1932

Abstract

Directional transport of protons across an energy transducing membrane—proton pumping—is ubiquitous in biology. Bacteriorhodopsin (bR) is a light-driven proton pump that is activated by a buried all- retinal chromophore being photoisomerized to a 13- conformation. The mechanism by which photoisomerization initiates directional proton transport against a proton concentration gradient has been studied by a myriad of biochemical, biophysical, and structural techniques. X-ray free electron lasers (XFELs) have created new opportunities to probe the structural dynamics of bR at room temperature on timescales from femtoseconds to milliseconds using time-resolved serial femtosecond crystallography (TR-SFX). Wereview these recent developments and highlight where XFEL studies reveal new details concerning the structural mechanism of retinal photoisomerization and proton pumping. We also discuss the extent to which these insights were anticipated by earlier intermediate trapping studies using synchrotron radiation. TR-SFX will open up the field for dynamical studies of other proteins that are not naturally light-sensitive.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111327
2019-06-20
2024-09-13
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-111327.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111327&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mitchell P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–48
    [Google Scholar]
  2. 2. 
    Jardetzky O. 1966. Simple allosteric model for membrane pumps. Nature 211:969–70
    [Google Scholar]
  3. 3. 
    Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol 233:149–52
    [Google Scholar]
  4. 4. 
    Oesterhelt D, Stoeckenius W. 1973. Functions of a new photoreceptor membrane. PNAS 70:2853–57
    [Google Scholar]
  5. 5. 
    Henderson R, Unwin PN. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32
    [Google Scholar]
  6. 6. 
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929
    [Google Scholar]
  7. 7. 
    Wickstrand C, Dods R, Royant A, Neutze R 2015. Bacteriorhodopsin: Would the real structural intermediates please stand up?. Biochim. Biophys. Acta Gen. Subj. 1850:536–53
    [Google Scholar]
  8. 8. 
    Landau EM, Rosenbusch JP. 1996. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. PNAS 93:14532–35
    [Google Scholar]
  9. 9. 
    Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM 2002. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim. Biophys. Acta Biomembr. 1565:144–67
    [Google Scholar]
  10. 10. 
    Belrhali H, Nollert P, Royant A, Menzel C, Rosenbusch JP et al. 1999. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7:909–17
    [Google Scholar]
  11. 11. 
    Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK 1999. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291:899–911
    [Google Scholar]
  12. 12. 
    Lanyi JK. 1997. Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J. Biol. Chem. 272:31209–12
    [Google Scholar]
  13. 13. 
    Haupts U, Tittor J, Oesterhelt D 1999. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 28:367–99
    [Google Scholar]
  14. 14. 
    Walker JE. 2013. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41:1–16
    [Google Scholar]
  15. 15. 
    Hoffmann M, Wanko M, Strodel P, Konig PH, Frauenheim T et al. 2006. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J. Am. Chem. Soc. 128:10808–18
    [Google Scholar]
  16. 16. 
    Hamm P, Zurek M, Röschinger T, Patzelt TH, Oesterhelt D, Zinth W 1996. Femtosecond spectroscopy of the photoisomerisation of the protonated Schiff base of all-trans retinal. Chem. Phys. Lett. 263:613–21
    [Google Scholar]
  17. 17. 
    Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114:126–63
    [Google Scholar]
  18. 18. 
    Freedman KA, Becker RS. 1986. Comparative investigation of the photoisomerization of the protonated and unprotonated n-butylamine Schiff bases of 9-cis-, 11-cis-, 13-cis-, and all-trans-retinals. J. Am. Chem. Soc. 108:1245–51
    [Google Scholar]
  19. 19. 
    Khorana HG. 1993. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. PNAS 90:1166–71
    [Google Scholar]
  20. 20. 
    Luecke H, Richter HT, Lanyi JK 1998. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280:1934–37
    [Google Scholar]
  21. 21. 
    Druckmann S, Ottolenghi M, Pande A, Pande J, Callender RH 1982. Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry 21:4953–59
    [Google Scholar]
  22. 22. 
