1932

Abstract

The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo–electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030122-033116
2024-08-02
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030122-033116.html?itemId=/content/journals/10.1146/annurev-biochem-030122-033116&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pasteur L. 1886.. Observations de M. Pasteur, relatives à la Communication de M. Piutti. . C. R. Hebd. Séances Acad. Sci. 103::138
    [Google Scholar]
  2. 2.
    Erlich P. 1957.. The Collected Papers of Paul Ehrlich, Vol. 2: Immunology and Cancer Research. London:: Pergamon
    [Google Scholar]
  3. 3.
    Langley JN. 1906.. Croonian Lecture, 1906. On nerve endings and on special excitable substances in cells. . Proc. R. Soc. B 78:(524):17094
    [Google Scholar]
  4. 4.
    Changeux J-P, Kasai M, Lee C-Y. 1970.. Use of a snake venom toxin to characterize the cholinergic receptor protein. . PNAS 67:(3):124147
    [Crossref] [Google Scholar]
  5. 5.
    Changeux J-P. 2020.. Discovery of the first neurotransmitter receptor: the acetylcholine nicotinic receptor. . Biomolecules 10:(4):547
    [Crossref] [Google Scholar]
  6. 6.
    Chang CC, Lee CY. 1966.. Electrophysiological study of neuromuscular blocking action of cobra neurotoxin. . Br. J. Pharmacol. Chemother. 28:(2):17281
    [Crossref] [Google Scholar]
  7. 7.
    Langley JN. 1905.. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. . J. Physiol. 33:(4–5):374413
    [Crossref] [Google Scholar]
  8. 8.
    Katz B, Thesleff S. 1957.. A study of the ‘desensitization’ produced by acetylcholine at the motor end-plate. . J. Physiol. 138:(1):6380
    [Crossref] [Google Scholar]
  9. 9.
    Sakmann B, Patlak J, Neher E. 1980.. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. . Nature 286:(5768):7173
    [Crossref] [Google Scholar]
  10. 10.
    Heidmann T, Changeux J-P. 1979.. Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. . Eur. J. Biochem. 94:(1):25579
    [Crossref] [Google Scholar]
  11. 11.
    Boyd ND, Cohen JB. 1980.. Kinetics of binding of [3H]acetylcholine and [3H]carbamoylcholine to Torpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor. . Biochemistry 19:(23):534453
    [Crossref] [Google Scholar]
  12. 12.
    Grünhagen H-H, Changeux J-P. 1976.. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ: IV. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergic receptor protein in its membrane-bound state. . J. Mol. Biol. 106:(3):497516
    [Crossref] [Google Scholar]
  13. 13.
    Galzi JL, Revah F, Bessis A, Changeux JP. 1991.. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. . Annu. Rev. Pharmacol. Toxicol. 31::3772
    [Crossref] [Google Scholar]
  14. 14.
    Changeux J-P, Edelstein SJ. 2005.. Allosteric mechanisms of signal transduction. . Science 308:(5727):142428
    [Crossref] [Google Scholar]
  15. 15.
    Heidmann T, Bernhardt J, Neumann E, Changeux JP. 1983.. Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes from Torpedo marmorata. . Biochemistry 22:(23):545259
    [Crossref] [Google Scholar]
  16. 16.
    Dunn SMJ, Blanchard SG, Raftery MA. 1980.. Kinetics of carbamylcholine binding to membrane-bound acetylcholine receptor monitored by fluorescence changes of a covalently bound probe. . Biochemistry 19:(24):564552
    [Crossref] [Google Scholar]
  17. 17.
    Heidmann T, Changeux J-P. 1980.. Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: resolution of an “intermediate” conformational transition and evidence for positive cooperative effects. . Biochem. Biophys. Res. Commun. 97:(3):88996
    [Crossref] [Google Scholar]
  18. 18.
    Monod J, Wyman J, Changeux J-P. 1965.. On the nature of allosteric transitions: a plausible model. . J. Mol. Biol. 12:(1):88118
    [Crossref] [Google Scholar]
  19. 19.
    Katz B, Thesleff S. 1957.. On the factors which determine the amplitude of the ‘miniature end-plate potential. .’ J. Physiol. 137:(2):26778
    [Crossref] [Google Scholar]
  20. 20.
    Changeux J-P. 1990.. The TiPS lecture. The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. . Trends Pharmacol. Sci. 11:(12):48592
    [Crossref] [Google Scholar]
  21. 21.
    Nemecz Á, Prevost MS, Menny A, Corringer P-J. 2016.. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. . Neuron 90:(3):45270
    [Crossref] [Google Scholar]
  22. 22.
