1932

Abstract

The complex carbohydrate structures decorating human proteins and lipids, also called glycans, are abundantly present at cell surfaces and in the secretome. Glycosylation is vital for biological processes including cell–cell recognition, immune responses, and signaling pathways. Therefore, the structural and functional characterization of the human glycome is gaining more and more interest in basic biochemistry research and in the context of developing new therapies, diagnostic tools, and biotechnology applications. For glycomics to reach its full potential in these fields, it is critical to appreciate the specific factors defining the function of the human glycome. Here, we review the glycosyltransferases (the writers) that form the glycome and the glycan-binding proteins (the readers) with an essential role in decoding glycan functions. While abundantly present throughout different cells and tissues, the function of specific glycosylation features is highly dependent on their context. In this review, we highlight the relevance of studying the glycome in the context of specific carrier proteins, cell types, and subcellular locations. With this, we hope to contribute to a richer understanding of the glycome and a more systematic approach to identifying the roles of glycosylation in human physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030122-044347
2024-08-02
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030122-044347.html?itemId=/content/journals/10.1146/annurev-biochem-030122-044347&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ramazi S, Zahiri J. 2021.. Posttranslational modifications in proteins: resources, tools and prediction methods. . Database 2021::baab012
    [Crossref] [Google Scholar]
  2. 2.
    Varki A. 2017.. Biological roles of glycans. . Glycobiology 27::349
    [Crossref] [Google Scholar]
  3. 3.
    Wandall HH, Nielsen MA, King-Smith S, de Haan N, Bagdonaite I. 2021.. Global functions of O-glycosylation: promises and challenges in O-glycobiology. . FEBS J. 288::7183212
    [Crossref] [Google Scholar]
  4. 4.
    Ohtsubo K, Marth JD. 2006.. Glycosylation in cellular mechanisms of health and disease. . Cell 126::85567
    [Crossref] [Google Scholar]
  5. 5.
    Satoh M, Iida S, Shitara K. 2006.. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. . Expert Opin. Biol. Ther. 6::116173
    [Crossref] [Google Scholar]
  6. 6.
    Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, et al. 2013.. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. . EMBO J. 32::147888
    [Crossref] [Google Scholar]
  7. 7.
    Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, et al. 2011.. Mining the O-glycoproteome using zinc-finger nuclease–glycoengineered SimpleCell lines. . Nat. Methods 8::97782
    [Crossref] [Google Scholar]
  8. 8.
    Zielinska DF, Gnad F, Wiśniewski JR, Mann M. 2010.. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. . Cell 141::897907
    [Crossref] [Google Scholar]
  9. 9.
    Haltiwanger RS, Lowe JB. 2004.. Role of glycosylation in development. . Annu. Rev. Biochem. 73::491537
    [Crossref] [Google Scholar]
  10. 10.
    Hansen L, Lind-Thomsen A, Joshi HJ, Pedersen NB, Have CT, et al. 2014.. A glycogene mutation map for discovery of diseases of glycosylation. . Glycobiology 25::21124
    [Crossref] [Google Scholar]
  11. 11.
    Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. 2020.. Global view of human protein glycosylation pathways and functions. . Nat. Rev. Mol. Cell Biol. 21::72949
    [Crossref] [Google Scholar]
  12. 12.
    Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, et al. 2015.. Symbol nomenclature for graphical representations of glycans. . Glycobiology 25::132324
    [Crossref] [Google Scholar]
  13. 13.
    Wang F, Xie B, Wang B, Troy FA II. 2015.. LC–MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers. . Glycobiology 25::136274
    [Crossref] [Google Scholar]
  14. 14.
    Wang W, Zhang T, Nouta J, van Veelen PA, de Haan N, et al. 2023.. Human prostate-specific antigen carries N-glycans with ketodeoxynononic acid. . Engineering 26::11931
    [Crossref] [Google Scholar]
  15. 15.
    Cummings RD. 2009.. The repertoire of glycan determinants in the human glycome. . Mol. Biosyst. 5::1087104
    [Crossref] [Google Scholar]
  16. 16.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014.. The carbohydrate-active enzymes database (CAZy) in 2013. . Nucleic Acids Res. 42::D49095
    [Crossref] [Google Scholar]
  17. 17.
