1932

Abstract

CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA–directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR–Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA–directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030122-041908
2024-08-02
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030122-041908.html?itemId=/content/journals/10.1146/annurev-biochem-030122-041908&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang JY, Pausch P, Doudna JA. 2022.. Structural biology of CRISPR–Cas immunity and genome editing enzymes. . Nat. Rev. Microbiol. 20:(11):64156
    [Crossref] [Google Scholar]
  2. 2.
    Anzalone AV, Koblan LW, Liu DR. 2020.. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. . Nat. Biotechnol. 38:(7):82444
    [Crossref] [Google Scholar]
  3. 3.
    Chen SP, Wang HH. 2019.. An engineered Cas-transposon system for programmable and site-directed DNA transpositions. . CRISPR J. 2:(6):37694
    [Crossref] [Google Scholar]
  4. 4.
    Bhatt S, Chalmers R. 2019.. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein. . Nucleic Acids Res. 47:(15):812635
    [Crossref] [Google Scholar]
  5. 5.
    Barth PT, Datta N, Hedges RW, Grinter NJ. 1976.. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. . J. Bacteriol. 125:(3):80010
    [Crossref] [Google Scholar]
  6. 6.
    McKown RL, Orle KA, Chen T, Craig NL. 1988.. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. . J. Bacteriol. 170:(1):35258
    [Crossref] [Google Scholar]
  7. 7.
    Sarnovsky R, May EW, Craig NL. 1996.. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. . EMBO J. 15::634861
    [Crossref] [Google Scholar]
  8. 8.
    May EW, Craig NL. 1996.. Switching from cut-and-paste to replicative Tn7 transposition. . Science 272::4014
    [Crossref] [Google Scholar]
  9. 9.
    Shapiro JA. 1979.. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. . PNAS 76::193337
    [Crossref] [Google Scholar]
  10. 10.
    Bainton RJ, Kubo KM, Feng J-N, Craig NL. 1993.. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. . Cell 72::93143
    [Crossref] [Google Scholar]
  11. 11.
    Bainton R, Gamas P, Craig NL. 1991.. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. . Cell 65::80516
    [Crossref] [Google Scholar]
  12. 12.
    Lichtenstein C, Brenner S. 1981.. Site-specific properties of Tn7 transposition into the E. coli chromosome. . Mol. Gen. Genet. 183:(2):38087
    [Crossref] [Google Scholar]
  13. 13.
    Arciszewska LK, Craig NL. 1991.. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. . Nucleic Acids Res. 19:(18):502129
    [Crossref] [Google Scholar]
  14. 14.
    Kaczmarska Z, Czarnocki-Cieciura M, Górecka-Minakowska KM, Grant T, Peters JE, Nowotny M. 2022.. Structural basis of transposon end recognition explains central features of Tn7 transposition systems. . Mol. Cell 82:(14):261832.e7
    [Crossref] [Google Scholar]
  15. 15.
    Waddell CS, Craig NL. 1988.. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. . Genes Dev. 2:(2):13749
    [Crossref] [Google Scholar]
  16. 16.
    Choi KY, Spencer JM, Craig NL. 2014.. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. . PNAS 111:(28):E285865
    [Crossref] [Google Scholar]
  17. 17.
    Peters JE, Craig NL. 2001.. Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. . Genes Dev. 15:(6):73747
    [Crossref] [Google Scholar]
  18. 18.
    Shi Q, Straus MR, Caron JJ, Wang H, Chung YS, et al. 2015.. Conformational toggling controls target site choice for the heteromeric transposase element Tn7. . Nucleic Acids Res. 43:(22):1073445
    [Crossref] [Google Scholar]
  19. 19.
    Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE. 2009.. Transposition into replicating DNA occurs through interaction with the processivity factor. . Cell 138:(4):68595
    [Crossref] [Google Scholar]
  20. 20.
    Benler S, Faure G, Altae-Tran H, Shmakov S, Zhang F, Koonin E. 2021.. Cargo genes of Tn7-like transposons comprise an enormous diversity of defense systems, mobile genetic elements, and antibiotic resistance genes. . mBio 12:(6):e0293821
    [Crossref] [Google Scholar]
  21. 21.
    Tansirichaiya S, Rahman MA, Roberts AP. 2019.. The transposon registry. . Mob. DNA 10::40
    [Crossref] [Google Scholar]
  22. 22.
    Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, et al. 2003.. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. . Nucleic Acids Res. 31:(7):180512
    [Crossref] [Google Scholar]
  23. 23.
    Burrus V, Pavlovic G, Decaris B, Guédon G. 2002.. Conjugative transposons: the tip of the iceberg. . Mol. Microbiol. 46:(3):60110
    [Crossref] [Google Scholar]
  24. 24.
    Simon AJ, Ellington AD, Finkelstein IJ. 2019.. Retrons and their applications in genome engineering. . Nucleic Acids Res. 47:(21):1100719
    [Crossref] [Google Scholar]
  25. 25.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, et al. 2020.. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. . Nat. Rev. Microbiol. 18:(2):6783
    [Crossref] [Google Scholar]
  26. 26.
    Saito M, Ladha A, Strecker J, Faure G, Neumann E, et al. 2021.. Dual modes of CRISPR-associated transposon homing. . Cell 184:(9):244153.e18
    [Crossref] [Google Scholar]
  27. 27.
    Peters JE, Makarova KS, Shmakov S, Koonin EV. 2017.. Recruitment of CRISPR-Cas systems by Tn7-like transposons. . PNAS 114:(35):E735866
    [Crossref] [Google Scholar]
  28. 28.
    Klompe SE, Jaber N, Beh LY, Mohabir JT, Bernheim A, Sternberg SH. 2022.. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons. . Mol. Cell 82:(3):61628.e5
    [Crossref] [Google Scholar]
  29. 29.
    Petassi MT, Hsieh SC, Peters JE. 2020.. Guide RNA categorization enables target site choice in Tn7-CRISPR-Cas transposons. . Cell 183:(7):175771.e18
    [Crossref] [Google Scholar]
  30. 30.
    Hsieh S-C, Peters JE. 2021.. Tn7-CRISPR-Cas12K elements manage pathway choice using truncated repeat-spacer units to target tRNA attachment sites. . bioRxiv 2021.02.06.429022. https://doi.org/10.1101/2021.02.06.429022
  31. 31.
    Hsieh S-C, Peters JE. 2022.. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. . Nucleic Acids Res. 51:(2):76582
    [Crossref] [Google Scholar]
  32. 32.
    Minakhina S, Kholodii G, Mindlin S, Yurieva O, Nikiforov V. 1999.. Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. . Mol. Microbiol. 33:(5):105968
    [Crossref] [Google Scholar]
  33. 33.
    Kahn K, Schaefer MR. 1995.. Characterization of transposon Tn5469 from the cyanobacterium Fremyella diplosiphon. . J. Bacteriol. 177:(24):702632
    [Crossref] [Google Scholar]
  34. 34.
    Wolkow CA, DeBoy RT, Craig NL. 1996.. Conjugating plasmids are preferred targets for Tn7. . Genes Dev. 10::214557
    [Crossref] [Google Scholar]
  35. 35.
    Shi Q, Parks AR, Potter BD, Safir IJ, Luo Y, et al. 2008.. DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli. . Genetics 179:(3):123750
    [Crossref] [Google Scholar]
  36. 36.
    Peters JE, Craig NL. 2000.. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. . Mol. Cell 6:(3):57382
    [Crossref] [Google Scholar]
  37. 37.
    Faure G, Saito M, Benler S, Peng I, Wolf YI, et al. 2023.. Modularity and diversity of target selectors in Tn7 transposons. . Mol. Cell 83:(12):212236.e10
    [Crossref] [Google Scholar]
  38. 38.
    Petrovski S, Stanisich VA. 2010.. Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. . J. Bacteriol. 192:(7):186574
    [Crossref] [Google Scholar]
  39. 39.
    Shen Y, Gomez-Blanco J, Petassi MT, Peters JE, Ortega J, Guarné A. 2022.. Structural basis for DNA targeting by the Tn7 transposon. . Nat. Struct. Mol. Biol. 29:(2):14351
    [Crossref] [Google Scholar]
  40. 40.
    Park J-U, Tsai AW-L, Mehrotra E, Petassi MT, Hsieh S-C, et al. 2021.. Structural basis for target-site selection in RNA-guided DNA transposition systems. . Science 373:(6556):76874
    [Crossref] [Google Scholar]
  41. 41.
    Querques I, Schmitz M, Oberli S, Chanez C, Jinek M. 2021.. Target site selection and remodelling by type V CRISPR-transposon systems. . Nature 599:(7885):497502
    [Crossref] [Google Scholar]
  42. 42.
