1932

Abstract

The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111717
2019-06-20
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-111717.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111717&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Liveris D, Klotsky RA, Schwartz I 1991. Growth rate regulation of translation initiation factor IF3 biosynthesis in Escherichia coli. J. . Bacteriol 173:3888–93
    [Google Scholar]
  2. 2. 
    Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bahler J 2012. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151:671–83
    [Google Scholar]
  3. 3. 
    von der Haar T 2008. A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst. Biol. 2:87
    [Google Scholar]
  4. 4. 
    Balchin D, Hayer-Hartl M, Hartl FU 2016. In vivo aspects of protein folding and quality control. Science 353:aac4354
    [Google Scholar]
  5. 5. 
    Rodnina MV, Wintermeyer W 2016. Protein elongation, co-translational folding and targeting. J. Mol. Biol. 428:2165–85
    [Google Scholar]
  6. 6. 
    Pechmann S, Willmund F, Frydman J 2013. The ribosome as a hub for protein quality control. Mol. Cell 49:411–21
    [Google Scholar]
  7. 7. 
    Kramer G, Boehringer D, Ban N, Bukau B 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16:589–97
    [Google Scholar]
  8. 8. 
    Gloge F, Becker AH, Kramer G, Bukau B 2014. Co-translational mechanisms of protein maturation. Curr. Opin. Struct. Biol. 24:24–33
    [Google Scholar]
  9. 9. 
    Preissler S, Deuerling E 2012. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37:274–83
    [Google Scholar]
  10. 10. 
    Zhang G, Ignatova Z 2011. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr. Opin. Struct. Biol. 21:25–31
    [Google Scholar]
  11. 11. 
    Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR 2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–74
    [Google Scholar]
  12. 12. 
    Duttler S, Pechmann S, Frydman J 2013. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50:379–93
    [Google Scholar]
  13. 13. 
    Vabulas RM, Hartl FU 2005. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310:1960–63
    [Google Scholar]
  14. 14. 
    Doring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y et al. 2017. Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170:298–311.e20
    [Google Scholar]
  15. 15. 
    Zhou M, Guo J, Cha J, Chae M, Chen S et al. 2013. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111–15
    [Google Scholar]
  16. 16. 
    Pechmann S, Chartron JW, Frydman J 2014. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21:1100–5
    [Google Scholar]
  17. 17. 
    Schuller AP, Green R 2018. Roadblocks and resolutions in eukaryotic translation. Nat. Rev. Mol. Cell Biol. 19:526–41
    [Google Scholar]
  18. 18. 
    Joazeiro CAP. 2017. Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. 33:343–68
    [Google Scholar]
  19. 19. 
    Rapoport TA, Li L, Park E 2017. Structural and mechanistic insights into protein translocation. Annu. Rev. Cell Dev. Biol. 33:369–90
    [Google Scholar]
  20. 20. 
    Voss NR, Gerstein M, Steitz TA, Moore PB 2006. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360:893–906
    [Google Scholar]
  21. 21. 
    Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP et al. 2009. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326:1412–15
    [Google Scholar]
  22. 22. 
    Becker T, Bhushan S, Jarasch A, Armache JP, Funes S et al. 2009. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369–73
    [Google Scholar]
  23. 23. 
    Nissen P, Hansen J, Ban N, Moore PB, Steitz TA 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30
    [Google Scholar]
  24. 24. 
    Lu J, Deutsch C 2005. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12:1123–29
    [Google Scholar]
  25. 25. 
    O'Brien EP, Hsu ST, Christodoulou J, Vendruscolo M, Dobson CM 2010. Transient tertiary structure formation within the ribosome exit port. J. Am. Chem. Soc. 132:16928–37
    [Google Scholar]
  26. 26. 
    Woolhead CA, McCormick PJ, Johnson AE 2004. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116:725–36
    [Google Scholar]
  27. 27. 
    Kosolapov A, Deutsch C 2009. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16:405–11
    [Google Scholar]
  28. 28. 
    Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L et al. 2015. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep 12:1533–40
    [Google Scholar]
  29. 29. 
