1932

Abstract

Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid–protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein–lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo–electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein–lipid interactions in the native environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111508
2019-06-20
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-111508.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111508&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bissig C, Gruenberg J. 2013. Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harb. Perspect. Biol. 5:10a016816
    [Google Scholar]
  2. 2. 
    Overington JP, Al-Lazikani B, Hopkins AL 2006. How many drug targets are there. ? Nat. Rev. Drug Discov. 5:12993–96
    [Google Scholar]
  3. 3. 
    Wymann MP, Schneiter R. 2008. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9:2162–76
    [Google Scholar]
  4. 4. 
    Lundstrom K. 2004. Structural genomics on membrane proteins: mini review. Comb. Chem. High Throughput Screen. 7:5431–39
    [Google Scholar]
  5. 5. 
    Shevchenko A, Simons K. 2010. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11:8593–98
    [Google Scholar]
  6. 6. 
    Sud M, Fahy E, Cotter D, Brown A, Dennis EA et al. 2007. LMSD: LIPID MAPS structure database. Nucleic Acids Res 35:Suppl. 1D527–32
    [Google Scholar]
  7. 7. 
    Pedersen B, Nissen P. 2015. Membrane proteins—do we catch up with the breathless pace of soluble protein structural biology. ? Biochim. Biophys. Acta 1850:3447–48
    [Google Scholar]
  8. 8. 
    Vinothkumar KR. 2015. Membrane protein structures without crystals, by single particle electron cryo-microscopy. Curr. Opin. Struct. Biol. 33:103–14
    [Google Scholar]
  9. 9. 
    Yeagle PL. 2014. Non-covalent binding of membrane lipids to membrane proteins. Biochim. Biophys. Acta 1838:61548–59
    [Google Scholar]
  10. 10. 
    Huster D. 2014. Solid-state NMR spectroscopy to study protein–lipid interactions. Biochim. Biophys. Acta 1841:81146–60
    [Google Scholar]
  11. 11. 
    Jaipuria G, Ukmar-Godec T, Zweckstetter M 2018. Challenges and approaches to understand cholesterol-binding impact on membrane protein function: an NMR view. Cell. Mol. Life Sci. 75:122137–51
    [Google Scholar]
  12. 12. 
    Sahu ID, Lorigan GA. 2018. Site-directed spin labeling EPR for studying membrane proteins. BioMed Res. Int. 2018:3248289
    [Google Scholar]
  13. 13. 
    Landreh M, Marty MT, Gault J, Robinson CV 2016. A sliding selectivity scale for lipid binding to membrane proteins. Curr. Opin. Struct. Biol. 39:54–60
    [Google Scholar]
  14. 14. 
    Lee AG. 2011. Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36:9493–500
    [Google Scholar]
  15. 15. 
    Lee AG. 2011. Lipid–protein interactions. Biochem. Soc. Trans. 39:3761–66
    [Google Scholar]
  16. 16. 
    Baumgart T, Capraro BR, Zhu C, Das SL 2011. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62:483–506
    [Google Scholar]
  17. 17. 
    Phillips R, Ursell T, Wiggins P, Sens P 2009. Emerging roles for lipids in shaping membrane-protein function. Nature 459:7245379–85
    [Google Scholar]
  18. 18. 
    Zimmerberg J, Gawrisch K. 2006. The physical chemistry of biological membranes. Nat. Chem. Biol. 2:11564–67
    [Google Scholar]
  19. 19. 
    Brown MF. 2017. Soft matter in lipid–protein interactions. Annu. Rev. Biophys. 46:379–410
    [Google Scholar]
  20. 20. 
    Saita EA, de Mendoza D 2015. Thermosensing via transmembrane protein–lipid interactions. Biochim. Biophys. Acta 1848:91757–64
    [Google Scholar]
  21. 21. 
    Hedger G, Sansom MSP. 2016. Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochim. Biophys. Acta 1858:102390–400
    [Google Scholar]
  22. 22. 
    Harkewicz R, Dennis EA. 2011. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem. 80:301–25
    [Google Scholar]
  23. 23. 