    Cecchini M, Changeux J-P. 2015.. The nicotinic acetylcholine receptor and its prokaryotic homologues: structure, conformational transitions & allosteric modulation. . Neuropharmacology 96::13749
    [Crossref] [Google Scholar]
  23. 23.
    Jackson MB. 1986.. Kinetics of unliganded acetylcholine receptor channel gating. . Biophys. J. 49:(3):66372
    [Crossref] [Google Scholar]
  24. 24.
    Changeux J-P. 2018.. The nicotinic acetylcholine receptor: a typical ‘allosteric machine.’. Philos. Trans. R. Soc. B 373:(1749):20170174
    [Crossref] [Google Scholar]
  25. 25.
    Corringer P-J, Novère NL, Changeux J-P. 2000.. Nicotinic receptors at the amino acid level. . Annu. Rev. Pharmacol. Toxicol. 40::43158
    [Crossref] [Google Scholar]
  26. 26.
    Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA. 1998.. From ab initio quantum mechanics to molecular neurobiology: a cation–π binding site in the nicotinic receptor. . PNAS 95:(21):1208893
    [Crossref] [Google Scholar]
  27. 27.
    Neher E. 1983.. The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anaesthetics. . J. Physiol. 339:(1):66378
    [Crossref] [Google Scholar]
  28. 28.
    Giraudat J, Dennis M, Heidmann T, Haumont PY, Lederer F, Changeux JP. 1987.. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the β and δ chains. . Biochemistry 26:(9):241018
    [Crossref] [Google Scholar]
  29. 29.
    Giraudat J, Dennis M, Heidmann T, Chang JY, Changeux JP. 1986.. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the δ subunit is labeled by [3H]chlorpromazine. . PNAS 83:(8):271923
    [Crossref] [Google Scholar]
  30. 30.
    Hucho F, Oberthür W, Lottspeich F. 1986.. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. . FEBS Lett. 205:(1):13742
    [Crossref] [Google Scholar]
  31. 31.
    Corringer P-J, Baaden M, Bocquet N, Delarue M, Dufresne V, et al. 2010.. Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. . J. Physiol. 588:(4):56572
    [Crossref] [Google Scholar]
  32. 32.
    Imoto K, Busch C, Sakmann B, Mishina M, Konno T, et al. 1988.. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. . Nature 335:(6191):64548
    [Crossref] [Google Scholar]
  33. 33.
    Leonard RJ, Labarca CG, Charnet P, Davidson N, Lester HA. 1988.. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. . Science 242:(4885):157881
    [Crossref] [Google Scholar]
  34. 34.
    Corringer P-J, Bertrand S, Galzi J-L, Devillers-Thiéry A, Changeux J-P, Bertrand D. 1999.. Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. . Neuron 22:(4):83143
    [Crossref] [Google Scholar]
  35. 35.
    Möhler H, Okada T. 1977.. Benzodiazepine receptor: demonstration in the central nervous system. . Science 198:(4319):84951
    [Crossref] [Google Scholar]
  36. 36.
    Sternbach LH. 1978.. The benzodiazepine story. . In Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques, ed. E Jucker , pp. 22966. Prog. Drug Res. 22 . Basel:: Birkhäuser Basel
    [Google Scholar]
  37. 37.
    Galzi J-L, Changeux J-P. 1994.. Neurotransmitter-gated ion channels as unconventional allosteric proteins. . Curr. Opin. Struct. Biol. 4:(4):55465
    [Crossref] [Google Scholar]
  38. 38.
    Olsen RW, Lindemeyer AK, Wallner M, Li X, Huynh KW, Zhou ZH. 2019.. Cryo-electron microscopy reveals informative details of GABAA receptor structural pharmacology: implications for drug discovery. . Ann. Transl. Med. 7:(S3):S144
    [Crossref] [Google Scholar]
  39. 39.
    Mulle C, Léna C, Changeux J-P. 1992.. Potentiation of nicotinic receptor response by external calcium in rat central neurons. . Neuron 8:(5):93745
    [Crossref] [Google Scholar]
  40. 40.
    Vernino S, Amador M, Luetje CW, Patrick J, Dani JA. 1992.. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. . Neuron 8:(1):12734
    [Crossref] [Google Scholar]
  41. 41.
    Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D. 1996.. Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. . EMBO J. 15:(21):582432
    [Crossref] [Google Scholar]
  42. 42.
    Le Novère N, Grutter T, Changeux J-P. 2002.. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. . PNAS 99:(5):321015
    [Crossref] [Google Scholar]
  43. 43.