    Holtkamp W, Kokic G, Jager M, Mittelstaet J, Komar AA, Rodnina MV 2015. Cotranslational protein folding on the ribosome monitored in real time. Science 350:1104–7
    [Google Scholar]
  30. 30. 
    Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA et al. 2015. Translational tuning optimizes nascent protein folding in cells. Science 348:444–48
    [Google Scholar]
  31. 31. 
    Lange S, Franks WT, Rajagopalan N, Doring K, Geiger MA et al. 2016. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. Sci. Adv. 2:e1600379
    [Google Scholar]
  32. 32. 
    Cabrita LD, Cassaignau AME, Launay HMM, Waudby CA, Wlodarski T et al. 2016. A structural ensemble of a ribosome–nascent chain complex during cotranslational protein folding. Nat. Struct. Mol. Biol. 23:278
    [Google Scholar]
  33. 33. 
    Deckert A, Waudby CA, Wlodarski T, Wentink AS, Wang X et al. 2016. Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. PNAS 113:5012–17
    [Google Scholar]
  34. 34. 
    O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM 2011. New scenarios of protein folding can occur on the ribosome. J. Am. Chem. Soc. 133:513–26
    [Google Scholar]
  35. 35. 
    Kaiser CM, Goldman DH, Chodera JD, Tinoco I, Bustamante C 2011. The ribosome modulates nascent protein folding. Science 334:1723–27
    [Google Scholar]
  36. 36. 
    Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G 2012. Concerted action of the ribosome and the associated chaperone Trigger Factor confines nascent polypeptide folding. Mol. Cell 48:63–74
    [Google Scholar]
  37. 37. 
    Clark PL, King J 2001. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J. Biol. Chem. 276:25411–20
    [Google Scholar]
  38. 38. 
    Zhang G, Hubalewska M, Ignatova Z 2009. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16:274–80
    [Google Scholar]
  39. 39. 
    Cabrita LD, Hsu ST, Launay H, Dobson CM, Christodoulou J 2009. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. PNAS 106:22239–44
    [Google Scholar]
  40. 40. 
    Eichmann C, Preissler S, Riek R, Deuerling E 2010. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy. PNAS 107:9111–16
    [Google Scholar]
  41. 41. 
    Frydman J, Erdjument-Bromage H, Tempst P, Hartl FU 1999. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat. Struct. Biol. 6:697–705
    [Google Scholar]
  42. 42. 
    Nicola AV, Chen W, Helenius A 1999. Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat. Cell Biol. 1:341–45
    [Google Scholar]
  43. 43. 
    Han Y, David A, Liu B, Magadan JG, Bennink JR et al. 2012. Monitoring cotranslational protein folding in mammalian cells at codon resolution. PNAS 109:12467–72
    [Google Scholar]
  44. 44. 
    Brocchieri L, Karlin S 2005. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33:3390–400
    [Google Scholar]
  45. 45. 
    Ciryam P, Morimoto RI, Vendruscolo M, Dobson CM, O'Brien EP 2013. In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome. PNAS 110:E132–40
    [Google Scholar]
  46. 46. 
    Ugrinov KG, Clark PL 2010. Cotranslational folding increases GFP folding yield. Biophys. J. 98:1312–20
    [Google Scholar]
  47. 47. 
    Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–23
    [Google Scholar]
  48. 48. 
    Oh E, Becker AH, Sandikci A, Huber D, Chaba R et al. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295–308
    [Google Scholar]
  49. 49. 
    Chadani Y, Niwa T, Chiba S, Taguchi H, Ito K 2016. Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing. PNAS 113:E829–38
    [Google Scholar]
  50. 50. 
    Jacobs WM, Shakhnovich EI 2017. Evidence of evolutionary selection for cotranslational folding. PNAS 114:11434–39
    [Google Scholar]
  51. 51. 
    Sander IM, Chaney JL, Clark PL 2014. Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design. J. Am. Chem. Soc. 136:858–61
    [Google Scholar]
  52. 52. 
    Siller E, DeZwaan DC, Anderson JF, Freeman BC, Barral JM 2010. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J. Mol. Biol. 396:1310–18
    [Google Scholar]
  53. 53. 
    Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM et al. 2007. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–28
    [Google Scholar]
  54. 54. 
    O'Brien EP, Vendruscolo M, Dobson CM 2012. Prediction of variable translation rate effects on cotranslational protein folding. Nat. Commun. 3:868
    [Google Scholar]
  55. 55. 
    Zhang D, Shan SO 2012. Translation elongation regulates substrate selection by the signal recognition particle. J. Biol. Chem. 287:7652–60
    [Google Scholar]
  56. 56. 
    Liu B, Han Y, Qian SB 2013. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol. Cell 49:453–63
    [Google Scholar]
  57. 57. 
    Shalgi R, Hurt JA, Krykbaeva I, Taipale M, Lindquist S, Burge CB 2013. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell 49:439–52
    [Google Scholar]
  58. 58. 
    Grudnik P, Bange G, Sinning I 2009. Protein targeting by the signal recognition particle. Biol. Chem. 390:775–82
    [Google Scholar]
  59. 59. 
    Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA et al. 2004. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427:808–14
    [Google Scholar]
  60. 60. 
    Ataide SF, Schmitz N, Shen K, Ke A, Shan SO et al. 2011. The crystal structure of the signal recognition particle in complex with its receptor. Science 331:881–86
    [Google Scholar]
  61. 61. 
    Shen K, Arslan S, Akopian D, Ha T, Shan SO 2012. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492:271–75
    [Google Scholar]
  62. 62. 
    Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215–21
    [Google Scholar]
  63. 63. 
    Chartron JW, Hunt KC, Frydman J 2016. Cotranslational signal-independent SRP preloading during membrane targeting. Nature 536:224–28
    [Google Scholar]
  64. 64. 
    Deleted in proof
  65. 65. 
    Sharma AK, O'Brien EP 2018. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr. Opin. Struct. Biol. 49:94–103
    [Google Scholar]
  66. 66. 
    Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I Jr 2011. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–21
    [Google Scholar]
  67. 67. 
    Wilson DN, Arenz S, Beckmann R 2016. Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr. Opin. Struct. Biol. 37:123–33
    [Google Scholar]
  68. 68. 
    Lu J, Deutsch C 2008. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384:73–86
    [Google Scholar]
  69. 69. 
    Ito K, Chiba S 2013. Arrest peptides: Cis-acting modulators of translation. Annu. Rev. Biochem. 82:171–202
    [Google Scholar]
  70. 70. 
    Bischoff L, Berninghausen O, Beckmann R 2014. Molecular basis for the ribosome functioning as an L-tryptophan sensor. Cell Rep 9:469–75
    [Google Scholar]
  71. 71. 
    Nakatogawa H, Ito K 2001. Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol. Cell 7:185–92
    [Google Scholar]
  72. 72. 
    Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T et al. 2011. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLOS Biol 9:e1000581
    [Google Scholar]
  73. 73. 
    Yanagitani K, Kimata Y, Kadokura H, Kohno K 2011. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331:586–89
    [Google Scholar]
  74. 74. 
    Kanda S, Yanagitani K, Yokota Y, Esaki Y, Kohno K 2016. Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway. PNAS 113:E5886–95
    [Google Scholar]
  75. 75. 
    Ismail N, Hedman R, Schiller N, von Heijne G 2012. A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat. Struct. Mol. Biol. 19:1018–22
    [Google Scholar]
  76. 76. 
    Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I, Bustamante C 2015. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348:457–60
    [Google Scholar]
  77. 77. 
    Nilsson OB, Muller-Lucks A, Kramer G, Bukau B, von Heijne G 2016. Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein. J. Mol. Biol. 428:1356–64
    [Google Scholar]
  78. 78. 
    Giglione C, Boularot A, Meinnel T 2004. Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61:1455–74
    [Google Scholar]
  79. 79. 
    Starheim KK, Gevaert K, Arnesen T 2012. Protein N-terminal acetyltransferases: When the start matters. Trends Biochem. Sci. 37:152–61
    [Google Scholar]
  80. 80. 
    Giglione C, Fieulaine S, Meinnel T 2015. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 114:134–46
    [Google Scholar]
  81. 81. 
    Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolic S et al. 2008. A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing. Nature 452:108–11
    [Google Scholar]
  82. 82. 
    Sandikci A, Gloge F, Martinez M, Mayer MP, Wade R et al. 2013. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nat. Struct. Mol. Biol. 20:843–50
    [Google Scholar]
  83. 83. 
    Raue U, Oellerer S, Rospert S 2007. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282:7809–16
    [Google Scholar]
  84. 84. 
    Vetro JA, Chang YH 2002. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo. J. Cell. Biochem. 85:678–88
    [Google Scholar]
  85. 85. 
    Aksnes H, Drazic A, Marie M, Arnesen T 2016. First things first: vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci. 41:746–60
    [Google Scholar]
  86. 86. 
    Polevoda B, Cardillo TS, Doyle TC, Bedi GS, Sherman F 2003. Nat3p and Mdm20p are required for function of yeast NatB Nα-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278:30686–97
    [Google Scholar]
  87. 87. 
    Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M et al. 1989. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J 8:2067–75
    [Google Scholar]
  88. 88. 
    Magin RS, Deng S, Zhang H, Cooperman B, Marmorstein R 2017. Probing the interaction between NatA and the ribosome for co-translational protein acetylation. PLOS ONE 12:e0186278
    [Google Scholar]
  89. 89. 
    Narita K. 1958. Isolation of acetylseryltyrosine from the chymotryptic digests of proteins of five strains of tobacco mosaic virus. Biochim. Biophys. Acta 30:352–59
    [Google Scholar]
  90. 90. 
    Forte GM, Pool MR, Stirling CJ 2011. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum. PLOS Biol 9:e1001073
    [Google Scholar]
  91. 91. 
    Shemorry A, Hwang CS, Varshavsky A 2013. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50:540–51
    [Google Scholar]
  92. 92. 
    Hwang CS, Shemorry A, Varshavsky A 2010. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–77
    [Google Scholar]
  93. 93. 
    Kats I, Khmelinskii A, Kschonsak M, Huber F, Kniess RA et al. 2018. Mapping degradation signals and pathways in a eukaryotic N-terminome. Mol. Cell 70:488–501
    [Google Scholar]
  94. 94. 
    Tsirigotaki A, De Geyter J, Sostaric N, Economou A, Karamanou S 2017. Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol. 15:21–36
    [Google Scholar]
  95. 95. 
    Kuhn A, Koch HG, Dalbey RE 2017. Targeting and insertion of membrane proteins. EcoSal Plus7
    [Google Scholar]
  96. 96. 
    Aviram N, Schuldiner M 2017. Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J. Cell Sci. 130:4079–85
    [Google Scholar]
  97. 97. 
    Wiedemann N, Pfanner N 2017. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86:685–714
    [Google Scholar]
  98. 98. 
    Williams CC, Jan CH, Weissman JS 2014. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–51
    [Google Scholar]
  99. 99. 
    Welte T, Kudva R, Kuhn P, Sturm L, Braig D et al. 2012. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol. Biol. Cell 23:464–79
    [Google Scholar]
  100. 100. 
    Driessen AJM, Nouwen N 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77:643–67
    [Google Scholar]
  101. 101. 
    Schibich D, Gloge F, Pohner I, Bjorkholm P, Wade RC et al. 2016. Global profiling of SRP interaction with nascent polypeptides. Nature 536:219–23
    [Google Scholar]
  102. 102. 
    Elvekrog MM, Walter P 2015. Dynamics of co-translational protein targeting. Curr. Opin. Chem. Biol. 29:79–86
    [Google Scholar]
  103. 103. 
    Holtkamp W, Lee S, Bornemann T, Senyushkina T, Rodnina MV, Wintermeyer W 2012. Dynamic switch of the signal recognition particle from scanning to targeting. Nat. Struct. Mol. Biol. 19:1332–37
    [Google Scholar]
  104. 104. 
    Jomaa A, Boehringer D, Leibundgut M, Ban N 2016. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat. Commun. 7:10471
    [Google Scholar]
  105. 105. 
