1932

Abstract

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a β-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the β-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030122-033754
2024-08-02
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030122-033754.html?itemId=/content/journals/10.1146/annurev-biochem-030122-033754&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Antimicrobial Resistance Collaborators. 2022.. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. . Lancet 399::62955
    [Crossref] [Google Scholar]
  2. 2.
    Overly Cottom C, Stephenson R, Wilson L, Noinaj N. 2023.. Targeting BAM for novel therapeutics against pathogenic Gram-negative bacteria. . Antibiotics 12::679
    [Crossref] [Google Scholar]
  3. 3.
    Montezano D, Bernstein R, Copeland MM, Slusky JSG. 2023.. General features of transmembrane beta barrels from a large database. . PNAS 120::e2220762120
    [Crossref] [Google Scholar]
  4. 4.
    Schulz GE. 2000.. β-Barrel membrane proteins. . Curr. Opin. Struct. Biol. 10::44347
    [Crossref] [Google Scholar]
  5. 5.
    Lauber F, Deme JC, Lea SM, Berks BC. 2018.. Type 9 secretion system structures reveal a new protein transport mechanism. . Nature 564::7782
    [Crossref] [Google Scholar]
  6. 6.
    Pautsch A, Schulz GE. 1998.. Structure of the outer membrane protein A transmembrane domain. . Nat. Struct. Biol. 5::101317
    [Crossref] [Google Scholar]
  7. 7.
    Morona R, Klose M, Henning U. 1984.. Escherichia coli K-12 outer membrane protein (OmpA) as a bacteriophage receptor: analysis of mutant genes expressing altered proteins. . J. Bacteriol. 159::57078
    [Crossref] [Google Scholar]
  8. 8.
    Kreusch A, Schulz GE. 1994.. Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus. . J. Mol. Biol. 243::891905
    [Crossref] [Google Scholar]
  9. 9.
    Abellon-Ruiz J, Jana K, Silale A, Frey AM, Basle A, et al. 2023.. BtuB TonB-dependent transporters and BtuG surface lipoproteins form stable complexes for vitamin B12 uptake in gut Bacteroides. . Nat. Commun. 14::4714
    [Crossref] [Google Scholar]
  10. 10.
    Gruss F, Zahringer F, Jakob RP, Burmann BM, Hiller S, Maier T. 2013.. The structural basis of autotransporter translocation by TamA. . Nat. Struct. Mol. Biol. 20::131820
    [Crossref] [Google Scholar]
  11. 11.
    van den Berg B. 2010.. Crystal structure of a full-length autotransporter. . J. Mol. Biol. 396::62733
    [Crossref] [Google Scholar]
  12. 12.
    Meng G, Surana NK, St. Geme JW III, Waksman G. 2006.. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. . EMBO J. 25::2297304
    [Crossref] [Google Scholar]
  13. 13.
    Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y. 2014.. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. . Nature 511::10811
    [Crossref] [Google Scholar]
  14. 14.
    Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, et al. 1998.. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. . Cell 95::77178
    [Crossref] [Google Scholar]
  15. 15.
    Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. 2000.. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. . Nature 405::91419
    [Crossref] [Google Scholar]
  16. 16.
    Benn G, Mikheyeva IV, Inns PG, Forster JC, Ojkic N, et al. 2021.. Phase separation in the outer membrane of Escherichia coli. . PNAS 118::e2112237118
    [Crossref] [Google Scholar]
  17. 17.
    Jaroslawski S, Duquesne K, Sturgis JN, Scheuring S. 2009.. High-resolution architecture of the outer membrane of the Gram-negative bacteria Roseobacter denitrificans. . Mol. Microbiol. 74::121122
    [Crossref] [Google Scholar]
  18. 18.
    Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, et al. 2018.. The outer membrane is an essential load-bearing element in Gram-negative bacteria. . Nature 559::61721
    [Crossref] [Google Scholar]
  19. 19.