    Barrera NP, Robinson CV. 2011. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 80:247–71
    [Google Scholar]
  24. 24. 
    Deleu M, Crowet J-M, Nasir MN, Lins L 2014. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim. Biophys. Acta 1838:123171–90
    [Google Scholar]
  25. 25. 
    Chait BT. 2011. Mass spectrometry in the postgenomic era. Annu. Rev. Biochem. 80:239–46
    [Google Scholar]
  26. 26. 
    Rolim A, Henrique-Araújo R, Ferraz E, de Dultra F, Fernandez L 2015. Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene 554:2131–39
    [Google Scholar]
  27. 27. 
    Sethi S, Brietzke E. 2017. Recent advances in lipidomics: analytical and clinical perspectives. Prostaglandins Other Lipid Mediat 128:8–16
    [Google Scholar]
  28. 28. 
    Griffiths WJ, Wang Y. 2009. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem. Soc. Rev. 38:71882–96
    [Google Scholar]
  29. 29. 
    Calabrese AN, Radford SE. 2018. Mass spectrometry-enabled structural biology of membrane proteins. Methods 147:187–205
    [Google Scholar]
  30. 30. 
    Hong K, Miller C. 2000. The lipid–protein interface of aShaker K+ channel. J. Gen. Physiol. 115:151–58
    [Google Scholar]
  31. 31. 
    Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J et al. 2018. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat. Struct. Mol. Biol. 25:153–60
    [Google Scholar]
  32. 32. 
    Gao Y, Cao E, Julius D, Cheng Y 2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:7607347–51
    [Google Scholar]
  33. 33. 
    Putker F, Bos MP, Tommassen J 2015. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol. Rev. 39:6985–1002
    [Google Scholar]
  34. 34. 
    Wolfersberger MG. 1994. Uniporters, symporters and antiporters. J. Exp. Biol. 196:5–6
    [Google Scholar]
  35. 35. 
    Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE 2017. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16:12829–42
    [Google Scholar]
  36. 36. 
    Yen H-YY, Hoi KK, Liko I, Hedger G, Horrell MR et al. 2018. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559:7714423–27
    [Google Scholar]
  37. 37. 
    Freeman M. 2008. Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42:191–210
    [Google Scholar]
  38. 38. 
    Sun L, Li X, Shi Y 2016. Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ-secretase. Curr. Opin. Struct. Biol. 37:97–107
    [Google Scholar]
  39. 39. 
    Fahy E, Subramaniam S, Brown AH, Glass CK, Merrill AH et al. 2005. A comprehensive classification system for lipids. J. Lipid Res. 46:5839–62
    [Google Scholar]
  40. 40. 
    van Meer G, Voelker DR, Feigenson GW 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:2112–24
    [Google Scholar]
  41. 41. 
    Andreyev AY, Fahy E, Guan Z, Kelly S, Li X et al. 2010. Subcellular organelle lipidomics in TLR-4-activated macrophages. J. Lipid Res. 51:92785–97
    [Google Scholar]
  42. 42. 
    de Meyer F, Smit B 2009. Effect of cholesterol on the structure of a phospholipid bilayer. PNAS 106:103654–58
    [Google Scholar]
  43. 43. 
    Liko I, Degiacomi MT, Lee S, Newport TD, Gault J et al. 2018. Lipid binding attenuates channel closure of the outer membrane protein OmpF. PNAS 115:266691–96
    [Google Scholar]
  44. 44. 
    Monzel C, Sengupta K. 2016. Measuring shape fluctuations in biological membranes. J. Phys. D Appl. Phys. 49:24243002
    [Google Scholar]
  45. 45. 
    Drin G. 2014. Topological regulation of lipid balance in cells. Biochemistry 83:151–77
    [Google Scholar]
  46. 46. 
    Lee AG. 2004. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666:1–262–87
    [Google Scholar]
  47. 47. 
    Powl AM, East MJ, Lee AG 2008. Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL. Biochemistry 47:4612175–84
    [Google Scholar]
  48. 48. 
    Powl AM, East MJ, Lee AG 2008. Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. Biochemistry 47:144317–28
    [Google Scholar]
  49. 49. 