    Lairson L, Henrissat B, Davies G, Withers S. 2008.. Glycosyltransferases: structures, functions, and mechanisms. . Annu. Rev. Biochem. 77::52155
    [Crossref] [Google Scholar]
  18. 18.
    Khoder-Agha F, Kietzmann T. 2021.. The glyco-redox interplay: principles and consequences on the role of reactive oxygen species during protein glycosylation. . Redox Biol. 42::101888
    [Crossref] [Google Scholar]
  19. 19.
    Kellokumpu S, Hassinen A, Glumoff T. 2016.. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. . Cell Mol. Life Sci. 73::30525
    [Crossref] [Google Scholar]
  20. 20.
    Larsen ISB, Narimatsu Y, Joshi HJ, Siukstaite L, Harrison OJ, et al. 2017.. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins. . PNAS 114::1116368
    [Crossref] [Google Scholar]
  21. 21.
    Fernandez-Valdivia R, Takeuchi H, Samarghandi A, Lopez M, Leonardi J, et al. 2011.. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. . Development 138::192534
    [Crossref] [Google Scholar]
  22. 22.
    Haltom AR, Jafar-Nejad H. 2015.. The multiple roles of epidermal growth factor repeat O-glycans in animal development. . Glycobiology 25::102742
    [Crossref] [Google Scholar]
  23. 23.
    Aebi M. 2013.. N-linked protein glycosylation in the ER. . Biochim. Biophys. Acta Mol. Cell Res. 1833::243037
    [Crossref] [Google Scholar]
  24. 24.
    Kelleher DJ, Gilmore R. 2009.. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. . Cell 136::27283
    [Crossref] [Google Scholar]
  25. 25.
    Fan Y, Hu Y, Yan C, Goldman R, Pan Y, et al. 2018.. Loss and gain of N-linked glycosylation sequons due to single-nucleotide variation in cancer. . Sci. Rep. 8::4322
    [Crossref] [Google Scholar]
  26. 26.
    Helenius A, Aebi M. 2004.. Roles of N-linked glycans in the endoplasmic reticulum. . Annu. Rev. Biochem. 73::101949
    [Crossref] [Google Scholar]
  27. 27.
    Gerken TA, Jamison O, Perrine CL, Collette JC, Moinova H, et al. 2011.. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. . J. Biol. Chem. 286::14493507
    [Crossref] [Google Scholar]
  28. 28.
    Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, et al. 2020.. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. . EMBO Rep. 21::e48885
    [Crossref] [Google Scholar]
  29. 29.
    Lavrsen K, Dabelsteen S, Vakhrushev SY, Levann AMR, Haue AD, et al. 2018.. De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. . J. Biol. Chem. 293::1298314
    [Crossref] [Google Scholar]
  30. 30.
    Schjoldager KT, Joshi HJ, Kong Y, Goth CK, King SL, et al. 2015.. Deconstruction of O-glycosylation—GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. . EMBO Rep. 16::171322
    [Crossref] [Google Scholar]
  31. 31.
    Kong Y, Joshi HJ, Schjoldager KT, Madsen TD, Gerken TA, et al. 2015.. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. . Glycobiology 25::5565
    [Crossref] [Google Scholar]
  32. 32.
    Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. 2012.. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. . Glycobiology 22::73656
    [Crossref] [Google Scholar]
  33. 33.
    Nielsen MI, de Haan N, Kightlinger W, Ye Z, Dabelsteen S, et al. 2022.. Global mapping of GalNAc-T isoform-specificities and O-glycosylation site-occupancy in a tissue-forming human cell line. . Nat. Commun. 13::6257
    [Crossref] [Google Scholar]
  34. 34.
    Bennett EP, Hassan H, Hollingsworth MA, Clausen H. 1999.. A novel human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates. . FEBS Lett. 460::22630
    [Crossref] [Google Scholar]
  35. 35.
