1932

Abstract

Programmable nucleases and deaminases, which include zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR RNA-guided nucleases, and RNA-guided base editors, are now widely employed for the targeted modification of genomes in cells and organisms. These gene-editing tools hold tremendous promise for therapeutic applications. Importantly, these nucleases and deaminases may display off-target activity through the recognition of near-cognate DNA sequences to their target sites, resulting in collateral damage to the genome in the form of local mutagenesis or genomic rearrangements. For therapeutic genome-editing applications with these classes of programmable enzymes, it is essential to measure and limit genome-wide off-target activity. Herein, we discuss the key determinants of off-target activity for these systems. We describe various cell-based and cell-free methods for identifying genome-wide off-target sites and diverse strategies that have been developed for reducing the off-target activity of programmable gene-editing enzymes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111730
2019-06-20
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-111730.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111730&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kim YG, Cha J, Chandrasegaran S 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93:1156–60
    [Google Scholar]
  2. 2. 
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–51
    [Google Scholar]
  3. 3. 
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–48
    [Google Scholar]
  4. 4. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  5. 5. 
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23
    [Google Scholar]
  6. 6. 
    Cho SW, Kim S, Kim JM, Kim JS 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:230–32
    [Google Scholar]
  7. 7. 
    Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:823–26
    [Google Scholar]
  8. 8. 
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71
    [Google Scholar]
  9. 9. 
    Bak RO, Gomez-Ospina N, Porteus MH 2018. Gene editing on center stage. Trends Genet 34:600–11
    [Google Scholar]
  10. 10. 
    Urnov FD. 2018. Ctrl-Alt-inDel: genome editing to reprogram a cell in the clinic. Curr. Opin. Genet. Dev. 52:48–56
    [Google Scholar]
  11. 11. 
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–24
    [Google Scholar]
  12. 12. 
    Gehrke JM, Cervantes O, Clement MK, Wu Y, Zeng J et al. 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36:977–82
    [Google Scholar]
  13. 13. 
    Wang X, Li J, Wang Y, Yang B, Wei J et al. 2018. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36:946–49
    [Google Scholar]
  14. 14. 
    Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:aaf8729
    [Google Scholar]
  15. 15. 
    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. 2017. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–71
    [Google Scholar]
  16. 16. 
    Ryu SM, Koo T, Kim K, Lim K, Baek G et al. 2018. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36:536–39
    [Google Scholar]
  17. 17. 
    Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M et al. 2018. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36:888–93
    [Google Scholar]
  18. 18. 
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97
    [Google Scholar]
  19. 19. 
    Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33:179–86
    [Google Scholar]
  20. 20. 
    Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA et al. 2014. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–27
    [Google Scholar]
  21. 21. 
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–41
    [Google Scholar]
  22. 22. 
    Lee HJ, Kweon J, Kim E, Kim S, Kim JS 2012. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22:539–48
    [Google Scholar]
  23. 23. 
    Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM et al. 2009. Chromosomal translocations induced at specified loci in human stem cells. PNAS 106:10620–25
    [Google Scholar]
  24. 24. 
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97
    [Google Scholar]
  25. 25. 
    Kim D, Kim S, Kim S, Park J, Kim JS 2016. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res 26:406–15
    [Google Scholar]
  26. 26. 
    Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E 2016. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–76
    [Google Scholar]
  27. 27. 
    Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL 2015. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLOS ONE 10:e0124633
    [Google Scholar]
  28. 28. 
    Singh R, Kuscu C, Quinlan A, Qi Y, Adli M 2015. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43:e118
    [Google Scholar]
  29. 29. 
    Zhu LJ, Holmes BR, Aronin N, Brodsky MH 2014. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLOS ONE 9:e108424
    [Google Scholar]
  30. 30. 
    Xiao A, Cheng Z, Kong L, Zhu Z, Lin S et al. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–82
    [Google Scholar]
  31. 31. 
    Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E 2014. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–7
    [Google Scholar]
  32. 32. 
    Heigwer F, Kerr G, Boutros M 2014. E-CRISP: fast CRISPR target site identification. Nat. Methods 11:122–23
    [Google Scholar]
  33. 33. 
    Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G 2014. COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol. Ther. Nucleic Acids 3:e214
    [Google Scholar]
  34. 34. 
    Bae S, Park J, Kim JS 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–75
    [Google Scholar]
  35. 35. 
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–32
    [Google Scholar]
  36. 36. 
    Aach J, Mali P, Church GM 2014. CasFinder: flexible algorithm for identifying specific Cas9 targets in genomes. bioRxiv. https://doi.org/10.1101/005074
    [Crossref]
  37. 37. 
    Wang T, Wei JJ, Sabatini DM, Lander ES 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84
    [Google Scholar]
  38. 38. 
    Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33:661–67
    [Google Scholar]
  39. 39. 
    Chari R, Mali P, Moosburner M, Church GM 2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12:823–26
    [Google Scholar]
  40. 40. 
    Kim D, Kim J-S. 2018. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA. Genome Res 28:1894–1900
    [Google Scholar]
  41. 41. 
    Chen F, Ding X, Feng Y, Seebeck T, Jiang Y, Davis GD 2017. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat. Commun. 8:14958
    [Google Scholar]
  42. 42. 
    Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M et al. 2008. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. 16:352–58
    [Google Scholar]
  43. 43. 
    Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19:1279–88
    [Google Scholar]
  44. 44. 
    Morgens DW, Wainberg M, Boyle EA, Ursu O, Araya CL et al. 2017. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8:15178
    [Google Scholar]
  45. 45. 
    Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ et al. 2016. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6:914–29
    [Google Scholar]
  46. 46. 
    Bisaria N, Jarmoskaite I, Herschlag D 2017. Lessons from enzyme kinetics reveal specificity principles for RNA-guided nucleases in RNA interference and CRISPR-based genome editing. Cell Syst 4:21–29
    [Google Scholar]
  47. 47. 
    Yang M, Peng S, Sun R, Lin J, Wang N, Chen C 2018. The conformational dynamics of Cas9 governing DNA cleavage are revealed by single-molecule FRET. Cell Rep 22:372–82
    [Google Scholar]
  48. 48. 
    Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A 2017. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv. 3:eaao0027
    [Google Scholar]
  49. 49. 
    Lim Y, Bak SY, Sung K, Jeong E, Lee SH et al. 2016. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat. Commun. 7:13350
    [Google Scholar]
  50. 50. 
    Sternberg SH, LaFrance B, Kaplan M, Doudna JA 2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–13
    [Google Scholar]
  51. 51. 
    Cameron P, Fuller CK, Donohoue PD, Jones BN, Thompson MS et al. 2017. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat. Methods 14:600–6
    [Google Scholar]
  52. 52. 
    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020–27
    [Google Scholar]
  53. 53. 
    Kim S, Kim D, Cho SW, Kim J, Kim JS 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–19
    [Google Scholar]
  54. 54. 
    Katzman S. 2016. Operational Assessment of IT Boca Raton, FL: CRC Press
    [Google Scholar]
  55. 55. 
    Sentmanat MF, Peters ST, Florian CP, Connelly JP, Pruett-Miller SM 2018. A survey of validation strategies for CRISPR-Cas9 editing. Sci. Rep. 8:888
    [Google Scholar]
  56. 56. 
    Brinkman EK, Chen T, Amendola M, van Steensel B 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168
    [Google Scholar]
  57. 57. 
    Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ 2010. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649:247–56
    [Google Scholar]
  58. 58. 
    Brinkman EK, Kousholt AN, Harmsen T, Leemans C, Chen T et al. 2018. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res 46:e58
    [Google Scholar]
  59. 59. 
    Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS 2016. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34:863–68
    [Google Scholar]
  60. 60. 
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34:184–91
    [Google Scholar]
  61. 61. 
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26
    [Google Scholar]
  62. 62. 
    Boyle EA, Andreasson JOL, Chircus LM, Sternberg SH, Wu MJ et al. 2017. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. PNAS 114:5461–66
    [Google Scholar]
  63. 63. 
    Friedland AE, Baral R, Singhal P, Loveluck K, Shen S et al. 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16:257
    [Google Scholar]
  64. 64. 
