152. 
    Preiss L, Langer JD, Hicks DB, Liu J, Yildiz Ö et al. 2014. The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic lifestyle. Mol. Microbiol. 92:973–84
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-110903
Loading
/content/journals/10.1146/annurev-biochem-013118-110903
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error