    Cheng L, Tachibana K, Zhang Y, Guo J, Kahori Tachibana K, et al. 2002.. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T10. . FEBS Lett. 531::11521
    [Crossref] [Google Scholar]
  36. 36.
    Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, et al. 2007.. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. . Glycobiology 17::37487
    [Crossref] [Google Scholar]
  37. 37.
    Pedersen JW, Bennett EP, Schjoldager KT, Meldal M, Holmer AP, et al. 2011.. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. . J. Biol. Chem. 286::3268496
    [Crossref] [Google Scholar]
  38. 38.
    Sato T, Furukawa K, Bakker H, Van den Eijnden DH, Van Die I. 1998.. Molecular cloning of a human cDNA encoding β-1,4-galactosyltransferase with 37% identity to mammalian UDP-Gal:GlcNAc β-1,4-galactosyltransferase. . PNAS 95::47277
    [Crossref] [Google Scholar]
  39. 39.
    Lo NW, Shaper JH, Pevsner J, Shaper NL. 1998.. The expanding β4-galactosyltransferase gene family: messages from the databanks. . Glycobiology 8::51726
    [Crossref] [Google Scholar]
  40. 40.
    Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, et al. 1997.. Growth retardation and early death of β-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. . EMBO J. 16::185057
    [Crossref] [Google Scholar]
  41. 41.
    Yang Z, Wang S, Halim A, Schulz MA, Frodin M, et al. 2015.. Engineered CHO cells for production of diverse, homogeneous glycoproteins. . Nat. Biotechnol. 33::84244
    [Crossref] [Google Scholar]
  42. 42.
    Bydlinski N, Maresch D, Schmieder V, Klanert G, Strasser R, Borth N. 2018.. The contributions of individual galactosyltransferases to protein specific N-glycan processing in Chinese Hamster Ovary cells. . J. Biotechnol. 282::10110
    [Crossref] [Google Scholar]
  43. 43.
    Ujita M, McAuliffe J, Suzuki M, Hindsgaul O, Clausen H, et al. 1999.. Regulation of I-branched poly-N-acetyllactosamine synthesis. Concerted actions by i-extension enzyme, I-branching enzyme, and β1,4-galactosyltransferase I. . J. Biol. Chem. 274::9296304
    [Crossref] [Google Scholar]
  44. 44.
    Sasaki N, Manya H, Okubo R, Kobayashi K, Ishida H, et al. 2005.. Β4GalT-II is a key regulator of glycosylation of the proteins involved in neuronal development. . Biochem. Biophys. Res. Commun. 333::13137
    [Crossref] [Google Scholar]
  45. 45.
    Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, et al. 1999.. Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyltransferase I. A seventh member of the human β4-galactosyltransferase gene family. . J. Biol. Chem. 274::2616571
    [Crossref] [Google Scholar]
  46. 46.
    Amado M, Almeida R, Schwientek T, Clausen H. 1999.. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. . Biochim. Biophys. Acta Gen. Subj. 1473::3553
    [Crossref] [Google Scholar]
  47. 47.
    Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, et al. 1999.. Cloning, expression, and characterization of a novel UDP-galactose:β-N-acetylglucosamine β1,3-galactosyltransferase (β3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. . J. Biol. Chem. 274::12499507
    [Crossref] [Google Scholar]
  48. 48.
    Kolbinger F, Streiff MB, Katopodis AG. 1998.. Cloning of a human UDP-galactose:2-acetamido-2-deoxy-d-glucose 3β-galactosyltransferase catalyzing the formation of type 1 chains. . J. Biol. Chem. 273::43340
    [Crossref] [Google Scholar]
  49. 49.
    Miyazaki H, Fukumoto S, Okada M, Hasegawa T, Furukawa K. 1997.. Expression cloning of rat cDNA encoding UDP-galactose:GD2 β1,3-galactosyltransferase that determines the expression of GD1b/GM1/GA1. . J. Biol. Chem. 272::2479499
    [Crossref] [Google Scholar]
  50. 50.
    Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, et al. 1998.. A family of human β3-galactosyltransferases. Characterization of four members of a UDP-galactose:β-N-acetyl-glucosamine/β-Nacetyl-galactosamine β-1,3-galactosyltransferase family. . J. Biol. Chem. 273::1277078
    [Crossref] [Google Scholar]
  51. 51.
    Magnani JL, Steplewski Z, Koprowski H, Ginsburg V. 1983.. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19–9 in the sera of patients as a mucin. . Cancer Res. 43::548992
    [Google Scholar]
  52. 52.
    Zhou D, Henion TR, Jungalwala FB, Berger EG, Hennet T. 2000.. The β1,3-galactosyltransferase β3GalT-V is a stage-specific embryonic antigen-3 (SSEA-3) synthase. . J. Biol. Chem. 275::2263134
    [Crossref] [Google Scholar]
  53. 53.
    McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, et al. 2010.. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. . Hum. Mol. Genet. 19::346876
    [Crossref] [Google Scholar]
  54. 54.
    Kalovidouris SA, Gama CI, Lee LW, Hsieh-Wilson LC. 2005.. A role for fucose α(1–2) galactose carbohydrates in neuronal growth. . J. Am. Chem. Soc. 127::134041
    [Crossref] [Google Scholar]
  55. 55.
    de Vries T, Knegtel RM, Holmes EH, Macher BA. 2001.. Fucosyltransferases: structure/function studies. . Glycobiology 11::119R28R
    [Crossref] [Google Scholar]
  56. 56.
    Jajosky RP, Wu S-C, Zheng L, Jajosky AN, Jajosky PG, et al. 2022.. ABO blood group antigens and differential glycan expression: perspective on the evolution of common human enzyme deficiencies. . iScience 26::105798
    [Crossref] [Google Scholar]
  57. 57.
    Hein HO, Sorensen H, Suadicani P, Gyntelberg F. 1992.. The Lewis blood group—a new genetic marker of ischaemic heart disease. . J. Intern. Med. 232::48187
    [Crossref] [Google Scholar]
  58. 58.
    Kannagi R, Sakuma K, Miyazaki K, Lim KT, Yusa A, et al. 2010.. Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers. . Cancer Sci. 101::58693
    [Crossref] [Google Scholar]
  59. 59.
    Homeister JW, Thall AD, Petryniak B, Maly P, Rogers CE, et al. 2001.. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. . Immunity 15::11526
    [Crossref] [Google Scholar]
  60. 60.
    Takahashi M, Hasegawa Y, Gao C, Kuroki Y, Taniguchi N. 2016.. N-glycans of growth factor receptors: their role in receptor function and disease implications. . Clin. Sci. 130::178192
    [Crossref] [Google Scholar]
  61. 61.
    Kono M, Ohyama Y, Lee YC, Hamamoto T, Kojima N, Tsuji S. 1997.. Mouse β-galactoside α2,3-sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. . Glycobiology 7::46979
    [Crossref] [Google Scholar]
  62. 62.
    Kitagawa H, Paulson JC. 1994.. Cloning of a novel α2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. . J. Biol. Chem. 269::1394401
    [Crossref] [Google Scholar]
  63. 63.
    Kono M, Takashima S, Liu H, Inoue M, Kojima N, et al. 1998.. Molecular cloning and functional expression of a fifth-type α2,3-sialyltransferase (mST3Gal V: GM3 synthase). . Biochem. Biophys. Res. Commun. 253::17075
    [Crossref] [Google Scholar]
  64. 64.
    Rohfritsch PF, Joosten JA, Krzewinski-Recchi M-A, Harduin-Lepers A, Laporte B, et al. 2006.. Probing the substrate specificity of four different sialyltransferases using synthetic β-d-Galp-(1→ 4)-β-d-GlcpNAc-(1→ 2)-α-d-Manp-(1→ O)(CH2) 7CH3 analogues: general activating effect of replacing N-acetylglucosamine by N-propionylglucosamine. . Biochim. Biophys. Acta Gen. Subj. 1760::68592
    [Crossref] [Google Scholar]
  65. 65.