    Sun J, Rutherford ST, Silhavy TJ, Huang KC. 2022.. Physical properties of the bacterial outer membrane. . Nat. Rev. Microbiol. 20::23648
    [Crossref] [Google Scholar]
  20. 20.
    Lee HC, Bernstein HD. 2001.. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. . PNAS 98::347176
    [Crossref] [Google Scholar]
  21. 21.
    Crowlesmith I, Gamon K. 1982.. Rate of translation and kinetics of processing of newly synthesized molecules of two major outer-membrane proteins, the OmpA and OmpF proteins, of Escherichia coli K12. . Eur. J. Biochem. 124::57783
    [Crossref] [Google Scholar]
  22. 22.
    Oliver DB, Beckwith J. 1981.. E. coli mutant pleiotropically defective in the export of secreted proteins. . Cell 25::76572
    [Crossref] [Google Scholar]
  23. 23.
    Cranford-Smith T, Huber D. 2018.. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. . FEMS Microbiol. Lett. 365::fny093
    [Crossref] [Google Scholar]
  24. 24.
    Allen WJ, Collinson I. 2023.. A unifying mechanism for protein transport through the core bacterial Sec machinery. . Open Biol. 13::230166
    [Crossref] [Google Scholar]
  25. 25.
    Wolfe PB, Silver P, Wickner W. 1982.. The isolation of homogeneous leader peptidase from a strain of Escherichia coli which overproduces the enzyme. . J. Biol. Chem. 257::7898902
    [Crossref] [Google Scholar]
  26. 26.
    Gao M, Nakajima An D, Skolnick J. 2022.. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. . eLife 11::e82885
    [Crossref] [Google Scholar]
  27. 27.
    Chamachi N, Hartmann A, Ma MQ, Svirina A, Krainer G, Schlierf M. 2022.. Chaperones Skp and SurA dynamically expand unfolded OmpX and synergistically disassemble oligomeric aggregates. . PNAS 119::e2118919119
    [Crossref] [Google Scholar]
  28. 28.
    Marx DC, Plummer AM, Faustino AM, Devlin T, Roskopf MA, et al. 2020.. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. . PNAS 117::2802635
    [Crossref] [Google Scholar]
  29. 29.
    Schiffrin B, Machin JM, Karamanos TK, Zhuravleva A, Brockwell DJ, et al. 2022.. Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. . Commun. Biol. 5::560
    [Crossref] [Google Scholar]
  30. 30.
    Wang X, Peterson JH, Bernstein HD. 2021.. Bacterial outer membrane proteins are targeted to the Bam complex by two parallel mechanisms. . mBio 12::e0059721
    [Google Scholar]
  31. 31.
    Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M, et al. 2020.. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. . Nat. Commun. 11::2155
    [Crossref] [Google Scholar]
  32. 32.
    Mas G, Thoma J, Hiller S. 2019.. The periplasmic chaperones Skp and SurA. . Subcell. Biochem. 92::16986
    [Crossref] [Google Scholar]
  33. 33.
    Bennion D, Charlson ES, Coon E, Misra R. 2010.. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. . Mol. Microbiol. 77::115371
    [Crossref] [Google Scholar]
  34. 34.
    Heinz E, Lithgow T. 2014.. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. . Front. Microbiol. 5::370
    [Crossref] [Google Scholar]
  35. 35.
    Hagan CL, Kim S, Kahne D. 2010.. Reconstitution of outer membrane protein assembly from purified components. . Science 328::89092
    [Crossref] [Google Scholar]
  36. 36.
    Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. 2005.. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. . Cell 121::23545
    [Crossref] [Google Scholar]
  37. 37.
    Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J. 2003.. Role of a highly conserved bacterial protein in outer membrane protein assembly. . Science 299::26265
    [Crossref] [Google Scholar]
  38. 38.
    Wang Y, Wang R, Jin F, Liu Y, Yu J, et al. 2016.. A supercomplex spanning the inner and outer membranes mediates the biogenesis of β-barrel outer membrane proteins in bacteria. . J. Biol. Chem. 291::1672029
    [Crossref] [Google Scholar]
  39. 39.