    Denks K, Sliwinski N, Erichsen V, Borodkina B, Origi A, Koch HG 2017. The signal recognition particle contacts uL23 and scans substrate translation inside the ribosomal tunnel. Nat. Microbiol. 2:16265
    [Google Scholar]
  106. 106. 
    Bornemann T, Jockel J, Rodnina MV, Wintermeyer W 2008. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 15:494–99
    [Google Scholar]
  107. 107. 
    Mercier E, Holtkamp W, Rodnina MV, Wintermeyer W 2017. Signal recognition particle binds to translating ribosomes before emergence of a signal anchor sequence. Nucleic Acids Res 45:11858–66
    [Google Scholar]
  108. 108. 
    Noriega TR, Chen J, Walter P, Puglisi JD 2014. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3:e04418
    [Google Scholar]
  109. 109. 
    Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB et al. 2014. Signal recognition particle-ribosome binding is sensitive to nascent chain length. J. Biol. Chem. 289:19294–305
    [Google Scholar]
  110. 110. 
    Collinson I. 2017. SecA—a new twist in the tale. J. Bacteriol. 199:e00736–16
    [Google Scholar]
  111. 111. 
    Randall LL, Hardy SJ 2002. SecB, one small chaperone in the complex milieu of the cell. Cell. Mol. Life Sci. 59:1617–23
    [Google Scholar]
  112. 112. 
    Sala A, Bordes P, Genevaux P 2014. Multitasking SecB chaperones in bacteria. Front. Microbiol. 5:666
    [Google Scholar]
  113. 113. 
    Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F et al. 2011. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 41:343–53
    [Google Scholar]
  114. 114. 
    Huber D, Jamshad M, Hanmer R, Schibich D, Doring K et al. 2017. SecA cotranslationally interacts with nascent substrate proteins in vivo. J. Bacteriol. 199:e00622
    [Google Scholar]
  115. 115. 
    Singh R, Kraft C, Jaiswal R, Sejwal K, Kasaragod VB et al. 2014. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. J. Biol. Chem. 289:7190–99
    [Google Scholar]
  116. 116. 
    Karamyshev AL, Johnson AE 2005. Selective SecA association with signal sequences in ribosome-bound nascent chains: a potential role for SecA in ribosome targeting to the bacterial membrane. J. Biol. Chem. 280:37930–40
    [Google Scholar]
  117. 117. 
    Randall LL, Topping TB, Hardy SJS, Pavlov MY, Freistroffer DV, Ehrenberg M 1997. Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins. PNAS 94:802–7
    [Google Scholar]
  118. 118. 
    Knoblauch NT, Rudiger S, Schonfeld HJ, Driessen AJ, Schneider-Mergener J, Bukau B 1999. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274:34219–25
    [Google Scholar]
  119. 119. 
    Huang C, Rossi P, Saio T, Kalodimos CG 2016. Structural basis for the antifolding activity of a molecular chaperone. Nature 537:202–6
    [Google Scholar]
  120. 120. 
    Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P et al. 2012. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1:251–64
    [Google Scholar]
  121. 121. 
    Castanie-Cornet MP, Bruel N, Genevaux P 2014. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Acta Mol. Cell Res. 1843:1442–56
    [Google Scholar]
  122. 122. 
    Ast T, Cohen G, Schuldiner M 2013. A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152:1134–45
    [Google Scholar]
  123. 123. 
    Costa EA, Subramanian K, Nunnari J, Weissman JS 2018. Defining the physiological role of SRP in protein-targeting efficiency and specificity. Science 359:689–92
    [Google Scholar]
  124. 124. 
    Voorhees RM, Hegde RS 2015. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 4:e07975
    [Google Scholar]
  125. 125. 
    Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S 2009. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. PNAS 106:1398–403
    [Google Scholar]
  126. 126. 
    Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG et al. 2016. The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540:134–38
    [Google Scholar]
  127. 127. 
    Hassdenteufel S, Sicking M, Schorr S, Aviram N, Fecher-Trost C et al. 2017. hSnd2 protein represents an alternative targeting factor to the endoplasmic reticulum in human cells. FEBS Lett 591:3211–24
    [Google Scholar]
  128. 128. 