    Ananchenko A, Hussein TOK, Mody D, Thompson MJ, Baenziger JE. 2022.. Recent insight into lipid binding and lipid modulation of pentameric ligand-gated ion channels. . Biomolecules 12:(6):814
    [Crossref] [Google Scholar]
  44. 44.
    Barrantes FJ. 2023.. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. . Pharmacol. Res. 190::106729
    [Crossref] [Google Scholar]
  45. 45.
    Nury H, Van Renterghem C, Weng Y, Tran A, Baaden M, et al. 2011.. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. . Nature 469:(7330):42831
    [Crossref] [Google Scholar]
  46. 46.
    Campbell WC. 2016.. Ivermectin: a reflection on simplicity (Nobel Lecture). . Angew. Chem. Int. Ed. 55:(35):1018489
    [Crossref] [Google Scholar]
  47. 47.
    Krause RM, Buisson B, Bertrand S, Corringer P-J, Galzi J-L, et al. 1998.. Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. . Mol. Pharmacol. 53:(2):28394
    [Crossref] [Google Scholar]
  48. 48.
    Chen I-S, Kubo Y. 2018.. Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. . J. Physiol. 596:(10):183345
    [Crossref] [Google Scholar]
  49. 49.
    Papke RL, Lindstrom JM. 2020.. Nicotinic acetylcholine receptors: conventional and unconventional ligands and signaling. . Neuropharmacology 168::108021
    [Crossref] [Google Scholar]
  50. 50.
    Papke RL, Kem WR, Soti F, López-Hernández GY, Horenstein NA. 2009.. Activation and desensitization of nicotinic α7-type acetylcholine receptors by benzylidene anabaseines and nicotine. . J. Pharmacol. Exp. Ther. 329:(2):791807
    [Crossref] [Google Scholar]
  51. 51.
    Zwart R, De Filippi G, Broad LM, McPhie GI, Pearson KH, et al. 2002.. 5-Hydroxyindole potentiates human α7 nicotinic receptor-mediated responses and enhances acetylcholine-induced glutamate release in cerebellar slices. . Neuropharmacology 43:(3):37484
    [Crossref] [Google Scholar]
  52. 52.
    Hurst RS, Hajós M, Raggenbass M, Wall TM, Higdon NR, et al. 2005.. A novel positive allosteric modulator of the α7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. . J. Neurosci. 25:(17):4396405
    [Crossref] [Google Scholar]
  53. 53.
    Gill JK, Dhankher P, Sheppard TD, Sher E, Millar NS. 2012.. A series of α7 nicotinic acetylcholine receptor allosteric modulators with close chemical similarity but diverse pharmacological properties. . Mol. Pharmacol. 81:(5):71018
    [Crossref] [Google Scholar]
  54. 54.
    Cecchini M, Brando F, Changeux J-P. 2023.. ACRALL—The Nicotinic Acetylcholine Receptor Allosteric Ligand Library (v. 1).. https://search.kg.ebrains.eu/instances/57cc0b0b-9f4c-4408-8907-769d0a0f860c
  55. 55.
    Swope SL, Qu Z, Huganir RL. 1995.. Phosphorylation of the nicotinic acetylcholine receptor by protein tyrosine kinases. . Ann. N. Y. Acad. Sci. 757:(1):197214
    [Crossref] [Google Scholar]
  56. 56.
    Lee Y, Rudell J, Yechikhov S, Taylor R, Swope S, Ferns M. 2008.. Rapsyn carboxyl terminal domains mediate muscle specific kinase-induced phosphorylation of the muscle acetylcholine receptor. . Neuroscience 153:(4):9971007
    [Crossref] [Google Scholar]
  57. 57.
    Liao X, Wang Y, Lai X, Wang S. 2023.. The role of Rapsyn in neuromuscular junction and congenital myasthenic syndrome. . Biomol. Biomed. 3:(5):77284
    [Google Scholar]
  58. 58.
    Kabbani N, Nichols RA. 2018.. Beyond the channel: metabotropic signaling by nicotinic receptors. . Trends Pharmacol. Sci. 39:(4):35466
    [Crossref] [Google Scholar]
  59. 59.
    Kabbani N, Woll MP, Levenson R, Lindstrom JM, Changeux J-P. 2007.. Intracellular complexes of the β2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. . PNAS 104:(51):2057075
    [Crossref] [Google Scholar]
  60. 60.
    Cartaud J, Popot J-L, Changeux J-P. 1980.. Light and heavy forms of the acetylcholine receptor from Torpedo marmorata electric organ: morphological identification using reconstituted vesicles. . FEBS Lett. 121:(2):32732
    [Crossref] [Google Scholar]
  61. 61.