    Jin F. 2020.. The transmembrane supercomplex mediating the biogenesis of OMPs in Gram-negative bacteria assumes a circular conformational change upon activation. . FEBS Open Bio 10::1698715
    [Crossref] [Google Scholar]
  40. 40.
    Gu Y, Li H, Dong H, Zeng Y, Zhang Z, et al. 2016.. Structural basis of outer membrane protein insertion by the BAM complex. . Nature 531::6469
    [Crossref] [Google Scholar]
  41. 41.
    Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, et al. 2013.. Structural insight into the biogenesis of β-barrel membrane proteins. . Nature 501::38590
    [Crossref] [Google Scholar]
  42. 42.
    Roman-Hernandez G, Peterson JH, Bernstein HD. 2014.. Reconstitution of bacterial autotransporter assembly using purified components. . eLife 3::e04234
    [Crossref] [Google Scholar]
  43. 43.
    Lithgow T, Stubenrauch CJ, Stumpf MPH. 2023.. Surveying membrane landscapes: a new look at the bacterial cell surface. . Nat. Rev. Microbiol. 21::50218
    [Crossref] [Google Scholar]
  44. 44.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  45. 45.
    Cheng Y. 2018.. Single-particle cryo-EM—How did it get here and where will it go. . Science 361::87680
    [Crossref] [Google Scholar]
  46. 46.
    Doyle MT, Bernstein HD. 2022.. Function of the Omp85 superfamily of outer membrane protein assembly factors and polypeptide transporters. . Annu. Rev. Microbiol. 76::25979
    [Crossref] [Google Scholar]
  47. 47.
    Horne JE, Brockwell DJ, Radford SE. 2020.. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. . J. Biol. Chem. 295::1034067
    [Crossref] [Google Scholar]
  48. 48.
    van den Berg B, Clemons WM Jr., Collinson I, Modis Y, Hartmann E, et al. 2004.. X-ray structure of a protein-conducting channel. . Nature 427::3644
    [Crossref] [Google Scholar]
  49. 49.
    Schulze RJ, Komar J, Botte M, Allen WJ, Whitehouse S, et al. 2014.. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. . PNAS 111::484449
    [Crossref] [Google Scholar]
  50. 50.
    Maddalo G, Stenberg-Bruzell F, Gotzke H, Toddo S, Bjorkholm P, et al. 2011.. Systematic analysis of native membrane protein complexes in Escherichia coli. . J. Proteome Res. 10::184859
    [Crossref] [Google Scholar]
  51. 51.
    Sachelaru I, Petriman NA, Kudva R, Koch HG. 2014.. Dynamic interaction of the Sec translocon with the chaperone PpiD. . J. Biol. Chem. 289::2170615
    [Crossref] [Google Scholar]
  52. 52.
    Beck K, Wu LF, Brunner J, Muller M. 2000.. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. . EMBO J. 19::13443
    [Crossref] [Google Scholar]
  53. 53.
    Zhu Z, Wang S, Shan SO. 2022.. Ribosome profiling reveals multiple roles of SecA in cotranslational protein export. . Nat. Commun. 13::3393
    [Crossref] [Google Scholar]
  54. 54.
    Antonoaea R, Furst M, Nishiyama K, Muller M. 2008.. The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon. . Biochemistry 47::564956
    [Crossref] [Google Scholar]
  55. 55.
    Miyazaki R, Ai M, Tanaka N, Suzuki T, Dhomae N, et al. 2022.. Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation. . J. Biol. Chem. 298::102572
    [Crossref] [Google Scholar]
  56. 56.
    Peterson JH, Szabady RL, Bernstein HD. 2006.. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. . J. Biol. Chem. 281::903848
    [Crossref] [Google Scholar]
  57. 57.
    Doyle MT, Grabowicz M, Morona R. 2015.. A small conserved motif supports polarity augmentation of Shigella flexneri IcsA. . Microbiology 161::208797
    [Crossref] [Google Scholar]
  58. 58.