    Casson J, McKenna M, Hassdenteufel S, Aviram N, Zimmerman R, High S 2017. Multiple pathways facilitate the biogenesis of mammalian tail-anchored proteins. J. Cell Sci. 130:3851–61
    [Google Scholar]
  129. 129. 
    Shao S, Hegde RS 2011. A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147:1576–88
    [Google Scholar]
  130. 130. 
    Tripathi A, Mandon EC, Gilmore R, Rapoport TA 2017. Two alternative binding mechanisms connect the protein translocation Sec71–Sec72 complex with heat shock proteins. J. Biol. Chem. 292:8007–18
    [Google Scholar]
  131. 131. 
    Zhang Y, Berndt U, Golz H, Tais A, Oellerer S et al. 2012. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Mol. Biol. Cell 23:3027–40
    [Google Scholar]
  132. 132. 
    del Alamo M, Hogan DJ, Pechmann S, Albanese V, Brown PO, Frydman J 2011. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLOS Biol 9:e1001100
    [Google Scholar]
  133. 133. 
    Gamerdinger M, Hanebuth MA, Frickey T, Deuerling E 2015. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348:201–7
    [Google Scholar]
  134. 134. 
    Hoffmann A, Bukau B, Kramer G 2010. Structure and function of the molecular chaperone Trigger Factor. Biochim. Biophys. Acta Mol. Cell Res. 1803:650–61
    [Google Scholar]
  135. 135. 
    Patzelt H, Kramer G, Rauch T, Schonfeld HJ, Bukau B, Deuerling E 2002. Three-state equilibrium of Escherichia coli Trigger Factor. Biol. Chem. 383:1611–19
    [Google Scholar]
  136. 136. 
    Saio T, Kawagoe S, Ishimori K, Kalodimos CG 2018. Oligomerization of a molecular chaperone modulates its activity. eLife 7:e35731
    [Google Scholar]
  137. 137. 
    Kramer G, Rauch T, Rist W, Vorderwulbecke S, Patzelt H et al. 2002. L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–74
    [Google Scholar]
  138. 138. 
    Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–96
    [Google Scholar]
  139. 139. 
    Bornemann T, Holtkamp W, Wintermeyer W 2014. Interplay between trigger factor and other protein biogenesis factors on the ribosome. Nat. Commun. 5:4180
    [Google Scholar]
  140. 140. 
    Saio T, Guan X, Rossi P, Economou A, Kalodimos CG 2014. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494
    [Google Scholar]
  141. 141. 
    Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A et al. 2008. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome. EMBO J 27:1622–32
    [Google Scholar]
  142. 142. 
    Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA et al. 2006. Real-time observation of trigger factor function on translating ribosomes. Nature 444:455–60
    [Google Scholar]
  143. 143. 
    Rutkowska A, Mayer MP, Hoffmann A, Merz F, Zachmann-Brand B et al. 2008. Dynamics of trigger factor interaction with translating ribosomes. J. Biol. Chem. 283:4124–32
    [Google Scholar]
  144. 144. 
    Raine A, Lovmar M, Wikberg J, Ehrenberg M 2006. Trigger factor binding to ribosomes with nascent peptide chains of varying lengths and sequences. J. Biol. Chem. 281:28033–38
    [Google Scholar]
  145. 145. 
    O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM 2012. Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant cytosolic interactions. J. Am. Chem. Soc. 134:10920–32
    [Google Scholar]
  146. 146. 
    Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M et al. 2004. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117:199–209
    [Google Scholar]
  147. 147. 
    Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJ et al. 2013. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500:98–101
    [Google Scholar]
  148. 148. 
    Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D et al. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–65
    [Google Scholar]
  149. 149. 
    Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B 1999. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–96
    [Google Scholar]
  150. 150. 
    Hayer-Hartl M, Bracher A, Hartl FU 2016. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41:62–76
    [Google Scholar]
  151. 151. 
    Ying BW, Taguchi H, Kondo M, Ueda T 2005. Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides. J. Biol. Chem. 280:12035–40
    [Google Scholar]
  152. 152. 