    Cartaud J, Benedetti EL, Cohen JB, Meunier J-C, Changeux J-P. 1973.. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. . FEBS Lett. 33:(1):10913
    [Crossref] [Google Scholar]
  62. 62.
    Klymkowsky MW, Stroud RM. 1979.. Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. . J. Mol. Biol. 128:(3):31934
    [Crossref] [Google Scholar]
  63. 63.
    Brisson A. 1980.. Étude structurale de protéines membranaires au moyen de méthodes optiques et numériques d'analyse d'images de microscopie électronique. PhD thesis , Université de Grenoble, Grenoble, France:
    [Google Scholar]
  64. 64.
    Brisson A, Unwin PNT. 1985.. Quaternary structure of the acetylcholine receptor. . Nature 315:(6019):47477
    [Crossref] [Google Scholar]
  65. 65.
    Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N. 1999.. Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel. . J. Mol. Biol. 288:(4):76586
    [Crossref] [Google Scholar]
  66. 66.
    Brejc K, Van Dijk WJ, Klaassen RV, Schuurmans M, Van Der Oost J, et al. 2001.. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. . Nature 411:(6835):26976
    [Crossref] [Google Scholar]
  67. 67.
    Tasneem A, Iyer LM, Jakobsson E, Aravind L. 2004.. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. . Genome Biol. 6:(1):R4
    [Crossref] [Google Scholar]
  68. 68.
    Bocquet N, Prado De Carvalho L, Cartaud J, Neyton J, Le Poupon C, et al. 2007.. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. . Nature 445:(7123):11619
    [Crossref] [Google Scholar]
  69. 69.
    Hilf RJC, Dutzler R. 2008.. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. . Nature 452:(7185):37579
    [Crossref] [Google Scholar]
  70. 70.
    Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux J-P, et al. 2009.. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. . Nature 457:(7225):11114
    [Crossref] [Google Scholar]
  71. 71.
    Prevost MS, Sauguet L, Nury H, Van Renterghem C, Huon C, et al. 2012.. A locally closed conformation of a bacterial pentameric proton-gated ion channel. . Nat. Struct. Mol. Biol. 19:(6):64249
    [Crossref] [Google Scholar]
  72. 72.
    Sauguet L, Shahsavar A, Poitevin F, Huon C, Menny A, et al. 2014.. Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. . PNAS 111:(3):96671
    [Crossref] [Google Scholar]
  73. 73.
    Hu H, Nemecz Á, Van Renterghem C, Fourati Z, Sauguet L, et al. 2018.. Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation. . PNAS 115:(17):E395968
    [Crossref] [Google Scholar]
  74. 74.
    Hu H, Howard RJ, Bastolla U, Lindahl E, Delarue M. 2020.. Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel. . PNAS 117:(24):1343746
    [Crossref] [Google Scholar]
  75. 75.
    Hibbs RE, Gouaux E. 2011.. Principles of activation and permeation in an anion-selective Cys-loop receptor. . Nature 474:(7349):5460
    [Crossref] [Google Scholar]
  76. 76.
    Du J, W, Wu S, Cheng Y, Gouaux E. 2015.. Glycine receptor mechanism elucidated by electron cryo-microscopy. . Nature 526:(7572):22429
    [Crossref] [Google Scholar]
  77. 77.
    Miller PS, Aricescu AR. 2014.. Crystal structure of a human GABAA receptor. . Nature 512:(7514):27075
    [Crossref] [Google Scholar]
  78. 78.
    Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, et al. 2014.. X-ray structure of the mouse serotonin 5-HT3 receptor. . Nature 512:(7514):27681
    [Crossref] [Google Scholar]
  79. 79.
    Morales-Perez CL, Noviello CM, Hibbs RE. 2016.. X-ray structure of the human α4β2 nicotinic receptor. . Nature 538:(7625):41115
    [Crossref] [Google Scholar]
  80. 80.
    Gharpure A, Noviello CM, Hibbs RE. 2020.. Progress in nicotinic receptor structural biology. . Neuropharmacology 171::108086
    [Crossref] [Google Scholar]
  81. 81.
    Langenbuch-Cachat J, Bon C, Mulle C, Goeldner M, Hirth C, Changeux JP. 1988.. Photoaffinity labeling of the acetylcholine binding sites on the nicotinic receptor by an aryldiazonium derivative. . Biochemistry 27:(7):233745
    [Crossref] [Google Scholar]
  82. 82.
    Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, et al. 1988.. Amino acids of the Torpedo marmorata acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. . Biochemistry 27:(7):234657
    [Crossref] [Google Scholar]
  83. 83.