    Charbonneau ME, Cote JP, Haurat MF, Reiz B, Crepin S, et al. 2012.. A structural motif is the recognition site for a new family of bacterial protein O-glycosyltransferases. . Mol. Microbiol. 83::894907
    [Crossref] [Google Scholar]
  59. 59.
    Rempe KA, Spruce LA, Porsch EA, Seeholzer SH, Norskov-Lauritsen N, St. Geme JW III. 2015.. Unconventional N-linked glycosylation promotes trimeric autotransporter function in Kingella kingae and Aggregatibacter aphrophilus. . mBio 6::e0120615
    [Crossref] [Google Scholar]
  60. 60.
    Bernardini ML, Mounier J, d'Hauteville H, Coquis-Rondon M, Sansonetti PJ. 1989.. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. . PNAS 86::386771
    [Crossref] [Google Scholar]
  61. 61.
    Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I, Oppenheim AB. 2009.. E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. . J. Mol. Biol. 392::589601
    [Crossref] [Google Scholar]
  62. 62.
    Brandon LD, Goehring N, Janakiraman A, Yan AW, Wu T, et al. 2003.. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. . Mol. Microbiol. 50::4560
    [Crossref] [Google Scholar]
  63. 63.
    Rouviere PE, Gross CA. 1996.. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. . Genes Dev. 10::317082
    [Crossref] [Google Scholar]
  64. 64.
    Stull F, Betton JM, Bardwell JCA. 2018.. Periplasmic chaperones and prolyl isomerases. . EcoSal Plus 8:. https://doi.org/10.1128/ecosalplus.ESP-0005-2018
    [Crossref] [Google Scholar]
  65. 65.
    Dartigalongue C, Raina S. 1998.. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. . EMBO J. 17::396880
    [Crossref] [Google Scholar]
  66. 66.
    Arie JP, Sassoon N, Betton JM. 2001.. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. . Mol. Microbiol. 39::199210
    [Crossref] [Google Scholar]
  67. 67.
    Devlin T, Marx DC, Roskopf MA, Bubb QR, Plummer AM, Fleming KG. 2023.. FkpA enhances membrane protein folding using an extensive interaction surface. . Protein Sci. 32::e4592
    [Crossref] [Google Scholar]
  68. 68.
    Lazar SW, Kolter R. 1996.. SurA assists the folding of Escherichia coli outer membrane proteins. . J. Bacteriol. 178::177073
    [Crossref] [Google Scholar]
  69. 69.
    Humes JR, Schiffrin B, Calabrese AN, Higgins AJ, Westhead DR, et al. 2019.. The role of SurA PPIase domains in preventing aggregation of the outer-membrane proteins tOmpA and OmpT. . J. Mol. Biol. 431::126783
    [Crossref] [Google Scholar]
  70. 70.
    Ieva R, Tian P, Peterson JH, Bernstein HD. 2011.. Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. . PNAS 108::E38391
    [Crossref] [Google Scholar]
  71. 71.
    Pavlova O, Peterson JH, Ieva R, Bernstein HD. 2013.. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. . PNAS 110::E93847
    [Crossref] [Google Scholar]
  72. 72.
    Chum AP, Shoemaker SR, Fleming PJ, Fleming KG. 2019.. Plasticity and transient binding are key ingredients of the periplasmic chaperone network. . Protein Sci. 28::134049
    [Crossref] [Google Scholar]
  73. 73.
    Krojer T, Sawa J, Schafer E, Saibil HR, Ehrmann M, Clausen T. 2008.. Structural basis for the regulated protease and chaperone function of DegP. . Nature 453::88590
    [Crossref] [Google Scholar]
  74. 74.
    Schafer U, Beck K, Muller M. 1999.. Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. . J. Biol. Chem. 274::2456774
    [Crossref] [Google Scholar]
  75. 75.
    Chen R, Henning U. 1996.. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. . Mol. Microbiol. 19::128794
    [Crossref] [Google Scholar]
  76. 76.