    Bechara C, Nöll A, Morgner N, Degiacomi MT, Tampé R, Robinson CV 2015. A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat. Chem. 7:3255–62
    [Google Scholar]
  50. 50. 
    Valiyaveetil FI, Zhou Y, MacKinnon R 2002. Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41:3510771–77
    [Google Scholar]
  51. 51. 
    Marius P, de Planque M, Williamson P 2012. Probing the interaction of lipids with the non-annular binding sites of the potassium channel KcsA by magic-angle spinning NMR. Biochim. Biophys. Acta 1818:190–96
    [Google Scholar]
  52. 52. 
    Gimpl G, Wiegand V, Burger K, Fahrenholz F 2002. Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog. Brain Res. 139:43–55
    [Google Scholar]
  53. 53. 
    Eroglu Ç, Brügger B, Wieland F, Sinning I 2003. Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. PNAS 100:1810219–24
    [Google Scholar]
  54. 54. 
    Pérez-Gordones MC, Lugo MR, Winkler M, Cervino V, Benaim G 2009. Diacylglycerol regulates the plasma membrane calcium pump from human erythrocytes by direct interaction. Arch. Biochem. Biophys. 489:1–255–61
    [Google Scholar]
  55. 55. 
    Caffrey M. 2015. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. Sect. F 71:13–18
    [Google Scholar]
  56. 56. 
    Liu W, Wacker D, Wang C, Abola E, Cherezov V 2014. Femtosecond crystallography of membrane proteins in the lipidic cubic phase. Philos. Trans. R. Soc. B. 369:164720130314
    [Google Scholar]
  57. 57. 
    Thonghin N, Kargas V, Clews J, Ford RC 2018. Cryo-electron microscopy of membrane proteins. Methods 147:176–86
    [Google Scholar]
  58. 58. 
    Zorzi R, Mi W, Liao M, Walz T 2015. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 65:181–96
    [Google Scholar]
  59. 59. 
    Efremov RG, Gatsogiannis C, Raunser S 2017. Methods in enzymology. Methods Enzymol 594:1–30
    [Google Scholar]
  60. 60. 
    Kim H, Howell SC, Horn WD, Jeon Y, Sanders CR 2009. Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog. Nucl. Magn. Reson. Spectrosc. 55:4335–60
    [Google Scholar]
  61. 61. 
    Opella SJ, Marassi FM. 2004. Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104:83587–606
    [Google Scholar]
  62. 62. 
    Hong M, Zhang Y, Hu F 2012. Membrane protein structure and dynamics from NMR spectroscopy. Phys. Chem. 63:11–24
    [Google Scholar]
  63. 63. 
    Mandala VS, Williams JK, Hong M 2018. Structure and dynamics of membrane proteins from solid-state NMR. Annu. Rev. Biophys. 47:201–22
    [Google Scholar]
  64. 64. 
    Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E et al. 2018. Perturbations of native membrane protein structure in alkyl phosphocholine detergents: a critical assessment of NMR and biophysical studies. Chem. Rev. 118:73559–607
    [Google Scholar]
  65. 65. 
    Smith AW. 2012. Lipid–protein interactions in biological membranes: a dynamic perspective. Biochim. Biophys. Acta 1818:2172–77
    [Google Scholar]
  66. 66. 
    Shi Y, Cai M, Zhou L, Wang H 2018. The structure and function of cell membranes studied by atomic force microscopy. Semin. Cell Dev. Biol. 73:31–44
    [Google Scholar]
  67. 67. 
    Whited AM, Park P. 2014. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim. Biophys. Acta 1838:156–68
    [Google Scholar]
  68. 68. 
    Loura LMS, Prieto M, Fernandes F 2010. The more you see: spectroscopy in molecular biophysics. Eur. Biophys. J. 39:4721
    [Google Scholar]
  69. 69. 
    Claxton DP, Kazmier K, Mishra S, McHaourab HS 2015. Navigating membrane protein structure, dynamics, and energy landscapes using spin labeling and EPR spectroscopy. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Part B, Vol. 564 PZ Qin, K Warncke 249–87 Waltham, MA: Academic Press
    [Google Scholar]
  70. 70. 