    Wang W, Kałuża A, Nouta J, Nicolardi S, Ferens-Sieczkowska M, et al. 2021.. High-throughput glycopeptide profiling of prostate-specific antigen from seminal plasma by MALDI-MS. . Talanta 222::121495
    [Crossref] [Google Scholar]
  66. 66.
    Blöchl C, Wang D, Madunic K, Lageveen-Kammeijer GSM, Huber CG, et al. 2021.. Integrated N- and O-glycomics of acute myeloid leukemia (AML) cell lines. . Cells 10::3058
    [Crossref] [Google Scholar]
  67. 67.
    Schnaar RL, Gerardy-Schahn R, Hildebrandt H. 2014.. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. . Physiol. Rev. 94::461518
    [Crossref] [Google Scholar]
  68. 68.
    Takashima S, Ishida HK, Inazu T, Ando T, Ishida H, et al. 2002.. Molecular cloning and expression of a sixth type of α2,8-sialyltransferase (ST8Sia VI) that sialylates O-glycans. . J. Biol. Chem. 277::2403038
    [Crossref] [Google Scholar]
  69. 69.
    Dworkin LA, Clausen H, Joshi HJ. 2022.. Applying transcriptomics to study glycosylation at the cell type level. . iScience 25::104419
    [Crossref] [Google Scholar]
  70. 70.
    Fisher P, Thomas-Oates J, Wood AJ, Ungar D. 2019.. The N-glycosylation processing potential of the mammalian Golgi apparatus. . Front. Cell Dev. Biol. 7::157
    [Crossref] [Google Scholar]
  71. 71.
    Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, et al. 2021.. Global mapping of glycosylation pathways in human-derived cells. . Dev. Cell 56::1195209.e7
    [Crossref] [Google Scholar]
  72. 72.
    Krambeck FJ, Betenbaugh MJ. 2005.. A mathematical model of N-linked glycosylation. . Biotechnol. Bioeng. 92::71128
    [Crossref] [Google Scholar]
  73. 73.
    Yamaguchi R, Yamagata K, Hasuwa H, Inano E, Ikawa M, Okabe M. 2008.. Cd52, known as a major maturation-associated sperm membrane antigen secreted from the epididymis, is not required for fertilization in the mouse. . Genes Cells 13::85161
    [Crossref] [Google Scholar]
  74. 74.
    Wandall HH, Rumjantseva V, Sorensen AL, Patel-Hett S, Josefsson EC, et al. 2012.. The origin and function of platelet glycosyltransferases. . Blood 120::62635
    [Crossref] [Google Scholar]
  75. 75.
    Jones MB, Oswald DM, Joshi S, Whiteheart SW, Orlando R, Cobb BA. 2016.. B-cell-independent sialylation of IgG. . PNAS 113::720712
    [Crossref] [Google Scholar]
  76. 76.
    de Haan N, Narimatsu Y, Aasted MKM, Larsen ISB, Marinova IN, et al. 2022.. In-depth profiling of O-glycan isomers in human cells using C18 nanoliquid chromatography–mass spectrometry and glycogenomics. . Anal. Chem. 94::434351
    [Crossref] [Google Scholar]
  77. 77.
    Dabelsteen S, Pallesen EM, Marinova IN, Nielsen MI, Adamopoulou M, et al. 2020.. Essential functions of glycans in human epithelia dissected by a CRISPR-Cas9-engineered human organotypic skin model. . Dev. Cell 54::66984.e7
    [Crossref] [Google Scholar]
  78. 78.
    McKitrick TR, Goth CK, Rosenberg CS, Nakahara H, Heimburg-Molinaro J, et al. 2020.. Development of smart anti-glycan reagents using immunized lampreys. . Commun. Biol. 3::91
    [Crossref] [Google Scholar]
  79. 79.
    Khilji SK, Goerdeler F, Frensemeier K, Warschkau D, Luhle J, et al. 2022.. Generation of glycan-specific nanobodies. . Cell Chem. Biol. 29::135361.e6
    [Crossref] [Google Scholar]
  80. 80.