    Denoncin K, Schwalm J, Vertommen D, Silhavy TJ, Collet JF. 2012.. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics. . Proteomics 12::1391401
    [Crossref] [Google Scholar]
  77. 77.
    Rizzitello AE, Harper JR, Silhavy TJ. 2001.. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. . J. Bacteriol. 183::6794800
    [Crossref] [Google Scholar]
  78. 78.
    Combs AN, Silhavy TJ. 2022.. The sacrificial adaptor protein Skp functions to remove stalled substrates from the β-barrel assembly machine. . PNAS 119::e2114997119
    [Crossref] [Google Scholar]
  79. 79.
    Tormo A, Almiron M, Kolter R. 1990.. surA, an Escherichia coli gene essential for survival in stationary phase. . J. Bacteriol. 172::433947
    [Crossref] [Google Scholar]
  80. 80.
    Missiakas D, Betton JM, Raina S. 1996.. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. . Mol. Microbiol. 21::87184
    [Crossref] [Google Scholar]
  81. 81.
    Struyve M, Moons M, Tommassen J. 1991.. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. . J. Mol. Biol. 218::14148
    [Crossref] [Google Scholar]
  82. 82.
    Bitto E, McKay DB. 2003.. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. . J. Biol. Chem. 278::4931622
    [Crossref] [Google Scholar]
  83. 83.
    Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, et al. 2017.. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. . J. Mol. Biol. 429::377692
    [Crossref] [Google Scholar]
  84. 84.
    Marx DC, Leblanc MJ, Plummer AM, Krueger S, Fleming KG. 2020.. Domain interactions determine the conformational ensemble of the periplasmic chaperone SurA. . Protein Sci. 29::204353
    [Crossref] [Google Scholar]
  85. 85.
    Jia M, Wu B, Yang Z, Chen C, Zhao M, et al. 2020.. Conformational dynamics of the periplasmic chaperone SurA. . Biochemistry 59::323546
    [Crossref] [Google Scholar]
  86. 86.
    Bitto E, McKay DB. 2002.. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. . Structure 10::148998
    [Crossref] [Google Scholar]
  87. 87.
    Wang X, Bernstein HD. 2022.. The Escherichia coli outer membrane protein OmpA acquires secondary structure prior to its integration into the membrane. . J. Biol. Chem. 298::101802
    [Crossref] [Google Scholar]
  88. 88.
    Sikdar R, Peterson JH, Anderson DE, Bernstein HD. 2017.. Folding of a bacterial integral outer membrane protein is initiated in the periplasm. . Nat. Commun. 8::1309
    [Crossref] [Google Scholar]
  89. 89.
    Lee J, Xue M, Wzorek JS, Wu T, Grabowicz M, et al. 2016.. Characterization of a stalled complex on the β-barrel assembly machine. . PNAS 113::871722
    [Crossref] [Google Scholar]
  90. 90.
    Burmann BM, Wang C, Hiller S. 2013.. Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. . Nat. Struct. Mol. Biol. 20::126572
    [Crossref] [Google Scholar]
  91. 91.
    Walton TA, Sandoval CM, Fowler CA, Pardi A, Sousa MC. 2009.. The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains. . PNAS 106::177277
    [Crossref] [Google Scholar]
  92. 92.
    Holdbrook DA, Burmann BM, Huber RG, Petoukhov MV, Svergun DI, et al. 2017.. A spring-loaded mechanism governs the clamp-like dynamics of the Skp chaperone. . Structure 25::107988.e3
    [Crossref] [Google Scholar]
  93. 93.
    Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE, et al. 2016.. Skp is a multivalent chaperone of outer-membrane proteins. . Nat. Struct. Mol. Biol. 23::78693
    [Crossref] [Google Scholar]
  94. 94.
    Saul FA, Arié JP, Vulliez-le Normand B, Kahn R, Betton JM, Bentley GA. 2004.. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. . J. Mol. Biol. 335::595608
    [Crossref] [Google Scholar]
  95. 95.