    Ullers RS, Luirink J, Harms N, Schwager F, Georgopoulos C, Genevaux P 2004. SecB is a bona fide generalized chaperone in Escherichia coli. . PNAS 101:7583–88
    [Google Scholar]
  153. 153. 
    Vorderwulbecke S, Kramer G, Merz F, Kurz TA, Rauch T et al. 2004. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. FEBS Lett 559:181–87
    [Google Scholar]
  154. 154. 
    Chapman E, Farr GW, Usaite R, Furtak K, Fenton WA et al. 2006. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. PNAS 103:15800–5
    [Google Scholar]
  155. 155. 
    Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H 2010. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29:1552–64
    [Google Scholar]
  156. 156. 
    Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC et al. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. . Cell 122:209–20
    [Google Scholar]
  157. 157. 
    Zhang Y, Sinning I, Rospert S 2017. Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC. Nat. Struct. Mol. Biol. 24:611–19
    [Google Scholar]
  158. 158. 
    Albanese V, Yam AY, Baughman J, Parnot C, Frydman J 2006. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75–88
    [Google Scholar]
  159. 159. 
    Gautschi M, Mun A, Ross S, Rospert S 2002. A functional chaperone triad on the yeast ribosome. PNAS 99:4209–14
    [Google Scholar]
  160. 160. 
    Willmund F, del Alamo M, Pechmann S, Chen T, Albanese V et al. 2013. The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152:196–209
    [Google Scholar]
  161. 161. 
    Koplin A, Preissler S, Ilina Y, Koch M, Scior A et al. 2010. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189:57–68
    [Google Scholar]
  162. 162. 
    Albanese V, Reissmann S, Frydman J 2010. A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J. Cell Biol. 189:69–81
    [Google Scholar]
  163. 163. 
    Gumiero A, Conz C, Gese GV, Zhang Y, Weyer FA et al. 2016. Interaction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain. Nat. Commun. 7:13563
    [Google Scholar]
  164. 164. 
    Peisker K, Braun D, Wolfle T, Hentschel J, Funfschilling U et al. 2008. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol. Biol. Cell 19:5279–88
    [Google Scholar]
  165. 165. 
    Hanebuth MA, Kityk R, Fries SJ, Jain A, Kriel A et al. 2016. Multivalent contacts of the Hsp70 Ssb contribute to its architecture on ribosomes and nascent chain interaction. Nat. Commun. 7:13695
    [Google Scholar]
  166. 166. 
    Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y et al. 2002. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. PNAS 99:4203–8
    [Google Scholar]
  167. 167. 
    Weyer FA, Gumiero A, Gese GV, Lapouge K, Sinning I 2017. Structural insights into a unique Hsp70-Hsp40 interaction in the eukaryotic ribosome-associated complex. Nat. Struct. Mol. Biol. 24:144–51
    [Google Scholar]
  168. 168. 
    Lee K, Sharma R, Shrestha OK, Bingman CA, Craig EA 2016. Dual interaction of the Hsp70 J-protein cochaperone Zuotin with the 40S and 60S ribosomal subunits. Nat. Struct. Mol. Biol. 23:1003–10
    [Google Scholar]
  169. 169. 
    Zhang YX, Ma CY, Yuan Y, Zhu J, Li NN et al. 2014. Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome. Nat. Struct. Mol. Biol. 21:1042–46
    [Google Scholar]
  170. 170. 
    Huang P, Gautschi M, Walter W, Rospert S, Craig EA 2005. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat. Struct. Mol. Biol. 12:497–504
    [Google Scholar]
  171. 171. 
    Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–28
    [Google Scholar]
  172. 172. 
    Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510–18
    [Google Scholar]
  173. 173. 
    McCallum CD, Do H, Johnson AE, Frydman J 2000. The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribosome-bound nascent chains examined using photo-cross-linking. J. Cell Biol. 149:591–602
    [Google Scholar]
  174. 174. 
    Chen DH, Huang Y, Liu CL, Ruan Y, Shen WH 2014. Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. Planta 239:1159–73
    [Google Scholar]
  175. 175. 
    Hundley HA, Walter W, Bairstow S, Craig EA 2005. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308:1032–34
    [Google Scholar]
  176. 176. 