    Hoffmann FT, Kim M, Beh LY, Wang J, Vo PLH, et al. 2022.. Selective TnsC recruitment enhances the fidelity of RNA-guided transposition. . Nature 609:(7926):38493
    [Crossref] [Google Scholar]
  43. 43.
    Kuduvalli P, Rao JE, Craig NL. 2001.. Target DNA structure plays a critical role in Tn7 transposition. . EMBO J. 20:(4):92432
    [Crossref] [Google Scholar]
  44. 44.
    Rao JE, Craig NL. 2001.. Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7. . J. Mol. Biol. 307:(5):116170
    [Crossref] [Google Scholar]
  45. 45.
    Rao JE, Miller PS, Craig NL. 2000.. Recognition of triple-helical DNA structures by transposon Tn7. . PNAS 97:(8):393641
    [Crossref] [Google Scholar]
  46. 46.
    Stellwagen AE, Craig NL. 1997.. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. . Genetics 145:(3):57385
    [Crossref] [Google Scholar]
  47. 47.
    Harshey RM. 2012.. The Mu story: how a maverick phage moved the field forward. . Mob. DNA 3:(1):21
    [Crossref] [Google Scholar]
  48. 48.
    Arciszewska LK, McKown RL, Craig NL. 1991.. Purification of TnsB, a transposition protein that binds to the ends of Tn7. . J. Biol. Chem. 266::2173644
    [Crossref] [Google Scholar]
  49. 49.
    Montano SP, Pigli YZ, Rice PA. 2012.. The Mu transpososome structure sheds light on DDE recombinase evolution. . Nature 491:(7424):41317
    [Crossref] [Google Scholar]
  50. 50.
    Park JU, Tsai AW-L, Chen TH, Peters JE, Kellogg EH. 2022.. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. . PNAS 119:(32):e2202590119
    [Crossref] [Google Scholar]
  51. 51.
    Park JU, Tsai AW-L, Rizo AN, Truong VH, Wellner TX, et al. 2023.. Structures of the holo CRISPR RNA-guided transposon integration complex. . Nature 613:(7945):77582
    [Crossref] [Google Scholar]
  52. 52.
    Schmitz M, Querques I, Oberli S, Chanez C, Jinek M. 2022.. Structural basis for the assembly of the type V CRISPR-associated transposon complex. . Cell 185:(26):49995010.e17
    [Crossref] [Google Scholar]
  53. 53.
    Holder JW, Craig NL. 2010.. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. . J. Mol. Biol. 401:(2):16781
    [Crossref] [Google Scholar]
  54. 54.
    Skelding Z, Sarnovsky R, Craig NL. 2002.. Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation. . EMBO J. 21:(13):3494504
    [Crossref] [Google Scholar]
  55. 55.
    Jones JM, Nakai H. 2001.. Escherichia coli PriA helicase: Fork binding orients the helicase to unwind the lagging strand side of arrested replication forks. . J. Mol. Biol. 312:(5):93547
    [Crossref] [Google Scholar]
  56. 56.
    Nakai H, Doseeva V, Jones JM. 2001.. Handoff from recombinase to replisome: insights from transposition. . PNAS 98:(15):824754
    [Crossref] [Google Scholar]
  57. 57.
    Jones JM, Nakai H. 1997.. The phiX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition. . EMBO J. 16:(22):688695
    [Crossref] [Google Scholar]
  58. 58.
    Ronning DR, Li Y, Perez ZN, Ross PD, Hickman AB, et al. 2004.. The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA. . EMBO J. 23:(15):297281
    [Crossref] [Google Scholar]
  59. 59.
    Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. 2019.. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. . Nature 571:(7764):21925
    [Crossref] [Google Scholar]
  60. 60.
    Turlan C, Chandler M. 2000.. Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. . Trends Microbiol. 8::26874
    [Crossref] [Google Scholar]
  61. 61.
    Hauer B, Shapiro JA. 1984.. Control of Tn7 transposition. . Mol. Gen. Genet. 194::14958
    [Crossref] [Google Scholar]
  62. 62.
    Skelding Z, Queen-Baker J, Craig NL. 2003.. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. . EMBO J. 22:(21):590417
    [Crossref] [Google Scholar]
  63. 63.
    Arciszewska LK, Drake D, Craig NL. 1989.. Transposon Tn7 cis-acting sequences in transposition and transposition immunity. . J. Mol. Biol. 207::3552
    [Crossref] [Google Scholar]
  64. 64.
    Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, et al. 2019.. RNA-guided DNA insertion with CRISPR-associated transposases. . Science 365:(6448):4853
    [Crossref] [Google Scholar]
  65. 65.
    Vo PLH, Ronda C, Klompe SE, Chen EE, Acree C, et al. 2020.. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. . Nat. Biotechnol. 39::48089
    [Crossref] [Google Scholar]
  66. 66.
    Parks AR, Peters JE. 2009.. Tn7 elements: engendering diversity from chromosomes to episomes. . Plasmid 61:(1):114
    [Crossref] [Google Scholar]
  67. 67.
    Peters JE, Fricker AD, Kapili BJ, Petassi MT. 2014.. Heteromeric transposase elements: generators of genomic islands across diverse bacteria. . Mol. Microbiol. 93:(6):108492
    [Crossref] [Google Scholar]
  68. 68.
    Peters JE. 2014.. Tn7. . Microbiol. Spectr. 2:(5):mdna30010-2014
    [Crossref] [Google Scholar]
  69. 69.
    Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G, et al. 2012.. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. . PLOS ONE 7:(7):e41247
    [Crossref] [Google Scholar]
  70. 70.
    Faure G, Shmakov SA, Yan WX, Cheng DR, Scott DA, et al. 2019.. CRISPR–Cas in mobile genetic elements: counter-defence and beyond. . Nat. Rev. Microbiol. 17:(8):51325
    [Crossref] [Google Scholar]
  71. 71.
    Rybarski JR, Hu K, Hill AM, Wilke CO, Finkelstein IJ. 2021.. Metagenomic discovery of CRISPR-associated transposons. . PNAS 118:(49):e2112279118
    [Crossref] [Google Scholar]
  72. 72.
    Barrangou R, Horvath P. 2017.. A decade of discovery: CRISPR functions and applications. . Nat. Microbiol. 2::17092
    [Crossref] [Google Scholar]
  73. 73.
    Koonin EV, Makarova KS, Zhang F. 2017.. Diversity, classification and evolution of CRISPR-Cas systems. . Curr. Opin. Microbiol. 37::6778
    [Crossref] [Google Scholar]
  74. 74.
    Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost K. 2016.. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. . Science 353:(6299):aad5147
    [Crossref] [Google Scholar]
  75. 75.
    Ziemann M, Reimann V, Liang Y, Shi Y, Ma H, et al. 2023.. CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems. . Nat. Commun. 14:(1):924
    [Crossref] [Google Scholar]
  76. 76.
    Peters JE. 2019.. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. . Mol. Microbiol. 112:(6):163544
    [Crossref] [Google Scholar]
  77. 77.
    McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF. 2019.. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. . BMC Genom. 20:(1):105
    [Crossref] [Google Scholar]
  78. 78.
    Vo PLH, Acree C, Smith ML, Sternberg SH. 2021.. Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. . Mob. DNA 12:(1):13
    [Crossref] [Google Scholar]
  79. 79.
    Partridge SR, Kwong SM, Firth N, Jensen SO. 2018.. Mobile genetic elements associated with antimicrobial resistance. . Clin. Microbiol. Rev. 31:(4):cmr.00088-17
    [Crossref] [Google Scholar]
  80. 80.
    Halpin-Healy TS, Klompe SE, Sternberg SH, Fernández IS. 2020.. Structural basis of DNA targeting by a transposon-encoded CRISPR–Cas system. . Nature 577:(7789):27174
    [Crossref] [Google Scholar]
  81. 81.
    Park JU, Petassi MT, Hsieh S-C, Mehrotra E, Schuler G, et al. 2023.. Multiple adaptations underly co-option of a CRISPR surveillance complex for RNA-guided DNA transposition. . Mol. Cell 83:(11):182738.e6
    [Crossref] [Google Scholar]
  82. 82.
    Roberts A, Nethery MA, Barrangou R. 2022.. Functional characterization of diverse type I-F CRISPR-associated transposons. . Nucleic Acids Res. 50:(20):1167081
    [Crossref] [Google Scholar]
  83. 83.
    Yang S, Zhang Y, Xu J, Zhang J, Zhang J, et al. 2021.. Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. . Nucleic Acids Res. 49:(17):10192202
    [Crossref] [Google Scholar]
  84. 84.