    Giraudat J, Dennis M, Heidmann T, Changeux JP, Bisson R, et al. 1986.. Tertiary structure of the nicotinic acetylcholine receptor probed by photolabeling and protein chemistry. . In Nicotinic Acetylcholine Receptor, ed. A Maelicke , pp. 10314. Berlin, Heidelberg:: Springer
    [Google Scholar]
  84. 84.
    Gharpure A, Teng J, Zhuang Y, Noviello CM, Walsh RM, et al. 2019.. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. . Neuron 104:(3):50111.e6
    [Crossref] [Google Scholar]
  85. 85.
    Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, et al. 2020.. Structure of the native muscle-type nicotinic receptor and inhibition by snake venom toxins. . Neuron 106:(6):95262.e5
    [Crossref] [Google Scholar]
  86. 86.
    Nys M, Zarkadas E, Brams M, Mehregan A, Kambara K, et al. 2022.. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. . Nat. Commun. 13:(1):4543
    [Crossref] [Google Scholar]
  87. 87.
    Noviello CM, Gharpure A, Mukhtasimova N, Cabuco R, Baxter L, et al. 2021.. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. . Cell 184:(8):212134.e13
    [Crossref] [Google Scholar]
  88. 88.
    Rahman MM, Basta T, Teng J, Lee M, Worrell BT, et al. 2022.. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. . Nat. Struct. Mol. Biol. 29:(4):38694
    [Crossref] [Google Scholar]
  89. 89.
    Goswami U, Rahman MM, Teng J, Hibbs RE. 2023.. Structural interplay of anesthetics and paralytics on muscle nicotinic receptors. . Nat. Commun. 14:(1):3169
    [Crossref] [Google Scholar]
  90. 90.
    Zhao Y, Liu S, Zhou Y, Zhang M, Chen H, et al. 2021.. Structural basis of human α7 nicotinic acetylcholine receptor activation. . Cell Res. 31:(6):71316
    [Crossref] [Google Scholar]
  91. 91.
    Zarkadas E, Pebay-Peyroula E, Thompson MJ, Schoehn G, Uchański T, et al. 2022.. Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. . Neuron 110:(8):135870.e5
    [Crossref] [Google Scholar]
  92. 92.
    Bertrand S, Devillers-Thiéry A, Palma E, Buisson B, Edelstein SJ, et al. 1997.. Paradoxical allosteric effects of competitive inhibitors on neuronal α7 nicotinic receptor mutants. . NeuroReport 8:(16):359196
    [Crossref] [Google Scholar]
  93. 93.
    Revah F, Bertrand D, Galzi J-L, Devillers-Thiéry A, Mulle C, et al. 1991.. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. . Nature 353:(6347):84649
    [Crossref] [Google Scholar]
  94. 94.
    Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP. 1996.. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. . J. Mol. Graph. 14:(6):35460
    [Crossref] [Google Scholar]
  95. 95.
    Klesse G, Rao S, Sansom MSP, Tucker SJ. 2019.. CHAP: a versatile tool for the structural and functional annotation of ion channel pores. . J. Mol. Biol. 431:(17):335365
    [Crossref] [Google Scholar]
  96. 96.
    Beckstein O, Sansom MSP. 2006.. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. . Phys. Biol. 3:(2):14759
    [Crossref] [Google Scholar]
  97. 97.
    Gielen M, Thomas P, Smart TG. 2015.. The desensitization gate of inhibitory Cys-loop receptors. . Nat. Commun. 6:(1):6829
    [Crossref] [Google Scholar]
  98. 98.
    Zhuang Y, Noviello CM, Hibbs RE, Howard RJ, Lindahl E. 2022.. Differential interactions of resting, activated, and desensitized states of the α7 nicotinic acetylcholine receptor with lipidic modulators. . PNAS 119:(43):e2208081119
    [Crossref] [Google Scholar]
  99. 99.
    Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, et al. 2018.. Conformational transitions of the serotonin 5-HT3 receptor. . Nature 563:(7730):27579
    [Crossref] [Google Scholar]
  100. 100.
    Changeux J-P. 1990.. Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. . In Fidia Research Foundation Neuroscience Award Lectures Vol. 4, 1988–1989, pp. 21168. New York:: Raven
    [Google Scholar]
  101. 101.
    Bondarenko V, Wells MM, Chen Q, Tillman TS, Singewald K, et al. 2022.. Structures of highly flexible intracellular domain of human α7 nicotinic acetylcholine receptor. . Nat. Commun. 13:(1):793
    [Crossref] [Google Scholar]
  102. 102.
    Huang X, Chen H, Shaffer PL. 2017.. Crystal structures of human GlyRα3 bound to ivermectin. . Structure 25:(6):94550.e2
    [Crossref] [Google Scholar]
  103. 103.