    Otto H, Conz C, Maier P, Wolfle T, Suzuki CK et al. 2005. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. PNAS 102:10064–69
    [Google Scholar]
  177. 177. 
    Jaiswal H, Conz C, Otto H, Wolfle T, Fitzke E et al. 2011. The chaperone network connected to human ribosome-associated complex. Mol. Cell. Biol. 31:1160–73
    [Google Scholar]
  178. 178. 
    Wiedmann B, Sakai H, Davis TA, Wiedmann M 1994. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370:434–40
    [Google Scholar]
  179. 179. 
    Pech M, Spreter T, Beckmann R, Beatrix B 2010. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome. J. Biol. Chem. 285:19679–87
    [Google Scholar]
  180. 180. 
    Wegrzyn RD, Hofmann D, Merz F, Nikolay R, Rauch T et al. 2006. A conserved motif is prerequisite for the interaction of NAC with ribosomal protein L23 and nascent chains. J. Biol. Chem. 281:2847–57
    [Google Scholar]
  181. 181. 
    Markesich DC, Gajewski KM, Nazimiec ME, Beckingham K 2000. bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery. Development 127:559–72
    [Google Scholar]
  182. 182. 
    Fünfschilling U, Rospert S 1999. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10:3289–99
    [Google Scholar]
  183. 183. 
    Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M, Arava Y 2014. OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat. Commun. 5:5711
    [Google Scholar]
  184. 184. 
    Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI 2013. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 32:1451–68
    [Google Scholar]
  185. 185. 
    Benschop JJ, Brabers N, van Leenen D, Bakker LV, van Deutekom HWM et al. 2010. A consensus of core protein complex compositions for Saccharomyces cerevisiae. Mol. Cell 38:916–28
    [Google Scholar]
  186. 186. 
    Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G et al. 2009. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLOS Biol 7:e96
    [Google Scholar]
  187. 187. 
    Phillip Y, Schreiber G 2013. Formation of protein complexes in crowded environments–from in vitro to in vivo. FEBS Lett 587:1046–52
    [Google Scholar]
  188. 188. 
    Natan E, Endoh T, Haim-Vilmovsky L, Flock T, Chalancon G et al. 2018. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nat. Struct. Mol. Biol. 25:279–88
    [Google Scholar]
  189. 189. 
    Oromendia AB, Dodgson SE, Amon A 2012. Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–708
    [Google Scholar]
  190. 190. 
    Zipser D. 1963. Studies on the ribosome-bound β-galactosidase of Escherichia coli. J. Mol. . Biol 7:739–51
    [Google Scholar]
  191. 191. 
    Lin L, DeMartino GN, Greene WC 2000. Cotranslational dimerization of the Rel homology domain of NF-κB1 generates p50–p105 heterodimers and is required for effective p50 production. EMBO J 19:4712–22
    [Google Scholar]
  192. 192. 
    Sakahira H, Nagata S 2002. Co-translational folding of caspase-activated DNase with Hsp70, Hsp40, and inhibitor of caspase-activated DNase. J. Biol. Chem. 277:3364–70
    [Google Scholar]
  193. 193. 
    Duncan CDS, Mata J 2011. Widespread cotranslational formation of protein complexes. PLOS Genet 7:e1002398
    [Google Scholar]
  194. 194. 
    Halbach A, Zhang H, Wengi A, Jablonska Z, Gruber IM et al. 2009. Cotranslational assembly of the yeast SET1C histone methyltransferase complex. EMBO J 28:2959–70
    [Google Scholar]
  195. 195. 
    Liu F, Jones DK, de Lange WJ, Robertson GA 2016. Cotranslational association of mRNA encoding subunits of heteromeric ion channels. PNAS 113:4859–64
    [Google Scholar]
  196. 196. 
    Shieh YW, Minguez P, Bork P, Auburger JJ, Guilbride DL et al. 2015. Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350:678–80
    [Google Scholar]
  197. 197. 
    Shiber A, Doring K, Friedrich U, Klann K, Merker D et al. 2018. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 561:268–72
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111717
Loading
/content/journals/10.1146/annurev-biochem-013118-111717
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error