    Lampe GD, King RT, Halpin-Healy TS, Klompe SE, Hogan MI, et al. 2023.. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. . Nat. Biotechnol. 42::8798
    [Crossref] [Google Scholar]
  85. 85.
    Walker MWG, Klompe SE, Zhang DJ, Sternberg SH. 2023.. Novel molecular requirements for CRISPR RNA-guided transposition. . Nucleic Acids Res. 51:(9):451935
    [Crossref] [Google Scholar]
  86. 86.
    Rubin BE, Diamond S, Cress BF, Crits-Christoph A, Lou YC, et al. 2022.. Species- and site-specific genome editing in complex bacterial communities. . Nat. Microbiol. 7:(1):3447
    [Crossref] [Google Scholar]
  87. 87.
    Xiao R, Wang S, Han R, Li Z, Gabel C, et al. 2021.. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. . Mol. Cell 81:(21):445766.e5
    [Crossref] [Google Scholar]
  88. 88.
    Tou CJ, Orr B, Kleinstiver BP. 2023.. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. . Nat. Biotechnol. 41::96879
    [Crossref] [Google Scholar]
  89. 89.
    Koonin EV, Makarova KS. 2017.. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. . Genome Biol. Evol. 9:(10):281225
    [Crossref] [Google Scholar]
  90. 90.
    Strecker J, Ladha A, Makarova KS, Koonin EV, Zhang F. 2020.. Response to Comment on “RNA-guided DNA insertion with CRISPR-associated transposases. .” Science 368:(6495):eabb2920
    [Crossref] [Google Scholar]
  91. 91.
    Rice PA, Craig NL, Dyda F. 2020.. Comment on “RNA-guided DNA insertion with CRISPR-associated transposases. .” Science 368:(6495):eabb2022
    [Crossref] [Google Scholar]
  92. 92.
    Altae-Tran H, Kannan S, Demircioglu FE, Oshiro R, Nety SP, et al. 2021.. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. . Science 374:(6563):5765
    [Crossref] [Google Scholar]
  93. 93.
    Schmitz M, Querques I, Oberli S, Chanez C, Jinek M. 2022.. Structural basis for RNA-mediated assembly of type V CRISPR-associated transposons. . Cell 185:(26):49995010.e17
    [Crossref] [Google Scholar]
  94. 94.
    Sharpe PL, Craig NL. 1998.. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein. . EMBO J. 17:(19):582231
    [Crossref] [Google Scholar]
  95. 95.
    Wang S, Gabel C, Siddique R, Klose T, Chang L. 2023.. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. . Cell 186:(19):420415.e19
    [Crossref] [Google Scholar]
  96. 96.
    Li Z, Zhang H, Xiao R, Chang L. 2020.. Cryo-EM structure of a type I-F CRISPR RNA guided surveillance complex bound to transposition protein TniQ. . Cell Res. 30:(2):17981
    [Crossref] [Google Scholar]
  97. 97.
    Wang B, Xu W, Yang H. 2020.. Structural basis of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance complex. . Cell Res. 30:(2):18587
    [Crossref] [Google Scholar]
  98. 98.
    Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, et al. 2023.. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. . Nat. Biotechnol. 41:(4):50012
    [Crossref] [Google Scholar]
  99. 99.
    Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, et al. 2022.. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. . Nat. Biotechnol. 40:(5):73140
    [Crossref] [Google Scholar]
  100. 100.
    Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, et al. 2019.. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. . Mol. Cell 74:(5):93650.e5
    [Crossref] [Google Scholar]
  101. 101.
    Cameron P, Coons MM, Klompe SE, Lied AM, Smith SC, et al. 2019.. Harnessing type I CRISPR–Cas systems for genome engineering in human cells. . Nat. Biotechnol. 37:(12):147177
    [Crossref] [Google Scholar]
  102. 102.
    Pickar-Oliver A, Black JB, Lewis MM, Mutchnick KJ, Klann TS, et al. 2019.. Targeted transcriptional modulation with type I CRISPR–Cas systems in human cells. . Nat. Biotechnol. 37:(12):1493501
    [Crossref] [Google Scholar]
  103. 103.
    Osakabe K, Wada N, Murakami E, Miyashita N, Osakabe Y. 2021.. Genome editing in mammalian cells using the CRISPR type I-D nuclease. . Nucleic Acids Res. 49:(11):634763
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030122-041908
Loading
/content/journals/10.1146/annurev-biochem-030122-041908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error