    Bondarenko V, Chen Q, Singewald K, Haloi N, Tillman TS, et al. 2023.. Structural elucidation of ivermectin binding to α7nAChR and the induced channel desensitization. . ACS Chem. Neurosci. 14:(6):115665
    [Crossref] [Google Scholar]
  104. 104.
    Prevost MS, Barilone N, Dejean de la Bâtie G, Pons S, Ayme G, et al. 2023.. An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies. . Nat. Commun. 14::5964
    [Crossref] [Google Scholar]
  105. 105.
    Zimmermann I, Dutzler R. 2011.. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. . PLOS Biol. 9:(6):e1001101
    [Crossref] [Google Scholar]
  106. 106.
    Li Q, Nemecz Á, Aymé G, Dejean de la Bâtie G, Prevost MS, et al. 2023.. Generation of nanobodies acting as silent and positive allosteric modulators of the α7 nicotinic acetylcholine receptor. . Cell. Mol. Life Sci. 80:(6):164
    [Crossref] [Google Scholar]
  107. 107.
    Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. 2018.. Structure of a human synaptic GABAA receptor. . Nature 559:(7712):6772
    [Crossref] [Google Scholar]
  108. 108.
    Olsen RW. 2018.. GABAA receptor: positive and negative allosteric modulators. . Neuropharmacology 136::1022
    [Crossref] [Google Scholar]
  109. 109.
    Huang X, Shaffer PL, Ayube S, Bregman H, Chen H, et al. 2017.. Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. . Nat. Struct. Mol. Biol. 24:(2):10813
    [Crossref] [Google Scholar]
  110. 110.
    Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, et al. 2018.. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. . J. Biol. Chem. 293:(7):253445
    [Crossref] [Google Scholar]
  111. 111.
    Laha KT, Ghosh B, Czajkowski C. 2013.. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel. . PLOS ONE 8:(11):e80322
    [Crossref] [Google Scholar]
  112. 112.
    Trick JL, Chelvaniththilan S, Klesse G, Aryal P, Wallace EJ, et al. 2016.. Functional annotation of ion channel structures by molecular simulation. . Structure 24:(12):220716
    [Crossref] [Google Scholar]
  113. 113.
    Cerdan AH, Martin , Cecchini M. 2018.. An ion-permeable state of the glycine receptor captured by molecular dynamics. . Structure 26:(11):155562.e4
    [Crossref] [Google Scholar]
  114. 114.
    Cerdan AH, Cecchini M. 2020.. On the functional annotation of open-channel structures in the glycine receptor. . Structure 28:(6):69093.e3
    [Crossref] [Google Scholar]
  115. 115.
    Yu J, Zhu H, Lape R, Greiner T, Du J, et al. 2021.. Mechanism of gating and partial agonist action in the glycine receptor. . Cell 184:(4):95768.e21
    [Crossref] [Google Scholar]
  116. 116.
    Cerdan AH, Peverini L, Changeux J-P, Corringer P-J, Cecchini M. 2022.. Lateral fenestrations in the extracellular domain of the glycine receptor contribute to the main chloride permeation pathway. . Sci. Adv. 8:(41):eadc9340
    [Crossref] [Google Scholar]
  117. 117.
    Law RJ, Henchman RH, McCammon JA. 2005.. A gating mechanism proposed from a simulation of a human α7 nicotinic acetylcholine receptor. . PNAS 102:(19):681318
    [Crossref] [Google Scholar]
  118. 118.
    Cheng X, Wang H, Grant B, Sine SM, McCammon JA. 2006.. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. . PLOS Comput. Biol. 2:(9):e134
    [Crossref] [Google Scholar]
  119. 119.
    Nury H, Poitevin F, Van Renterghem C, Changeux J-P, Corringer P-J, et al. 2010.. One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. . PNAS 107:(14):627580
    [Crossref] [Google Scholar]
  120. 120.
    Martin NE, Malik S, Calimet N, Changeux J-P, Cecchini M. 2017.. Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics. . PLOS Comput. Biol. 13:(10):e1005784
    [Crossref] [Google Scholar]
  121. 121.
    Calimet N, Simoes M, Changeux J-P, Karplus M, Taly A, Cecchini M. 2013.. A gating mechanism of pentameric ligand-gated ion channels. . PNAS 110:(42):E398796
    [Crossref] [Google Scholar]
  122. 122.
    Althoff T, Hibbs RE, Banerjee S, Gouaux E. 2014.. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. . Nature 512:(7514):33337
    [Crossref] [Google Scholar]
  123. 123.