    Ge X, Lyu ZX, Liu Y, Wang R, Zhao XS, et al. 2014.. Identification of FkpA as a key quality control factor for the biogenesis of outer membrane proteins under heat shock conditions. . J. Bacteriol. 196::67280
    [Crossref] [Google Scholar]
  96. 96.
    He W, Yu G, Li T, Bai L, Yang Y, et al. 2021.. Chaperone spy protects outer membrane proteins from folding stress via dynamic complex formation. . mBio 12::e0213021
    [Crossref] [Google Scholar]
  97. 97.
    Soltes GR, Martin NR, Park E, Sutterlin HA, Silhavy TJ. 2017.. Distinctive roles for periplasmic proteases in the maintenance of essential outer membrane protein assembly. . J. Bacteriol. 199::e0041817
    [Crossref] [Google Scholar]
  98. 98.
    Narita S, Masui C, Suzuki T, Dohmae N, Akiyama Y. 2013.. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. . PNAS 110::E361221
    [Crossref] [Google Scholar]
  99. 99.
    Yan Z, Hussain S, Wang X, Bernstein HD, Bardwell JCA. 2019.. Chaperone OsmY facilitates the biogenesis of a major family of autotransporters. . Mol. Microbiol. 112::137387
    [Crossref] [Google Scholar]
  100. 100.
    Alcock FH, Grossmann JG, Gentle IE, Likic VA, Lithgow T, Tokatlidis K. 2008.. Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space. . Biochem. J. 409::37787
    [Crossref] [Google Scholar]
  101. 101.
    Troman L, Alvira S, Daum B, Gold VAM, Collinson I. 2023.. Interaction of the periplasmic chaperone SurA with the inner membrane protein secretion (SEC) machinery. . Biochem. J. 480::28396
    [Crossref] [Google Scholar]
  102. 102.
    Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007.. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. . Genes Dev. 21::247384
    [Crossref] [Google Scholar]
  103. 103.
    Alvira S, Watkins DW, Troman L, Allen WJ, Lorriman JS, et al. 2020.. Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis. . eLife 9::e60669
    [Crossref] [Google Scholar]
  104. 104.
    Upton SL, Tay JW, Schwartz DK, Sousa MC. 2023.. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. . Biophys. J. 122::438294
    [Crossref] [Google Scholar]
  105. 105.
    Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. 2007.. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. . PNAS 104::64005
    [Crossref] [Google Scholar]
  106. 106.
    Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, et al. 2006.. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. . Mol. Microbiol. 61::15164
    [Crossref] [Google Scholar]
  107. 107.
    Hart EM, Silhavy TJ. 2020.. Functions of the BamBCDE lipoproteins revealed by bypass mutations in BamA. . J. Bacteriol. 202::e0040120
    [Crossref] [Google Scholar]
  108. 108.
    Plummer AM, Fleming KG. 2015.. BamA alone accelerates outer membrane protein folding in vitro through a catalytic mechanism. . Biochemistry 54::600911
    [Crossref] [Google Scholar]
  109. 109.
    White P, Haysom SF, Iadanza MG, Higgins AJ, Machin JM, et al. 2021.. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. . Nat. Commun. 12::4174
    [Crossref] [Google Scholar]
  110. 110.
    Peterson JH, Doyle MT, Bernstein HD. 2022.. Small molecule antibiotics inhibit distinct stages of bacterial outer membrane protein assembly. . mBio 13::e0228622
    [Crossref] [Google Scholar]
  111. 111.
    Kaur H, Jakob RP, Marzinek JK, Green R, Imai Y, et al. 2021.. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. . Nature 593::12529
    [Crossref] [Google Scholar]
  112. 112.
    Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, et al. 2019.. A new antibiotic selectively kills Gram-negative pathogens. . Nature 576::45964
    [Crossref] [Google Scholar]
  113. 113.
    Luther A, Urfer M, Zahn M, Muller M, Wang SY, et al. 2019.. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. . Nature 576::4528
    [Crossref] [Google Scholar]
  114. 114.