    Gat Y, Sheves M. 1993. A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds. J. Am. Chem. Soc. 115:3772–73
    [Google Scholar]
  23. 23. 
    Sheves M, Albeck A, Friedman N, Ottolenghi M 1986. Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues. PNAS 83:3262–66
    [Google Scholar]
  24. 24. 
    Chang CH, Jonas R, Govindjee R, Ebrey TG 1988. Regeneration of blue and purple membranes from deionized bleached membranes of Halobacterium halobium. Photochem. . Photobiol 47:261–65
    [Google Scholar]
  25. 25. 
    de Grotthuss CJT. 1806. Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. Ann. Chim. 58:54–73
    [Google Scholar]
  26. 26. 
    Cukierman S. 2006. Et tu, Grotthuss! and other unfinished stories. Biochim. Biophys. Acta Bioenerg. 1757:876–85
    [Google Scholar]
  27. 27. 
    Pomes R, Roux B. 2002. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys. J. 82:2304–16
    [Google Scholar]
  28. 28. 
    Srajer V, Teng T, Ursby T, Pradervand C, Ren Z et al. 1996. Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274:1726–29
    [Google Scholar]
  29. 29. 
    Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J et al. 2003. Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300:1944–47
    [Google Scholar]
  30. 30. 
    Genick UK, Borgstahl GE, Ng K, Ren Z, Pradervand C et al. 1997. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275:1471–75
    [Google Scholar]
  31. 31. 
    Perman B, Srajer V, Ren Z, Teng T, Pradervand C et al. 1998. Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science 279:1946–50
    [Google Scholar]
  32. 32. 
    Ihee H, Rajagopal S, Srajer V, Pahl R, Anderson S et al. 2005. Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. PNAS 102:7145–50
    [Google Scholar]
  33. 33. 
    Neutze R, Moffat K. 2012. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Curr. Opin. Struct. Biol. 22:651–59
    [Google Scholar]
  34. 34. 
    Moffat K. 1997. Laue diffraction. Methods Enzymol 277:433–47
    [Google Scholar]
  35. 35. 
    Key J, Srajer V, Pahl R, Moffat K 2007. Time-resolved crystallographic studies of the heme domain of the oxygen sensor FixL: structural dynamics of ligand rebinding and their relation to signal transduction. Biochemistry 46:4706–15
    [Google Scholar]
  36. 36. 
    Wohri AB, Katona G, Johansson LC, Fritz E, Malmerberg E et al. 2010. Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science 328:630–33
    [Google Scholar]
  37. 37. 
    Hajdu J, Acharya KR, Stuart DI, McLaughlin PJ, Barford D et al. 1987. Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. . EMBO J 6:539–46
    [Google Scholar]
  38. 38. 
    Schlichting I, Almo SC, Rapp G, Wilson K, Petratos K et al. 1990. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345:309–15
    [Google Scholar]
  39. 39. 
    Schlichting I, Berendzen J, Phillips GN Jr, Sweet RM 1994. Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371:808–12
    [Google Scholar]
  40. 40. 
    Genick UK, Soltis SM, Kuhn P, Canestrelli IL, Getzoff ED 1998. Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392:206–9
    [Google Scholar]
  41. 41. 
    Westenhoff S, Nazarenko E, Malmerberg E, Davidsson J, Katona G, Neutze R 2010. Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches. Acta Crystallogr. A 66:207–19
    [Google Scholar]
  42. 42. 
    Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E et al. 1999. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401:822–26
    [Google Scholar]
  43. 43. 
    Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R 2000. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406:645–48
    [Google Scholar]
  44. 44. 
    Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK 1999. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286:255–61
    [Google Scholar]
  45. 45. 
    Luecke H, Schobert B, Cartailler JP, Richter HT, Rosengarth A et al. 2000. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J. Mol. Biol. 300:1237–55
    [Google Scholar]
  46. 46. 
    Sass HJ, Buldt G, Gessenich R, Hehn D, Neff D et al. 2000. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406:649–53
    [Google Scholar]
  47. 47. 
