1932

Abstract

Writing a career retrospective for this prestigious series is a huge challenge. Is my story really of that much interest? One thing that is different about my life in science is the heavy influence of the turmoil of the past century. Born in the US, raised in East Germany, and returning to the US relatively late in life, I experienced research under both suboptimal and privileged conditions. My scientific story, like the political winds that blew me from one continent to the next, involved shifts into different fields. For advice to young scientists, I would suggest: Don't be afraid to start something new, it pays to be persistent, and science is a passion. In addition to telling my own story, this article also provides the opportunity to express my gratitude to my trainees and colleagues and to convey my conviction that we have the best job on earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030122-040444
2024-08-02
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030122-040444.html?itemId=/content/journals/10.1146/annurev-biochem-030122-040444&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Graff J. 2015.. Ingeborg Rapoport to become oldest recipient of doctorate after Nazi injustice is righted. . The Wall Street Journal, May 14. https://www.wsj.com/articles/from-nazi-germany-a-tale-of-redemption-1431576062
    [Google Scholar]
  2. 2.
    Heinrich R, Rapoport TA. 1973.. Linear theory of enzymatic chains; its application for the analysis of the crossover theorem and of the glycolysis of human erythrocytes. . Acta Biol. Med. Ger. 31::47994
    [Google Scholar]
  3. 3.
    Kacser H, Burns JA. 1973.. The control of flux. . Symp. Soc. Exp. Biol. 27::65104
    [Google Scholar]
  4. 4.
    Heinrich R, Rapoport TA. 1974.. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. . Eur. J. Biochem. 42::8995
    [Crossref] [Google Scholar]
  5. 5.
    Heinrich R, Rapoport TA. 2005.. Generation of nonidentical compartments in vesicular transport systems. . J. Cell Biol. 168::27180
    [Crossref] [Google Scholar]
  6. 6.
    Johnson AE, Woodward WR, Herbert E, Menninger JR. 1976.. Nε-acetyllysine transfer ribonucleic acid: a biologically active analogue of aminoacyl transfer ribonucleic acids. . Biochemistry 15::56975
    [Crossref] [Google Scholar]
  7. 7.
    Kurzchalia TV, Wiedmann M, Girshovich AS, Bochkareva ES, Bielka H, Rapoport TA. 1986.. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. . Nature 320::63436
    [Crossref] [Google Scholar]
  8. 8.
    Deshaies RJ, Schekman R. 1987.. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. . J. Cell Biol. 105::63345
    [Crossref] [Google Scholar]
  9. 9.
    Görlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA. 1992.. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. . Cell 71::489503
    [Crossref] [Google Scholar]
  10. 10.
    Görlich D, Rapoport TA. 1993.. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. . Cell 75::61530
    [Crossref] [Google Scholar]
  11. 11.
    Mothes W, Prehn S, Rapoport TA. 1994.. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. . EMBO J. 13::397382
    [Crossref] [Google Scholar]
  12. 12.
    Hartmann E, Sommer T, Prehn S, Görlich D, Jentsch S, Rapoport TA. 1994.. Evolutionary conservation of components of the protein translocation complex. . Nature 367::65457
    [Crossref] [Google Scholar]
  13. 13.
    Emr SD, Hanley-Way S, Silhavy TJ. 1981.. Suppressor mutations that restore export of a protein with a defective signal sequence. . Cell 23::7988
    [Crossref] [Google Scholar]
  14. 14.
    Ito K, Wittekind M, Nomura M, Shiba K, Yura T, et al. 1983.. A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. . Cell 32::78997
    [Crossref] [Google Scholar]
  15. 15.
    Oliver DB, Beckwith J. 1981.. E. coli mutant pleiotropically defective in the export of secreted proteins. . Cell 25::76572
    [Crossref] [Google Scholar]
  16. 16.
    Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. 1990.. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. . Cell 62::64957
    [Crossref] [Google Scholar]
  17. 17.
    Akimaru J, Matsuyama S, Tokuda H, Mizushima S. 1991.. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. . PNAS 88::654549
    [Crossref] [Google Scholar]
  18. 18.
    Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA. 1995.. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. . Cell 81::56170
    [Crossref] [Google Scholar]
  19. 19.
    Jungnickel B, Rapoport TA. 1995.. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. . Cell 82::26170
    [Crossref] [Google Scholar]
  20. 20.
    Mothes W, Heinrich SU, Graf R, Nilsson I, von Heijne G, et al. 1997.. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. . Cell 89::52333
    [Crossref] [Google Scholar]
  21. 21.
    Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998.. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. . Cell 94::795807
    [Crossref] [Google Scholar]
  22. 22.
    Matlack KE, Misselwitz B, Plath K, Rapoport TA. 1999.. BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. . Cell 97::55364
    [Crossref] [Google Scholar]
  23. 23.
    Heinrich SU, Mothes W, Brunner J, Rapoport TA. 2000.. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. . Cell 102::23344
    [Crossref] [Google Scholar]
  24. 24.
    Van den Berg B, Clemons WM Jr., Collinson I, Modis Y, Hartmann E, et al. 2004.. X-ray structure of a protein-conducting channel. . Nature 427::3644
    [Crossref] [Google Scholar]
  25. 25.
    Voorhees RM, Fernandez IS, Scheres SH, Hegde RS. 2014.. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. . Cell 157::163243
    [Crossref] [Google Scholar]
  26. 26.
    Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. 2016.. Crystal structure of a substrate-engaged SecY protein-translocation channel. . Nature 531::39599
    [Crossref] [Google Scholar]
  27. 27.
    Voorhees RM, Hegde RS. 2016.. Structure of the Sec61 channel opened by a signal sequence. . Science 351::8891
    [Crossref] [Google Scholar]
  28. 28.
    Wu X, Cabanos C, Rapoport TA. 2019.. Structure of the post-translational protein translocation machinery of the ER membrane. . Nature 566::13639
    [Crossref] [Google Scholar]
  29. 29.
    Itskanov S, Park E. 2019.. Structure of the posttranslational Sec protein-translocation channel complex from yeast. . Science 363::8487
    [Crossref] [Google Scholar]
  30. 30.
    Zimmer J, Nam Y, Rapoport TA. 2008.. Structure of a complex of the ATPase SecA and the protein-translocation channel. . Nature 455::93643
    [Crossref] [Google Scholar]
  31. 31.
    Bauer BW, Shemesh T, Chen Y, Rapoport TA. 2014.. A “push and slide” mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. . Cell 157::141629
    [Crossref] [Google Scholar]
  32. 32.
    Catipovic MA, Bauer BW, Loparo JJ, Rapoport TA. 2019.. Protein translocation by the SecA ATPase occurs by a power-stroke mechanism. . EMBO J. 38::e101140
    [Crossref] [Google Scholar]
  33. 33.
    Kutay U, Hartmann E, Rapoport TA. 1993.. A class of membrane proteins with a C-terminal anchor. . Trends Cell Biol. 3::7275
    [Crossref] [Google Scholar]
  34. 34.
    Kutay U, Ahnert-Hilger G, Hartmann E, Wiedenmann B, Rapoport TA. 1995.. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. . EMBO J. 14::21723
    [Crossref] [Google Scholar]
  35. 35.
    Park E, Rapoport TA. 2011.. Preserving the membrane barrier for small molecules during bacterial protein translocation. . Nature 473::23942
    [Crossref] [Google Scholar]
  36. 36.
    Smalinskaite L, Kim MK, Lewis AJO, Keenan RJ, Hegde RS. 2022.. Mechanism of an intramembrane chaperone for multipass membrane proteins. . Nature 611::16166
    [Crossref] [Google Scholar]
  37. 37.
    Sundaram A, Yamsek M, Zhong F, Hooda Y, Hegde RS, Keenan RJ. 2022.. Substrate-driven assembly of a translocon for multipass membrane proteins. . Nature 611::16772
    [Crossref] [Google Scholar]
  38. 38.