    Sahu ID, Lorigan GA. 2015. Biophysical EPR studies applied to membrane proteins. J. Phys. Chem. Biophys. 5:188
    [Google Scholar]
  71. 71. 
    Wang Y, Liu Y, DeBerg HA, Nomura T, Hoffman M et al. 2014. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3:e01834
    [Google Scholar]
  72. 72. 
    Chavent M, Duncan AL, Sansom MSP 2016. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr. Opin. Struct. Biol. 40:8–16
    [Google Scholar]
  73. 73. 
    Barrera NP, Di Bartolo N, Booth PJ, Robinson CV 2008. Micelles protect membrane complexes from solution to vacuum. Science 321:5886243–46
    [Google Scholar]
  74. 74. 
    Laganowsky A, Reading E, Hopper JTS, Robinson CV 2013. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8:4639–51
    [Google Scholar]
  75. 75. 
    Hopper JTS, Yu YT-C, Li D, Raymond A, Bostock M et al. 2013. Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods 10:121206–8
    [Google Scholar]
  76. 76. 
    Gupta K, Li J, Liko I, Gault J, Bechara C et al. 2018. Identifying key membrane protein lipid interactions using mass spectrometry. Nat. Protoc. 13:51106
    [Google Scholar]
  77. 77. 
    Cong X, Liu Y, Liu W, Liang X, Laganowsky A 2017. Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat. Commun. 8:12203
    [Google Scholar]
  78. 78. 
    Konijnenberg A, Bannwarth L, Yilmaz D, Koçer A, Venien‐Bryan C, Sobott F 2015. Top‐down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Sci 24:81292–300
    [Google Scholar]
  79. 79. 
    Barrera NP, Zhou M, Robinson CV 2013. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23:11–8
    [Google Scholar]
  80. 80. 
    Sharon M, Robinson CV. 2007. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76:167–93
    [Google Scholar]
  81. 81. 
    Heck AJ. 2008. Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5:11927–33
    [Google Scholar]
  82. 82. 
    Morgner N, Zickermann V, Kerscher S, Wittig I, Abdrakhmanova A et al. 2008. Subunit mass fingerprinting of mitochondrial complex I. Biochim. Biophys. Acta 1777:101384–91
    [Google Scholar]
  83. 83. 
    Morgner N, Kleinschroth T, Barth H-DD, Ludwig B, Brutschy B 2007. A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. J. Am. Soc. Mass Spectrom. 18:81429–38
    [Google Scholar]
  84. 84. 
    Ambrose S, Housden NG, Gupta K, Fan J, White P et al. 2017. Native desorption electrospray ionization liberates soluble and membrane protein complexes from surfaces. Angew. Chem. Int. Ed. Engl. 56:4614463–68
    [Google Scholar]
  85. 85. 
    Henrich E, Peetz O, Hein C, Laguerre A, Hoffmann B et al. 2017. Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. eLife 6:e20954
    [Google Scholar]
  86. 86. 
    Peetz O, Henrich E, Laguerre A, Löhr F, Hein C et al. 2017. Insights into cotranslational membrane protein insertion by combined LILBID-mass spectrometry and NMR spectroscopy. Anal. Chem. 89:2212314–18
    [Google Scholar]
  87. 87. 
    Waberer L, Henrich E, Peetz O, Morgner N, Dötsch V et al. 2017. The synaptic vesicle protein SV31 assembles into a dimer and transports Zn2. J. Neurochem. 140:2280–93
    [Google Scholar]
  88. 88. 
    Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M et al. 2017. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:7637421–24
    [Google Scholar]
  89. 89. 
    Tsirigotaki A, Elzen RV, Veken PV, Lambeir A-MM, Economou A 2017. Dynamics and ligand-induced conformational changes in human prolyl oligopeptidase analyzed by hydrogen/deuterium exchange mass spectrometry. Sci. Rep. 7:12456
    [Google Scholar]
  90. 90. 
    Zoll S, Lane-Serff H, Mehmood S, Schneider J, Robinson CV et al. 2018. The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat. Microbiol. 3:3295–301
    [Google Scholar]
  91. 91. 