    Subramaniam S, Henderson R. 2000. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406:653–57
    [Google Scholar]
  48. 48. 
    Kuhlbrandt W. 2000. Bacteriorhodopsin—the movie. Nature 406:569–70
    [Google Scholar]
  49. 49. 
    Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R 2001. Spectroscopic characterization of bacteriorhodopsin's L-intermediate in 3D crystals cooled to 170 K. Photochem. Photobiol. 74:794–804
    [Google Scholar]
  50. 50. 
    Matsui Y, Sakai K, Murakami M, Shiro Y, Adachi S et al. 2002. Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J. Mol. Biol. 324:469–81
    [Google Scholar]
  51. 51. 
    Borshchevskiy VI, Round ES, Popov AN, Buldt G, Gordeliy VI 2011. X-ray-radiation-induced changes in bacteriorhodopsin structure. J. Mol. Biol. 409:813–25
    [Google Scholar]
  52. 52. 
    Borshchevskiy V, Round E, Erofeev I, Weik M, Ishchenko A et al. 2014. Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr. D 70:2675–85
    [Google Scholar]
  53. 53. 
    Lanyi JK, Schobert B. 2007. Structural changes in the L photointermediate of bacteriorhodopsin. J. Mol. Biol. 365:1379–92
    [Google Scholar]
  54. 54. 
    Lanyi JK, Schobert B. 2006. Propagating structural perturbation inside bacteriorhodopsin: crystal structures of the M state and the D96A and T46V mutants. Biochemistry 45:12003–10
    [Google Scholar]
  55. 55. 
    Facciotti MT, Rouhani S, Burkard FT, Betancourt FM, Downing KH et al. 2001. Structure of an early intermediate in the M-state phase of the bacteriorhodopsin photocycle. Biophys. J. 81:3442–55
    [Google Scholar]
  56. 56. 
    Zhang J, Yamazaki Y, Hikake M, Murakami M, Ihara K, Kouyama T 2012. Crystal structure of the O intermediate of the Leu93→Ala mutant of bacteriorhodopsin. Proteins 80:2384–96
    [Google Scholar]
  57. 57. 
    Takeda K, Matsui Y, Kamiya N, Adachi S, Okumura H, Kouyama T 2004. Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix. J. Mol. Biol. 341:1023–37
    [Google Scholar]
  58. 58. 
    Yamamoto M, Hayakawa N, Murakami M, Kouyama T 2009. Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels. J. Mol. Biol. 393:559–73
    [Google Scholar]
  59. 59. 
    Edman K, Royant A, Larsson G, Jacobson F, Taylor T et al. 2004. Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin. J. Biol. Chem. 279:2147–58
    [Google Scholar]
  60. 60. 
    Kouyama T, Nishikawa T, Tokuhisa T, Okumura H 2004. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J. Mol. Biol. 335:531–46
    [Google Scholar]
  61. 61. 
    Wang T, Sessions AO, Lunde CS, Rouhani S, Glaeser RM et al. 2013. Deprotonation of D96 in bacteriorhodopsin opens the proton uptake pathway. Structure 21:290–97
    [Google Scholar]
  62. 62. 
    Huxley HE, Holmes KC. 1997. Development of synchrotron radiation as a high-intensity source for X-ray diffraction. J. Synchrotron Radiat. 4:366–79
    [Google Scholar]
  63. 63. 
    Helliwell JR, Mitchell EP. 2015. Synchrotron radiation macromolecular crystallography: science and spin-offs. IUCrJ 2:283–91
    [Google Scholar]
  64. 64. 
    Emma P, Akre R, Arthur J, Bionta R, Bostedt C et al. 2010. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4:641–47
    [Google Scholar]
  65. 65. 
    Tono K, Togashi T, Inubushi Y, Sato T, Katayama T et al. 2013. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J. Phys. 15:083035
    [Google Scholar]
  66. 66. 
    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–57
    [Google Scholar]
  67. 67. 