    Lee CM, Cradick TJ, Bao G 2016. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 24:645–54
    [Google Scholar]
  65. 65. 
    Amrani N, Gao XD, Liu P, Edraki A, Mir A et al. 2018. NmeCas9 is an intrinsically high-fidelity genome editing platform. Genome Biol 19:214
    [Google Scholar]
  66. 66. 
    Kim HK, Song M, Lee J, Menon AV, Jung S et al. 2017. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 14:153–59
    [Google Scholar]
  67. 67. 
    Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM et al. 2016. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34:869–74
    [Google Scholar]
  68. 68. 
    Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P et al. 2011. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 29:816–23
    [Google Scholar]
  69. 69. 
    Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N et al. 2013. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10:361–65
    [Google Scholar]
  70. 70. 
    Yan WX, Mirzazadeh R, Garnerone S, Scott D, Schneider MW et al. 2017. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8:15058
    [Google Scholar]
  71. 71. 
    Kim D, Bae S, Park J, Kim E, Kim S et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12:237–43
    [Google Scholar]
  72. 72. 
    Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A et al. 2014. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30
    [Google Scholar]
  73. 73. 
    Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z et al. 2014. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15:12–13
    [Google Scholar]
  74. 74. 
    Iyer V, Shen B, Zhang W, Hodgkins A, Keane T et al. 2015. Off-target mutations are rare in Cas9-modified mice. Nat. Methods 12:479
    [Google Scholar]
  75. 75. 
    Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y et al. 2017. Correction of a pathogenic gene mutation in human embryos. Nature 548:413–19
    [Google Scholar]
  76. 76. 
    Wang X, Wang Y, Wu X, Wang J, Wang Y et al. 2015. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 33:175–78
    [Google Scholar]
  77. 77. 
    Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B et al. 2011. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–19
    [Google Scholar]
  78. 78. 
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–91
    [Google Scholar]
  79. 79. 
    Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK 2017. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14:607–14
    [Google Scholar]
  80. 80. 
    Kim D, Lim K, Kim ST, Yoon SH, Kim K et al. 2017. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35:475–80
    [Google Scholar]
  81. 81. 
    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677–83
    [Google Scholar]
  82. 82. 
    Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32:670–76
    [Google Scholar]
  83. 83. 
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:279–84
    [Google Scholar]
  84. 84. 
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88
    [Google Scholar]
  85. 85. 
    Yin H, Song CQ, Suresh S, Kwan SY, Wu Q et al. 2018. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat. Chem. Biol. 14:311–16
    [Google Scholar]
  86. 86. 
    Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD et al. 2018. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46:792–803
    [Google Scholar]
  87. 87. 
    Cromwell CR, Sung K, Park J, Krysler AR, Jovel J et al. 2018. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 9:1448
    [Google Scholar]
  88. 88. 
    Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M et al. 2017. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8:15790
    [Google Scholar]
  89. 89. 
    Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:73–80
    [Google Scholar]
  90. 90. 
    Choi JG, Dang Y, Abraham S, Ma H, Zhang J et al. 2016. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther 23:627–33
    [Google Scholar]
  91. 91. 
    Lee K, Conboy M, Park HM, Jiang F, Kim HJ et al. 2017. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1:889–901
    [Google Scholar]
  92. 92. 
    Guilinger JP, Thompson DB, Liu DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:577–82
    [Google Scholar]
  93. 93. 
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32:569–76
    [Google Scholar]
  94. 94. 
    Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ 2015. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum. Gene Ther. 26:425–31
    [Google Scholar]
  95. 95. 
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86
    [Google Scholar]
  96. 96. 
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–89
    [Google Scholar]
  97. 97. 
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833–38
    [Google Scholar]
  98. 98. 
    Lei L, Chen H, Xue W, Yang B, Hu B et al. 2018. APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nat. Struct. Mol. Biol. 25:45–52
    [Google Scholar]
  99. 99. 
    Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA et al. 2015. Rational design of a split-Cas9 enzyme complex. PNAS 112:2984–89
    [Google Scholar]
  100. 100. 
    Zetsche B, Volz SE, Zhang F 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33:139–42
    [Google Scholar]
  101. 101. 