    West GM, Chien E, Katritch V, Gatchalian J, Chalmers MJ et al. 2011. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. Structure 19:101424–32
    [Google Scholar]
  92. 92. 
    Hebling CM, Morgan CR, Stafford DW, Jorgenson JW, Rand KD, Engen JR 2010. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal. Chem. 82:135415–19
    [Google Scholar]
  93. 93. 
    Morgan CR, Hebling CM, Rand KD, Stafford DW, Jorgenson JW, Engen JR 2011. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol. Cell. Proteom. 10:9M111.010876
    [Google Scholar]
  94. 94. 
    Reading E, Hall Z, Martens C, Haghighi T, Findlay H et al. 2017. Interrogating membrane protein conformational dynamics within native lipid compositions. Angew. Chem. Int. Ed. Engl. 56:4915654–57
    [Google Scholar]
  95. 95. 
    Ghosh M, Wang L, Ramesh R, Morgan LK, Kenney LJ, Anand GS 2017. Lipid-mediated regulation of embedded receptor kinases via parallel allosteric relays. Biophys. J. 112:4643–54
    [Google Scholar]
  96. 96. 
    Wang L, Morgan LK, Godakumbura P, Kenney LJ, Anand GS 2015. The inner membrane histidine kinase EnvZ senses osmolality via helix‐coil transitions in the cytoplasm. EMBO J 34:192481
    [Google Scholar]
  97. 97. 
    Reading E, Walton TA, Liko I, Marty MT, Laganowsky A et al. 2015. The effect of detergent, temperature, and lipid on the oligomeric state of MscL constructs: insights from mass spectrometry. Chem. Biol. 22:5593–603
    [Google Scholar]
  98. 98. 
    McLean MA, Gregory MC, Sligar SG 2018. Nanodiscs: a controlled bilayer surface for the study of membrane proteins. Annu. Rev. Biophys. 47:107–24
    [Google Scholar]
  99. 99. 
    Marty MT, Hoi K, Robinson CV 2016. Interfacing membrane mimetics with mass spectrometry. Acc. Chem. Res. 49:112459–67
    [Google Scholar]
  100. 100. 
    Calabrese AN, Watkinson TG, Henderson PJF, Radford SE, Ashcroft AE 2015. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal. Chem. 87:21118–26
    [Google Scholar]
  101. 101. 
    Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE 2015. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. Int. J. Mass Spectrom. 391:54–61
    [Google Scholar]
  102. 102. 
    Knowles TJ, Finka R, Smith C, Lin Y-P, Dafforn T, Overduin M 2009. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131:227484–85
    [Google Scholar]
  103. 103. 
    Long AR, O'Brien CC, Malhotra K, Schwall CT, Albert AD et al. 2013. A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41
    [Google Scholar]
  104. 104. 
    Orwick-Rydmark M, Lovett JE, Graziadei A, Lindholm L, Hicks MR, Watts A 2012. Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett 12:94687–92
    [Google Scholar]
  105. 105. 
    Gulati S, Jamshad M, Knowles TJ, Morrison KA, Downing R et al. 2014. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 461:2269–78
    [Google Scholar]
  106. 106. 
    Lee SC, Knowles TJ, Postis VLG, Jamshad M, Parslow RA et al. 2016. A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat. Protoc. 11:71149–62
    [Google Scholar]
  107. 107. 
    Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30:81425–32
    [Google Scholar]
  108. 108. 
    Sham L-TT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N 2014. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:6193220–22
    [Google Scholar]
  109. 109. 
    Bolla JR, Sauer JB, Wu D, Mehmood S, Allison TM, Robinson CV 2018. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat. Chem. 10:3363–71
    [Google Scholar]
  110. 110. 
    Whitfield C, Trent MS. 2014. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83:99–128
    [Google Scholar]
  111. 111. 
    Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M 2017. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549:7671233–37
    [Google Scholar]
  112. 112. 
    Zutz A, Hoffmann J, Hellmich UA, Glaubitz C, Ludwig B et al. 2011. Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J. Biol. Chem 286:97104–15
    [Google Scholar]
  113. 113. 