    Yuan S, Filipek S, Vogel H. 2016.. A gating mechanism of the serotonin 5-HT3 receptor. . Structure 24:(5):81625
    [Crossref] [Google Scholar]
  124. 124.
    Lev B, Murail S, Poitevin F, Cromer BA, Baaden M, et al. 2017.. String method solution of the gating pathways for a pentameric ligand-gated ion channel. . PNAS 114:(21):E415867
    [Crossref] [Google Scholar]
  125. 125.
    Lefebvre SN, Taly A, Menny A, Medjebeur K, Corringer P-J. 2021.. Mutational analysis to explore long-range allosteric couplings involved in a pentameric channel receptor pre-activation and activation. . eLife 10::e60682
    [Crossref] [Google Scholar]
  126. 126.
    Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, et al. 2019.. Identification of the initial steps in signal transduction in the α4β2 nicotinic receptor: insights from equilibrium and nonequilibrium simulations. . Structure 27:(7):117183.e3
    [Crossref] [Google Scholar]
  127. 127.
    Oliveira ASF, Edsall CJ, Woods CJ, Bates P, Nunez GV, et al. 2019.. A general mechanism for signal propagation in the nicotinic acetylcholine receptor family. . J. Am. Chem. Soc. 141:(51):1995358
    [Crossref] [Google Scholar]
  128. 128.
    Howard J. 2001.. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA:: Sinauer
    [Google Scholar]
  129. 129.
    Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, Tang P. 2014.. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. . Biochim. Biophys. Acta Biomembr. 1838:(5):138995
    [Crossref] [Google Scholar]
  130. 130.
    Nury H, Bocquet N, Le Poupon C, Raynal B, Haouz A, et al. 2010.. Crystal structure of the extracellular domain of a bacterial ligand-gated ion channel. . J. Mol. Biol. 395:(5):111427
    [Crossref] [Google Scholar]
  131. 131.
    Duret G, Van Renterghem C, Weng Y, Prevost M, Moraga-Cid G, et al. 2011.. Functional prokaryotic–eukaryotic chimera from the pentameric ligand-gated ion channel family. . PNAS 108:(29):1214348
    [Crossref] [Google Scholar]
  132. 132.
    Cymes GD, Grosman C. 2021.. Signal transduction through Cys-loop receptors is mediated by the nonspecific bumping of closely apposed domains. . PNAS 118:(14):e2021016118
    [Crossref] [Google Scholar]
  133. 133.
    Blanc F, Isabet T, Benisty H, Sweeney HL, Cecchini M, Houdusse A. 2018.. An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. . PNAS 115:(24):621318
    [Crossref] [Google Scholar]
  134. 134.
    Blanc FE, Cecchini M. 2021.. An asymmetric mechanism in a symmetric molecular machine. . J. Phys. Chem. Lett. 12:(13):326065
    [Crossref] [Google Scholar]
  135. 135.
    Dahan DS, Dibas MI, Petersson EJ, Auyeung VC, Chanda B, et al. 2004.. A fluorophore attached to nicotinic acetylcholine receptor βM2 detects productive binding of agonist to the αδ site. . PNAS 101:(27):10195200
    [Crossref] [Google Scholar]
  136. 136.
    Mourot A, Bamberg E, Rettinger J. 2008.. Agonist- and competitive antagonist-induced movement of loop 5 on the α subunit of the neuronal α4β4 nicotinic acetylcholine receptor. . J. Neurochem. 105:(2):41324
    [Crossref] [Google Scholar]
  137. 137.
    Menny A, Lefebvre SN, Schmidpeter PA, Drège E, Fourati Z, et al. 2017.. Identification of a pre-active conformation of a pentameric channel receptor. . eLife 6::e23955
    [Crossref] [Google Scholar]
  138. 138.
    Shi S, Lefebvre SN, Peverini L, Cerdan AH, Milán Rodríguez P, et al. 2023.. Illumination of a progressive allosteric mechanism mediating the glycine receptor activation. . Nat. Commun. 14:(1):795
    [Crossref] [Google Scholar]
  139. 139.
    Lape R, Colquhoun D, Sivilotti LG. 2008.. On the nature of partial agonism in the nicotinic receptor superfamily. . Nature 454:(7205):72227
    [Crossref] [Google Scholar]
  140. 140.
    Mukhtasimova N, Lee WY, Wang H-L, Sine SM. 2009.. Detection and trapping of intermediate states priming nicotinic receptor channel opening. . Nature 459:(7245):45154
    [Crossref] [Google Scholar]
  141. 141.