    Truong DJ, Kuhner K, Kuhn R, Werfel S, Engelhardt S et al. 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43:6450–58
    [Google Scholar]
  102. 102. 
    Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY et al. 2016. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat. Methods 13:868–74
    [Google Scholar]
  103. 103. 
    Bolukbasi MF, Gupta A, Oikemus S, Derr AG, Garber M et al. 2015. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12:1150–56
    [Google Scholar]
  104. 104. 
    Bolukbasi MF, Liu P, Luk K, Kwok SF, Gupta A et al. 2018. Orthogonal Cas9-Cas9 chimeras provide a versatile platform for genome editing. Nature Commun 9:14856
    [Google Scholar]
  105. 105. 
    Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR 2015. Small molecule–triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11:316–18
    [Google Scholar]
  106. 106. 
    Anders C, Niewoehner O, Duerst A, Jinek M 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–73
    [Google Scholar]
  107. 107. 
    Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K et al. 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–71
    [Google Scholar]
  108. 108. 
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–49
    [Google Scholar]
  109. 109. 
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT et al. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–95
    [Google Scholar]
  110. 110. 
    Lee JK, Jeong E, Lee J, Jung M, Shin E et al. 2018. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat. Commun. 9:3048
    [Google Scholar]
  111. 111. 
    Kim S, Bae T, Hwang J, Kim JS 2017. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol 18:218
    [Google Scholar]
  112. 112. 
    Zhang D, Zhang H, Li T, Chen K, Qiu JL, Gao C 2017. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol 18:191
    [Google Scholar]
  113. 113. 
    Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA et al. 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–10
    [Google Scholar]
  114. 114. 
    Casini A, Olivieri M, Petris G, Montagna C, Reginato G et al. 2018. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 36:265–71
    [Google Scholar]
  115. 115. 
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L et al. 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63
    [Google Scholar]
  116. 116. 
    Kim E, Koo T, Park SW, Kim D, Kim K et al. 2017. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun 8:14500
    [Google Scholar]
  117. 117. 
    Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M et al. 2016. Structure and engineering of Francisella novicida Cas9. Cell 164:950–61
    [Google Scholar]
  118. 118. 
    Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42:2577–90
    [Google Scholar]
  119. 119. 
    Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. . PNAS 110:15644–49
    [Google Scholar]
  120. 120. 
    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10:1116–21
    [Google Scholar]
  121. 121. 
    Ibraheim R, Song C, Amrani N, Xue W, Sontheimer EJ 2018. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol 19:137
    [Google Scholar]
  122. 122. 
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13:722–36
    [Google Scholar]
  123. 123. 
    Koo T, Park SW, Jo DH, Kim D, Kim JH et al. 2018. CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat. Commun. 9:1855
    [Google Scholar]
  124. 124. 
    Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J et al. 2017. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35:31–34
    [Google Scholar]
  125. 125. 
    Carroll D. 2014. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83:409–39
    [Google Scholar]
  126. 126. 
    Levin BR, Moineau S, Bushman M, Barrangou R 2013. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLOS Genet 9:e1003312
    [Google Scholar]
  127. 127. 
    van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B et al. 2016. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–88
    [Google Scholar]
  128. 128. 
    1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP et al. 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  129. 129. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  130. 130. 
    Yang L, Grishin D, Wang G, Aach J, Zhang CZ et al. 2014. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat. Commun. 5:5507
    [Google Scholar]
  131. 131. 
    Lessard S, Francioli L, Alfoldi J, Tardif JC, Ellinor PT et al. 2017. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. PNAS 114:E11257–66
    [Google Scholar]
  132. 132. 
    Pattanayak V, Ramirez CL, Joung JK, Liu DR 2011. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods 8:765–70
    [Google Scholar]
  133. 133. 
    Lee HJ, Kim E, Kim JS 2010. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20:81–89
    [Google Scholar]
  134. 134. 
    Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24:927–30
    [Google Scholar]
  135. 135. 
    Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D et al. 2018. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24:939–46
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111730
Loading
/content/journals/10.1146/annurev-biochem-013118-111730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error