    Noll A, Thomas C, Herbring V, Zollmann T, Barth K et al. 2017. Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. PNAS 114:4E438–47
    [Google Scholar]
  114. 114. 
    Marsh JA, Teichmann SA. 2015. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84:551–75
    [Google Scholar]
  115. 115. 
    Schumann-Gillett A, Blyth MT, O'Mara ML 2019. Is protein structure enough? A review of the role of lipids in SLC6 transporter function. Neurosci. Lett. In press
    [Google Scholar]
  116. 116. 
    Anderluh A, Hofmaier T, Klotzsch E, Kudlacek O, Stockner T et al. 2017. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8:14089
    [Google Scholar]
  117. 117. 
    Sukharev SI, Blount P, Martinac B, Kung C 1997. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59:633–57
    [Google Scholar]
  118. 118. 
    Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:6901942–48
    [Google Scholar]
  119. 119. 
    Liu Z, Gandhi CS, Rees DC 2009. Structure of a tetrameric MscL in an expanded intermediate state. Nature 461:7260120–24
    [Google Scholar]
  120. 120. 
    Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E 2005. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:7056215–23
    [Google Scholar]
  121. 121. 
    Krishnamurthy H, Gouaux E. 2012. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:7382469–74
    [Google Scholar]
  122. 122. 
    Quick M, Winther A-M, Shi L, Nissen P, Weinstein H, Javitch JA 2009. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. PNAS 106:145563–68
    [Google Scholar]
  123. 123. 
    Piscitelli CL, Krishnamurthy H, Gouaux E 2010. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 468:73271129–32
    [Google Scholar]
  124. 124. 
    Wang H, Elferich J, Gouaux E 2012. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat. Struct. Mol. Biol. 19:2212–19
    [Google Scholar]
  125. 125. 
    Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B et al. 2015. Oligomerization of the UapA purine transporter is critical for ER-exit, plasma membrane localization and turnover. J. Mol. Biol. 427:162679–96
    [Google Scholar]
  126. 126. 
    Pyle E, Kalli AC, Amillis S, Hall Z, Lau AM et al. 2018. Structural lipids enable the formation of functional oligomers of the eukaryotic purine symporter UapA. Cell Chem. Biol. 25:7840–48
    [Google Scholar]
  127. 127. 
    Liko I, Degiacomi MT, Mohammed S, Yoshikawa S, Schmidt C, Robinson CV 2016. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. PNAS 113:298230–35
    [Google Scholar]
  128. 128. 
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:7503172–75
    [Google Scholar]
  129. 129. 
    Zhong D, Blount P. 2013. Phosphatidylinositol is crucial for the mechanosensitivity of Mycobacterium tuberculosis MscL. Biochemistry 52:325415–20
    [Google Scholar]
  130. 130. 
    Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S et al. 2014. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. PNAS 111:259145–50
    [Google Scholar]
  131. 131. 
    Mehmood S, Corradi V, Choudhury HG, Hussain R, Becker P et al. 2016. Structural and functional basis for lipid synergy on the activity of the antibacterial peptide ABC transporter McjD. J. Biol. Chem. 291:4121656–68
    [Google Scholar]
  132. 132. 
    Ebner M, Lučić I, Leonard TA, Yudushkin I 2017. PI(3,4,5)P3 engagement restricts Akt activity to cellular membranes. Mol. Cell 65:3416–31
    [Google Scholar]
  133. 133. 
    Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A et al. 2016. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44:51091–101
    [Google Scholar]
  134. 134. 
    Patrick JW, Boone CD, Liu W, Conover GM, Liu Y et al. 2018. Allostery revealed within lipid binding events to membrane proteins. PNAS 115:122976–81
    [Google Scholar]
  135. 135. 
    Oates J, Watts A. 2011. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21:6802–7
    [Google Scholar]
  136. 136. 
    Dawaliby R, Trubbia C, Delporte C, Masureel M, Antwerpen P et al. 2016. Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nat. Chem. Biol. 12:135–39
    [Google Scholar]
  137. 137. 
    Inagaki S, Ghirlando R, White JF, Gvozdenovic-Jeremic J, Northup JK, Grisshammer R 2012. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 417:1–295–111
    [Google Scholar]
  138. 138. 