    Caleman C, Huldt G, Maia FR, Ortiz C, Parak FG et al. 2011. On the feasibility of nanocrystal imaging using intense and ultrashort X-ray pulses. ACS Nano 5:139–46
    [Google Scholar]
  68. 68. 
    Barty A, Caleman C, Aquila A, Timneanu N, Lomb L et al. 2012. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photon. 6:35–40
    [Google Scholar]
  69. 69. 
    Nass K, Foucar L, Barends TR, Hartmann E, Botha S et al. 2015. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synch. Rad. 22:225–38
    [Google Scholar]
  70. 70. 
    DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D et al. 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41:195505
    [Google Scholar]
  71. 71. 
    Weierstall U, Spence JC, Doak RB 2012. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83:035108
    [Google Scholar]
  72. 72. 
    Hart P, Boutet S, Carini G, Dubrovin M, Duda B et al. 2012. The CSPAD megapixel x-ray camera at LCLS. Proc. SPIE 2012:8504C. https://doi.org/10.1117/12.930924
    [Crossref] [Google Scholar]
  73. 73. 
    Strüder L, Epp S, Rolles D, Hartmann R, Holl P et al. 2010. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuc. Inst. Meth. Phys. Res. A 614:483–96
    [Google Scholar]
  74. 74. 
    White TA, Kirian RA, Martin AV, Aquila A, Nass K et al. 2012. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45:335–41
    [Google Scholar]
  75. 75. 
    Barty A, Kirian RA, Maia FRNC, Hantke M, Yoon CH et al. 2014. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 47:1118–31
    [Google Scholar]
  76. 76. 
    Chapman H, Fromme P, Barty A, White TA, Kirian RA et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:73–77
    [Google Scholar]
  77. 77. 
    Johansson LC, Arnlund D, White TA, Katona G, DePonte DP et al. 2012. Lipidic phase membrane protein serial femtosecond crystallography. Nat. Methods 9:263–65
    [Google Scholar]
  78. 78. 
    Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A et al. 2012. High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–64
    [Google Scholar]
  79. 79. 
    Redecke L, Nass K, DePonte DP, White TA, Rehders D et al. 2013. Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–30
    [Google Scholar]
  80. 80. 
    Schlichting I. 2015. Serial femtosecond crystallography: the first five years. IUCrJ 2:246–55
    [Google Scholar]
  81. 81. 
    Chapman HN. 2017. Structure determination using X-ray free-electron laser pulses. Methods Mol. Biol. 1607:295–324
    [Google Scholar]
  82. 82. 
    Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D et al. 2014. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–46
    [Google Scholar]
  83. 83. 
    Pande K, Hutchison CD, Groenhof G, Aquila A, Robinson JS et al. 2016. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–29
    [Google Scholar]
  84. 84. 
    Barends TR, Foucar L, Ardevol A, Nass K, Aquila A et al. 2015. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–50
    [Google Scholar]
  85. 85. 
    Coquelle N, Sliwa M, Woodhouse J, Schiro G, Adam V et al. 2018. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10:31–37
    [Google Scholar]
  86. 86. 
    Colletier JP, Sliwa M, Gallat FX, Sugahara M, Guillon V et al. 2016. Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. J. Phys. Chem. Lett. 7:882–87
    [Google Scholar]
  87. 87. 
    Young ID, Ibrahim M, Chatterjee R, Gul S, Fuller F et al. 2016. Structure of photosystem II and substrate binding at room temperature. Nature 540:453–57
    [Google Scholar]
  88. 88. 
    Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y et al. 2017. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–35
    [Google Scholar]
  89. 89. 
    Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S et al. 2017. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–46
    [Google Scholar]
  90. 90. 
    Wang D, Weierstall U, Pollack L, Spence J 2014. Double-focusing mixing jet for XFEL study of chemical kinetics. J. Synchrotron Radiat. 21:1364–66
    [Google Scholar]
  91. 91. 
    Weierstall U, James D, Wang C, White TA, Wang D et al. 2014. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5:3309
    [Google Scholar]
  92. 92. 