    Gupta S, Chakraborty S, Vij R, Auerbach A. 2017.. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. . J. Gen. Physiol. 149:(1):85103
    [Crossref] [Google Scholar]
  142. 142.
    Cecchini M, Changeux J-P. 2022.. Nicotinic receptors: from protein allostery to computational neuropharmacology. . Mol. Aspects Med. 84::101044
    [Crossref] [Google Scholar]
  143. 143.
    Huang X, Zheng F, Zhan C-G. 2008.. Modeling differential binding of α4β2 nicotinic acetylcholine receptor with agonists and antagonists. . J. Am. Chem. Soc. 130:(49):1669196
    [Crossref] [Google Scholar]
  144. 144.
    Grazioso G, Pomè DY, Matera C, Frigerio F, Pucci L, et al. 2009.. Design of novel α7-subtype-preferring nicotinic acetylcholine receptor agonists: application of docking and MM-PBSA computational approaches, synthetic and pharmacological studies. . Bioorg. Med. Chem. Lett. 19:(22):635357
    [Crossref] [Google Scholar]
  145. 145.
    Beck ME, Riplinger C, Neese F, Bistoni G. 2021.. Unraveling individual host–guest interactions in molecular recognition from first principles quantum mechanics: insights into the nature of nicotinic acetylcholine receptor agonist binding. . J. Comput. Chem. 42:(5):293302
    [Crossref] [Google Scholar]
  146. 146.
    Xu Q, Tae H-S, Wang Z, Jiang T, Adams DJ, Yu R. 2020.. Rational design of α-conotoxin RegIIA analogues selectively inhibiting the human α3β2 nicotinic acetylcholine receptor through computational scanning. . ACS Chem. Neurosci. 11:(18):280411
    [Crossref] [Google Scholar]
  147. 147.
    Katz D, DiMattia MA, Sindhikara D, Li H, Abraham N, Leffler AE. 2021.. Potency- and selectivity-enhancing mutations of conotoxins for nicotinic acetylcholine receptors can be predicted using accurate free-energy calculations. . Mar. Drugs 19:(7):367
    [Crossref] [Google Scholar]
  148. 148.
    Li Z, Chan KC, Nickels JD, Cheng X. 2022.. Electrostatic contributions to the binding free energy of nicotine to the acetylcholine binding protein. . J. Phys. Chem. B 126:(43):866979
    [Crossref] [Google Scholar]
  149. 149.
    Bovet D. 1957.. The relationships between isosterism and competitive phenomena in the field of drug therapy of the autonomic nervous system and that of the neuromuscular transmission. . In The Nobel Lectures in Physiology or Medicine 1942–1962, pp. 55278. Singapore:: World Sci.
    [Google Scholar]
  150. 150.
    Black J. 1989.. Drugs from emasculated hormones: the principle of syntopic antagonism. . In Vitro Cell. Dev. Biol. 25:(4):31120
    [Crossref] [Google Scholar]
  151. 151.
    Changeux J-P, Christopoulos A. 2016.. Allosteric modulation as a unifying mechanism for receptor function and regulation. . Cell 166:(5):1084102
    [Crossref] [Google Scholar]
  152. 152.
    Walton N, Maguire J. 2019.. Allopregnanolone-based treatments for postpartum depression: Why/how do they work?. Neurobiol. Stress. 11::100198
    [Crossref] [Google Scholar]
  153. 153.
    Mukherjee S, Erramilli SK, Ammirati M, Alvarez FJD, Fennell KF, et al. 2020.. Synthetic antibodies against BRIL as universal fiducial marks for single−particle cryoEM structure determination of membrane proteins. . Nat. Commun. 11:(1):1598
    [Crossref] [Google Scholar]
  154. 154.
    Walsh RM, Roh S-H, Gharpure A, Morales-Perez CL, Teng J, Hibbs RE. 2018.. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. . Nature 557:(7704):26165
    [Crossref] [Google Scholar]
  155. 155.
    Kasai M, Changeux J-P. 1971.. In vitro excitation of purified membrane fragments by cholinergic agonists: I. Pharmalogical properties of the excitable membrane fragments. . J. Membr. Biol. 6:(1):123
    [Crossref] [Google Scholar]
  156. 156.
    Karlin A. 1993.. Structure of nicotinic acetylcholine receptors. . Curr. Opin. Neurobiol. 3:(3):299309
    [Crossref] [Google Scholar]
  157. 157.
    Ōmura S. 2016.. A splendid gift from the Earth: the origins and impact of the avermectins (Nobel Lecture). . Angew. Chem. Int. Ed. 55::10190
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030122-033116
Loading
/content/journals/10.1146/annurev-biochem-030122-033116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error