    Carpenter B, Tate CG. 2016. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng. Des. Sel. 29:12583–94
    [Google Scholar]
  139. 139. 
    Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJR 2012. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9:111084–86
    [Google Scholar]
  140. 140. 
    Gault J, Donlan JAC, Liko I, Hopper JTS, Gupta K et al. 2016. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13:4333–36
    [Google Scholar]
  141. 141. 
    McLaughlin S, Wang J, Gambhir A, Murray D 2002. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31:151–75
    [Google Scholar]
  142. 142. 
    Hanske J, Sadian Y, Müller CW 2018. The cryo-EM resolution revolution and transcription complexes. Curr. Opin. Struct. Biol. 52:8–15
    [Google Scholar]
  143. 143. 
    Li D, Caffrey M. 2015. Renaturing membrane proteins in the lipid cubic phase, a nanoporous membrane mimetic. Sci. Rep. 4:5806
    [Google Scholar]
  144. 144. 
    Nogly P, Weinert T, James D, Carbajo S, Ozerov D et al. 2018. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:6398eaat0094
    [Google Scholar]
  145. 145. 
    Liko I, Allison TM, Hopper JT, Robinson CV 2016. Mass spectrometry guided structural biology. Curr. Opin. Struct. Biol. 40:136–44
    [Google Scholar]
  146. 146. 
    Snijder J, Radtke K, Anderson F, Scholtes L, Corradini E et al. 2017. Vertex-specific proteins pUL17 and pUL25 mechanically reinforce herpes simplex virus capsids. J. Virol. 91:1217
    [Google Scholar]
  147. 147. 
    Chorev DS, Baker LA, Wu D, Beilsten-Edmands V, Rouse SL et al. 2018. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 362:6416829–34
    [Google Scholar]
  148. 148. 
    Marcoux J, Wang SC, Politis A, Reading E, Ma J et al. 2013. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. PNAS 110:249704–9
    [Google Scholar]
  149. 149. 
    Janganan TK, Bavro VN, Zhang L, Matak-Vinkovic D, Barrera NP et al. 2011. Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3:. 6: :3. J. Biol. Chem. 286:3026900–912
    [Google Scholar]
  150. 150. 
    Mehmood S, Marcoux J, Gault J, Quigley A, Michaelis S et al. 2016. Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat. Chem. 8:121152–58
    [Google Scholar]
  151. 151. 
    Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC et al. 2011. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334:6054380–85
    [Google Scholar]
  152. 152. 
    Leney AC, McMorran LM, Radford SE, Ashcroft AE 2012. Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84:229841–47
    [Google Scholar]
  153. 153. 
    Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ et al. 2016. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7:12865
    [Google Scholar]
  154. 154. 
    Liao SY, Lee M, Wang T, Sergeyev IV, Hong M 2016. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. J. Biomol. NMR 64:3223–37
    [Google Scholar]
  155. 155. 
    Broecker J, Eger BT, Ernst OP 2017. Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:2384–92
    [Google Scholar]
  156. 156. 
    Machen AJ, Akkaladevi N, Trecazzi C, O'Neil PT, Mukherjee S et al. 2017. Asymmetric cryo-EM structure of anthrax toxin protective antigen pore with lethal factor N-terminal domain. Toxins 9:10298
    [Google Scholar]
  157. 157. 
    McCoy J, Hubbell WL. 2011. High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. PNAS 108:41331–36
    [Google Scholar]
  158. 158. 
    Khalili-Araghi F, Ziervogel B, Gumbart JC, Roux B 2013. Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations. J. Gen. Physiol. 142:4465–75
    [Google Scholar]
  159. 159. 
    Serdiuk T, Balasubramaniam D, Sugihara J, Mari SA, Kaback HR, Müller DJ 2016. YidC assists the stepwise and stochastic folding of membrane proteins. Nat. Chem. Biol. 12:11911–17
    [Google Scholar]
  160. 160. 
    Su C-C, Yin L, Kumar N, Dai L, Radhakrishnan A et al. 2017. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat. Commun. 8:1171
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111508
Loading
/content/journals/10.1146/annurev-biochem-013118-111508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error