    Miller RD, Iinishi A, Modaresi SM, Yoo B-K, Curtis TD, et al. 2022.. Computational identification of a systemic antibiotic for Gram-negative bacteria. . Nat. Microbiol. 7::166172
    [Crossref] [Google Scholar]
  115. 115.
    Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, et al. 2016.. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. . Nat. Commun. 7::12865
    [Crossref] [Google Scholar]
  116. 116.
    Han L, Zheng J, Wang Y, Yang X, Liu Y, et al. 2016.. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. . Nat. Struct. Mol. Biol. 23::19296
    [Crossref] [Google Scholar]
  117. 117.
    Bakelar J, Buchanan SK, Noinaj N. 2016.. The structure of the β-barrel assembly machinery complex. . Science 351::18086
    [Crossref] [Google Scholar]
  118. 118.
    Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M, et al. 2012.. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. . Mol. Microbiol. 84::83244
    [Crossref] [Google Scholar]
  119. 119.
    Chen YL, Chen LJ, Chu CC, Huang PK, Wen JR, Li HM. 2018.. TIC236 links the outer and inner membrane translocons of the chloroplast. . Nature 564::12529
    [Crossref] [Google Scholar]
  120. 120.
    Stubenrauch C, Grinter R, Lithgow T. 2016.. The modular nature of the β-barrel assembly machinery, illustrated in Borrelia burgdorferi. . Mol. Microbiol. 102::75356
    [Crossref] [Google Scholar]
  121. 121.
    Iqbal H, Kenedy MR, Lybecker M, Akins DR. 2016.. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. . Mol. Microbiol. 102::75774
    [Crossref] [Google Scholar]
  122. 122.
    Heinz E, Selkrig J, Belousoff MJ, Lithgow T. 2015.. Evolution of the translocation and assembly module (TAM). . Genome Biol. Evol. 7::162843
    [Crossref] [Google Scholar]
  123. 123.
    Wu R, Bakelar JW, Lundquist K, Zhang Z, Kuo KM, et al. 2021.. Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. . Nat. Commun. 12::7131
    [Crossref] [Google Scholar]
  124. 124.
    Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE, et al. 2020.. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. . Commun. Biol. 3::766
    [Crossref] [Google Scholar]
  125. 125.
    Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. 2014.. Lateral opening and exit pore formation are required for BamA function. . Structure 22::105562
    [Crossref] [Google Scholar]
  126. 126.
    Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC, et al. 2020.. Structure of a nascent membrane protein as it folds on the BAM complex. . Nature 583::47378
    [Crossref] [Google Scholar]
  127. 127.
    Doyle MT, Bernstein HD. 2019.. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. . Nat. Commun. 10::3358
    [Crossref] [Google Scholar]
  128. 128.
    Doyle MT, Bernstein HD. 2021.. BamA forms a translocation channel for polypeptide export across the bacterial outer membrane. . Mol. Cell 81::200012.e3
    [Crossref] [Google Scholar]
  129. 129.
    Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, et al. 2022.. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. . Cell 185::114356.e13
    [Crossref] [Google Scholar]
  130. 130.
    Shen C, Chang S, Luo Q, Chan KC, Zhang Z, et al. 2023.. Structural basis of BAM-mediated outer membrane β-barrel protein assembly. . Nature 617::18593
    [Crossref] [Google Scholar]
  131. 131.
    Gunasinghe SD, Shiota T, Stubenrauch CJ, Schulze KE, Webb CT, et al. 2018.. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. . Cell Rep. 23::278294
    [Crossref] [Google Scholar]
  132. 132.
    Webb CT, Selkrig J, Perry AJ, Noinaj N, Buchanan SK, Lithgow T. 2012.. Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. . J. Mol. Biol. 422::54555
    [Crossref] [Google Scholar]
  133. 133.
    Kumar S, Konovalova A. 2023.. BamE directly interacts with BamA and BamD coordinating their functions. . Mol. Microbiol. 120::397407
    [Crossref] [Google Scholar]
  134. 134.