    Cummings RD, Darvill AG, Etzler ME, Hahn MG. 2015.. Glycan-recognizing probes as tools. .In Essentials of Glycobiology, ed. A Varki, RD Cummings, JD Esko, P Stanley, GW Hart, et al. , pp. 61125. New York:: Cold Spring Harbor Lab. , 3rd ed..
    [Google Scholar]
  81. 81.
    Schnider B, Escudero FL, Imberty A, Lisacek F. 2023.. BiotechLec: an interactive guide of commercial lectins for glycobiology and biomedical research applications. . Glycobiology 33::68486
    [Crossref] [Google Scholar]
  82. 82.
    Watkins WM, Morgan WT. 1952.. Neutralization of the anti-H agglutinin in eel serum by simple sugars. . Nature 169::82526
    [Crossref] [Google Scholar]
  83. 83.
    Romer TB, Aasted MKM, Dabelsteen S, Groen A, Schnabel J, et al. 2021.. Mapping of truncated O-glycans in cancers of epithelial and non-epithelial origin. . Br. J. Cancer 125::123950
    [Crossref] [Google Scholar]
  84. 84.
    Dorland L, Haverkamp J, Viliegenthart JF, Strecker G, Michalski JC, et al. 1978.. 360-MHz 1H nuclear-magnetic-resonance spectroscopy of sialyl-oligosaccharides from patients with sialidosis (mucolipidosis I and II). . Eur. J. Biochem. 87::32329
    [Crossref] [Google Scholar]
  85. 85.
    Fellenberg M, Behnken HN, Nagel T, Wiegandt A, Baerenfaenger M, Meyer B. 2013.. Glycan analysis: scope and limitations of different techniques—a case for integrated use of LC-MS(/MS) and NMR techniques. . Anal. Bioanal. Chem. 405::7291305
    [Crossref] [Google Scholar]
  86. 86.
    Subedi GP, Barb AW. 2015.. The structural role of antibody N-glycosylation in receptor interactions. . Structure 23::157383
    [Crossref] [Google Scholar]
  87. 87.
    Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer M. 2016.. Human plasma protein N-glycosylation. . Glycoconj. J. 33::30943
    [Crossref] [Google Scholar]
  88. 88.
    Dotz V, Wuhrer M. 2019.. N-glycome signatures in human plasma: associations with physiology and major diseases. . FEBS Lett. 593::296676
    [Crossref] [Google Scholar]
  89. 89.
    Vanderschaeghe D, Laroy W, Sablon E, Halfon P, Van Hecke A, et al. 2009.. GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics. . Mol. Cell Proteom. 8::98694
    [Crossref] [Google Scholar]
  90. 90.
    Chahal G, Padra M, Erhardsson M, Jin C, Quintana-Hayashi M, et al. 2022.. A complex connection between the diversity of human gastric mucin O-glycans, Helicobacter pylori binding, Helicobacter infection and fucosylation. . Mol. Cell. Proteom. 21::100421
    [Crossref] [Google Scholar]
  91. 91.
    Madunic K, Mayboroda OA, Zhang T, Weber J, Boons GJ, et al. 2022.. Specific (sialyl-)Lewis core 2 O-glycans differentiate colorectal cancer from healthy colon epithelium. . Theranostics 12::4498512
    [Crossref] [Google Scholar]
  92. 92.
    Madunic K, Zhang T, Mayboroda OA, Holst S, Stavenhagen K, et al. 2021.. Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype. . Cell Mol. Life Sci. 78::33750
    [Crossref] [Google Scholar]
  93. 93.
    Chau TH, Chernykh A, Ugonotti J, Parker BL, Kawahara R, Thaysen-Andersen M. 2023.. Glycomics-assisted glycoproteomics enables deep and unbiased N-glycoproteome profiling of complex biological specimens. . In Serum/Plasma Proteomics: Methods and Protocols, ed. DW Greening, RJ Simpson , pp. 23563. New York:: Humana. , 3rd ed..
    [Google Scholar]
  94. 94.
    King SL, Joshi HJ, Schjoldager KT, Halim A, Madsen TD, et al. 2017.. Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. . Blood Adv. 1::42942
    [Crossref] [Google Scholar]
  95. 95.