    Hartmann E, Görlich D, Kostka S, Otto A, Kraft R, et al. 1993.. A tetrameric complex of membrane proteins in the endoplasmic reticulum. . Eur. J. Biochem. 214::37581
    [Crossref] [Google Scholar]
  39. 39.
    Görlich D, Hartmann E, Prehn S, Rapoport TA. 1992.. A protein of the endoplasmic reticulum involved early in polypeptide translocation. . Nature 357::4752
    [Crossref] [Google Scholar]
  40. 40.
    Shamu CE, Story CM, Rapoport TA, Ploegh HL. 1999.. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. . J. Cell Biol. 147::4558
    [Crossref] [Google Scholar]
  41. 41.
    Flierman D, Ye Y, Dai M, Chau V, Rapoport TA. 2003.. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. . J. Biol. Chem. 278::3477482
    [Crossref] [Google Scholar]
  42. 42.
    Ye Y, Meyer HH, Rapoport TA. 2001.. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. . Nature 414::65256
    [Crossref] [Google Scholar]
  43. 43.
    Hampton RY, Gardner RG, Rine J. 1996.. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. . Mol. Biol. Cell 7::202944
    [Crossref] [Google Scholar]
  44. 44.
    Knop M, Finger A, Braun T, Hellmuth K, Wolf DH. 1996.. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. . EMBO J. 15::75363
    [Crossref] [Google Scholar]
  45. 45.
    Carvalho P, Goder V, Rapoport TA. 2006.. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. . Cell 126::36173
    [Crossref] [Google Scholar]
  46. 46.
    Vashist S, Ng DT. 2004.. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. . J. Cell Biol. 165::4152
    [Crossref] [Google Scholar]
  47. 47.
    Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, et al. 2004.. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. . J. Biol. Chem. 279::3836978
    [Crossref] [Google Scholar]
  48. 48.
    Carvalho P, Stanley AM, Rapoport TA. 2010.. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. . Cell 143::57991
    [Crossref] [Google Scholar]
  49. 49.
    Stein A, Ruggiano A, Carvalho P, Rapoport TA. 2014.. Key steps in ERAD of luminal ER proteins reconstituted with purified components. . Cell 158::137588
    [Crossref] [Google Scholar]
  50. 50.
    Baldridge RD, Rapoport TA. 2016.. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. . Cell 166::394407
    [Crossref] [Google Scholar]
  51. 51.
    Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, et al. 2020.. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. . Science 368::eaaz2449
    [Crossref] [Google Scholar]
  52. 52.
    Wu X, Rapoport TA. 2021.. Translocation of proteins through a distorted lipid bilayer. . Trends Cell Biol. 31::47384
    [Crossref] [Google Scholar]
  53. 53.
    Bodnar NO, Rapoport TA. 2017.. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. . Cell 169::72235.e9
    [Crossref] [Google Scholar]
  54. 54.
    Twomey EC, Ji Z, Wales TE, Bodnar NO, Ficarro SB, et al. 2019.. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. . Science 365::eaax1033
    [Crossref] [Google Scholar]
  55. 55.
    Ji Z, Li H, Peterle D, Paulo JA, Ficarro SB, et al. 2022.. Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase. . Mol. Cell 82::57084.e8
    [Crossref] [Google Scholar]
  56. 56.
    Blok NB, Tan D, Wang RY, Penczek PA, Baker D, et al. 2015.. Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. . PNAS 112::E401725
    [Crossref] [Google Scholar]
  57. 57.
    Dreier L, Rapoport TA. 2000.. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. . J. Cell Biol. 148::88398
    [Crossref] [Google Scholar]
  58. 58.
    Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. 2006.. A class of membrane proteins shaping the tubular endoplasmic reticulum. . Cell 124::57386
    [Crossref] [Google Scholar]
  59. 59.
    Hu J, Shibata Y, Voss C, Shemesh T, Li Z, et al. 2008.. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. . Science 319::124750
    [Crossref] [Google Scholar]
  60. 60.
    Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, et al. 2009.. A class of dynamin-like GTPases involved in the generation of the tubular ER network. . Cell 138::54961
    [Crossref] [Google Scholar]
  61. 61.
    Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, et al. 2009.. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. . Nature 460::97883
    [Crossref] [Google Scholar]
  62. 62.
    Bian X, Klemm RW, Liu TY, Zhang M, Sun S, et al. 2011.. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. . PNAS 108::397681
    [Crossref] [Google Scholar]
  63. 63.
    Liu TY, Bian X, Romano FB, Shemesh T, Rapoport TA, Hu J. 2015.. Cis and trans interactions between atlastin molecules during membrane fusion. . PNAS 112::E185160
    [Google Scholar]
  64. 64.
    Wang S, Tukachinsky H, Romano FB, Rapoport TA. 2016.. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. . eLife 5::e18605
    [Crossref] [Google Scholar]
  65. 65.
    Powers RE, Wang S, Liu TY, Rapoport TA. 2017.. Reconstitution of the tubular endoplasmic reticulum network with purified components. . Nature 543::25760
    [Crossref] [Google Scholar]
  66. 66.
    Terasaki M, Shemesh T, Kasthuri N, Klemm RW, Schalek R, et al. 2013.. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. . Cell 154::28596
    [Crossref] [Google Scholar]
  67. 67.
    Wang N, Shibata Y, Paulo JA, Gygi SP, Rapoport TA. 2023.. A conserved membrane curvature-generating protein is crucial for autophagosome formation in fission yeast. . Nat. Commun. 14::4765
    [Crossref] [Google Scholar]
  68. 68.
    Romano FB, Blok NB, Rapoport TA. 2019.. Peroxisome protein import recapitulated in Xenopus egg extracts. . J. Cell Biol. 218::202134
    [Crossref] [Google Scholar]
  69. 69.
    Gao Y, Skowyra ML, Feng P, Rapoport TA. 2022.. Protein import into peroxisomes occurs through a nuclear pore-like phase. . Science 378::eadf3971
    [Crossref] [Google Scholar]
  70. 70.
    Skowyra ML, Rapoport TA. 2022. PEX5 translocation into and out of peroxisomes drives matrix protein import. . Mol. Cell 82::320925.e7
    [Crossref] [Google Scholar]
  71. 71.
    Feng P, Wu X, Erramilli SK, Paulo JA, Knejski P, et al. 2022.. A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel. . Nature 607::37480
    [Crossref] [Google Scholar]
  72. 72.
    Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA. 1998.. Light chain-dependent regulation of kinesin's interaction with microtubules. . J. Cell Biol. 143::105366
    [Crossref] [Google Scholar]
  73. 73.
    Tsai B, Rodighiero C, Lencer WI, Rapoport TA. 2001.. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. . Cell 104::93748
    [Crossref] [Google Scholar]
  74. 74.
    Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA. 2003.. Gangliosides are receptors for murine polyoma virus and SV40. . EMBO J. 22::434655
    [Crossref] [Google Scholar]
  75. 75.
    Misselwitz B, Staeck O, Rapoport TA. 1998.. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. . Mol. Cell 2::593603
    [Crossref] [Google Scholar]
  76. 76.
    Burton BM, Marquis KA, Sullivan NL, Rapoport TA, Rudner DZ. 2007.. The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis. . Cell 131::130112
    [Crossref] [Google Scholar]
  77. 77.
    Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA. 2010.. Structure of a bacterial homologue of vitamin K epoxide reductase. . Nature 463::50712
    [Crossref] [Google Scholar]
  78. 78.
    Sever N, Milicic G, Bodnar NO, Wu X, Rapoport TA. 2021.. Mechanism of lamellar body formation by lung surfactant protein B. . Mol. Cell 81::4966.e8
    [Crossref] [Google Scholar]
  79. 79.
    Rapoport T, Li L, Park E. 2017.. Structural and mechanistic insights into protein translocation. . Annu. Rev. Cell Dev. Biol. 33::36990
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030122-040444
Loading
/content/journals/10.1146/annurev-biochem-030122-040444
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error