    Sugahara M, Mizohata E, Nango E, Suzuki M, Tanaka T et al. 2015. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat. Methods 12:61–63
    [Google Scholar]
  93. 93. 
    Nogly P, James D, Wang D, White TA, Zatsepin N et al. 2015. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2:168–76
    [Google Scholar]
  94. 94. 
    Nogly P, Panneels V, Nelson G, Gati C, Kimura T et al. 2016. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat. Commun. 7:12314
    [Google Scholar]
  95. 95. 
    Nango E, Royant A, Kubo M, Nakane T, Wickstrand C et al. 2016. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–57
    [Google Scholar]
  96. 96. 
    Nogly P, Weinert T, James D, Carbajo S, Ozerov D et al. 2018. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:eaat0094
    [Google Scholar]
  97. 97. 
    Atkinson GH, Blanchard D, Lemaire H, Brack TL, Hayashi H 1989. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle. Biophys. J. 55:263–74
    [Google Scholar]
  98. 98. 
    Kobayashi T, Saito T, Ohtani H 2001. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414:531–34
    [Google Scholar]
  99. 99. 
    Herbst J, Heyne K, Diller R 2002. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 297:822–25
    [Google Scholar]
  100. 100. 
    Schenkl S, van Mourik F, van der Zwan G, Haacke S, Chergui M 2005. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 309:917–20
    [Google Scholar]
  101. 101. 
    Altoe P, Cembran A, Olivucci M, Garavelli M 2010. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping. PNAS 107:20172–77
    [Google Scholar]
  102. 102. 
    Humphrey W, Lu H, Logunov I, Werner HJ, Schulten K 1998. Three electronic state model of the primary phototransformation of bacteriorhodopsin. Biophys. J. 75:1689–99
    [Google Scholar]
  103. 103. 
    Dziembowska T. 1998. Resonance assisted intramolecular hydrogen bond in Schiff bases. Polish J. Chem. 72:193–209
    [Google Scholar]
  104. 104. 
    Schulten K, Tavan P. 1978. A mechanism for the light-driven proton pump of Halobacterium halobium. . Nature 272:85–86
    [Google Scholar]
  105. 105. 
    Gonzalez-Luque R, Garavelli M, Bernardi F, Merchan M, Robb MA, Olivucci M 2000. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. PNAS 97:9379–84
    [Google Scholar]
  106. 106. 
    Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IE et al. 1985. Protein states and proteinquakes. PNAS 82:5000–4
    [Google Scholar]
  107. 107. 
    Neutze R. 2015. Snapshots of a protein quake. Science 350:381
    [Google Scholar]
  108. 108. 
    Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ et al. 2014. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat. Methods 11:923–26
    [Google Scholar]
  109. 109. 
    Birge RR, Cooper TM. 1983. Energy storage in the primary step of the photocycle of bacteriorhodopsin. Biophys. J. 42:61–69
    [Google Scholar]
  110. 110. 
    Bondar AN, Baudry J, Suhai S, Fischer S, Smith JC 2008. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions. J. Phys. Chem. B 112:14729–41
    [Google Scholar]
  111. 111. 
    Bondar AN, Fischer S, Smith JC 2011. Water pathways in the bacteriorhodopsin proton pump. J. Membr. Biol. 239:73–84
    [Google Scholar]
  112. 112. 
    Royant A, Nollert P, Edman K, Neutze R, Landau EM et al. 2001. X-ray structure of sensory rhodopsin II at 2.1-Å resolution. PNAS 98:10131–36
    [Google Scholar]
  113. 113. 
    Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL 2001. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–503
    [Google Scholar]
  114. 114. 
    Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H 2004. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390–93
    [Google Scholar]
  115. 115. 
    Yoshimura K, Kouyama T. 2008. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J. Mol. Biol. 375:1267–81
    [Google Scholar]
  116. 116. 
    Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, Kouyama T 2006. Crystal structures of archaerhodopsin-1 and -2: common structural motif in archaeal light-driven proton pumps. J. Mol. Biol. 358:675–85
    [Google Scholar]
  117. 117. 
    Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. PNAS 105:16561–65
    [Google Scholar]
  118. 118. 
    Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E et al. 2013. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. PNAS 110:12631–36
    [Google Scholar]
  119. 119. 
    Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W et al. 2013. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D. 69:1965–80
    [Google Scholar]
  120. 120. 
    Andersson M, Malmerberg E, Westenhoff S, Katona G, Cammarata M et al. 2009. Structural dynamics of light-driven proton pumps. Structure 17:1265–75
    [Google Scholar]
  121. 121. 
    Subramaniam S, Lindahl M, Bullough P, Faruqi AR, Tittor J et al. 1999. Protein conformational changes in the bacteriorhodopsin photocycle. J. Mol. Biol. 287:145–61
    [Google Scholar]
  122. 122. 
    Tittor J, Paula S, Subramaniam S, Heberle J, Henderson R, Oesterhelt D 2002. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. J. Mol. Biol. 319:555–65
    [Google Scholar]
  123. 123. 
    Schobert B, Cupp-Vickery J, Hornak V, Smith S, Lanyi J 2002. Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J. Mol. Biol. 321:715–26
    [Google Scholar]
  124. 124. 
    Lanyi J, Schobert B. 2002. Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J. Mol. Biol. 321:727–37
    [Google Scholar]
  125. 125. 
    Lanyi JK, Schobert B. 2003. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2′ intermediates of the photocycle. J. Mol. Biol. 328:439–50
    [Google Scholar]
  126. 126. 
    Schobert B, Brown LS, Lanyi JK 2003. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J. Mol. Biol. 330:553–70
    [Google Scholar]
  127. 127. 
    Prokhorenko VI, Nagy AM, Waschuk SA, Brown LS, Birge RR, Miller RJ 2006. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313:1257–61
    [Google Scholar]
  128. 128. 
    Schmidt B, Sobotta C, Heinz B, Laimgruber S, Braun M, Gilch P 2005. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy. Biochim. Biophys. Acta Bioenerg. 1706:165–73
    [Google Scholar]
  129. 129. 
    Florean AC, Cardoza D, White JL, Lanyi JK, Sension RJ, Bucksbaum PH 2009. Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime. PNAS 106:10896–900
    [Google Scholar]
  130. 130. 
    Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T et al. 2017. Perspective: opportunities for ultrafast science at SwissFEL. Struct. Dyn. 4:061602
    [Google Scholar]
  131. 131. 
    Marx V. 2017. Structural biology: doors open at the European XFEL. Nat. Methods 14:843–46
    [Google Scholar]
  132. 132. 
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H et al. 2000. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–45
    [Google Scholar]
  133. 133. 
    Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C et al. 2017. Structural insights into ion conduction by channelrhodopsin 2. Science 358:eaan8862
    [Google Scholar]
  134. 134. 
    Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A et al. 2015. Optogenetics: 10 years after ChR2 in neurons—views from the community. Nat. Neurosci. 18:1202–12
    [Google Scholar]
  135. 135. 
    Broichhagen J, Trauner D. 2014. The in vivo chemistry of photoswitched tethered ligands. Curr. Opin. Chem. Biol. 21:121–27
    [Google Scholar]
  136. 136. 
    Hekstra DR, White KI, Socolich MA, Henning RW, Srajer V, Ranganathan R 2016. Electric-field-stimulated protein mechanics. Nature 540:400–5
    [Google Scholar]
  137. 137. 
    DeLano WL. 2002. Pymol: an open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40:82–92
    [Google Scholar]
  138. 138. 
    Humphrey W, Dalke A, Schulten K 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33–38
    [Google Scholar]
  139. 139. 
    Dahl AC, Chavent M, Sansom MS 2012. Bendix: intuitive helix geometry analysis and abstraction. Bioinformatics 28:2193–94
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111327
Loading
/content/journals/10.1146/annurev-biochem-013118-111327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error