    Tata M, Konovalova A. 2019.. Improper coordination of BamA and BamD results in Bam complex jamming by a lipoprotein substrate. . mBio 10::e0066019
    [Crossref] [Google Scholar]
  135. 135.
    Hart EM, Gupta M, Wuhr M, Silhavy TJ. 2019.. The synthetic phenotype of ΔbamB ΔbamE double mutants results from a lethal jamming of the Bam complex by the lipoprotein RcsF. . mBio 10::e0066219
    [Crossref] [Google Scholar]
  136. 136.
    Hart EM, Gupta M, Wuhr M, Silhavy TJ. 2020.. The gain-of-function allele bamAE470K bypasses the essential requirement for BamD in β-barrel outer membrane protein assembly. . PNAS 117::1873743
    [Crossref] [Google Scholar]
  137. 137.
    Hagan CL, Wzorek JS, Kahne D. 2015.. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. . PNAS 112::201116
    [Crossref] [Google Scholar]
  138. 138.
    Germany EM, Thewasano N, Imai K, Maruno Y, Bamert RS, et al. 2023.. Simultaneous recognition of multiple signals in bacterial outer membrane proteins enhance assembly and maintain membrane integrity. . eLife 12::RP90274
    [Crossref] [Google Scholar]
  139. 139.
    McCabe AL, Ricci D, Adetunji M, Silhavy TJ. 2017.. Conformational changes that coordinate the activity of BamA and BamD allowing β-barrel assembly. . J. Bacteriol. 199::0037317
    [Crossref] [Google Scholar]
  140. 140.
    Ricci DP, Hagan CL, Kahne D, Silhavy TJ. 2012.. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. . PNAS 109::348791
    [Crossref] [Google Scholar]
  141. 141.
    Jackups R Jr., Liang J. 2005.. Interstrand pairing patterns in β-barrel membrane proteins: the positive-outside rule, aromatic rescue, and strand registration prediction. . J. Mol. Biol. 354::97993
    [Crossref] [Google Scholar]
  142. 142.
    Machin JM, Kalli AC, Ranson NA, Radford SE. 2023.. Protein–lipid charge interactions control the folding of outer membrane proteins into asymmetric membranes. . Nat. Chem. 15::175464
    [Crossref] [Google Scholar]
  143. 143.
    Hussain S, Peterson JH, Bernstein HD. 2021.. Reconstitution of Bam complex-mediated assembly of a trimeric porin into proteoliposomes. . mBio 12::e0169621
    [Crossref] [Google Scholar]
  144. 144.
    Rassam P, Copeland NA, Birkholz O, Toth C, Chavent M, et al. 2015.. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. . Nature 523::33336
    [Crossref] [Google Scholar]
  145. 145.
    Mamou G, Corona F, Cohen-Khait R, Housden NG, Yeung V, et al. 2022.. Peptidoglycan maturation controls outer membrane protein assembly. . Nature 606::95359
    [Crossref] [Google Scholar]
  146. 146.
    Webby MN, Oluwole AO, Pedebos C, Inns PG, Olerinyova A, et al. 2022.. Lipids mediate supramolecular outer membrane protein assembly in bacteria. . Sci. Adv. 8::eadc9566
    [Crossref] [Google Scholar]
  147. 147.
    Ranava D, Yang Y, Orenday-Tapia L, Rousset F, Turlan C, et al. 2021.. Lipoprotein DolP supports proper folding of BamA in the bacterial outer membrane promoting fitness upon envelope stress. . eLife 10::e67817
    [Crossref] [Google Scholar]
  148. 148.
    Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrene YF, De Bolle X. 2019.. Localized incorporation of outer membrane components in the pathogen Brucella abortus. . EMBO J. 38::e100323
    [Crossref] [Google Scholar]
  149. 149.
    Solan R, Pereira J, Lupas AN, Kolodny R, Ben-Tal N. 2021.. Gram-negative outer-membrane proteins with multiple β-barrel domains. . PNAS 118::e2104059118
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030122-033754
Loading
/content/journals/10.1146/annurev-biochem-030122-033754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error