    Van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ. 2015.. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. . Transl. Res. 166::63949.e1
    [Crossref] [Google Scholar]
  96. 96.
    Bharadwaj P, Shrestha S, Pongracz T, Concetta C, Sharma S, et al. 2022.. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. . Cell Rep. Med. 3::100818
    [Crossref] [Google Scholar]
  97. 97.
    Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J, et al. 2021.. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. . Science 371::eabc8378
    [Crossref] [Google Scholar]
  98. 98.
    Wuhrer M, Porcelijn L, Kapur R, Koeleman CA, Deelder AM, et al. 2009.. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. . J. Proteome Res. 8::45056
    [Crossref] [Google Scholar]
  99. 99.
    Carnielli CM, de Lima Morais TM, de Sá Patroni FM, Ribeiro ACP, Brandão TB, et al. 2023.. Comprehensive glycoprofiling of oral tumours associates N-glycosylation with lymph node metastasis and patient survival. . Mol. Cell. Proteom. 22::100586
    [Crossref] [Google Scholar]
  100. 100.
    Möginger U, Grunewald S, Hennig R, Kuo C-W, Schirmeister F, et al. 2018.. Alterations of the human skin N- and O-glycome in basal cell carcinoma and squamous cell carcinoma. . Front. Oncol. 8::70
    [Crossref] [Google Scholar]
  101. 101.
    Park DD, Phoomak C, Xu G, Olney LP, Tran KA, et al. 2020.. Metastasis of cholangiocarcinoma is promoted by extended high-mannose glycans. . PNAS 117::763344
    [Crossref] [Google Scholar]
  102. 102.
    de Haan N, Song M, Grant OC, Ye Z, Koder Agha F, et al. 2023.. Sensitive and specific global cell surface N-glycoproteomics shows profound differences between glycosylation sites and subcellular components. . Anal. Chem. 95::1732836
    [Crossref] [Google Scholar]
  103. 103.
    Pearson JP, Allen A, Hutton DA. 2000.. Rheology of mucin. . Methods Mol. Biol. 125::99109
    [Google Scholar]
  104. 104.
    Sorensen AL, Clausen H, Wandall HH. 2012.. Carbohydrate clearance receptors in transfusion medicine. . Biochim. Biophys. Acta Gen. Subj. 1820::1797808
    [Crossref] [Google Scholar]
  105. 105.
    Williams DB. 2006.. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. . J. Cell Sci. 119::61523
    [Crossref] [Google Scholar]
  106. 106.
    Xu C, Ng DT. 2015.. Glycosylation-directed quality control of protein folding. . Nat. Rev. Mol. Cell Biol. 16::74252
    [Crossref] [Google Scholar]
  107. 107.
    Zhang S, Xu C, Larrimore KE, Ng DTW. 2017.. Slp1-Emp65: a guardian factor that protects folding polypeptides from promiscuous degradation. . Cell 171::34657.e12
    [Crossref] [Google Scholar]
  108. 108.
    Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, et al. 1999.. Calreticulin is essential for cardiac development. . J. Cell Biol. 144::85768
    [Crossref] [Google Scholar]
  109. 109.
    Denzel A, Molinari M, Trigueros C, Martin JE, Velmurgan S, et al. 2002.. Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. . Mol. Cell. Biol. 22::7398404
    [Crossref] [Google Scholar]
  110. 110.
    Coutinho MF, Prata MJ, Alves S. 2012.. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. . Mol. Genet. Metab. 105::54250
    [Crossref] [Google Scholar]
  111. 111.
    Sun X, Tie HC, Chen B, Lu L. 2020.. Glycans function as a Golgi export signal to promote the constitutive exocytic trafficking. . J. Biol. Chem. 295::1475062
    [Crossref] [Google Scholar]
  112. 112.
    Smith BAH, Bertozzi CR. 2021.. The clinical impact of glycobiology: targeting selectins, siglecs and mammalian glycans. . Nat. Rev. Drug Discov. 20::21743
    [Crossref] [Google Scholar]
  113. 113.
    Macauley MS, Crocker PR, Paulson JC. 2014.. Siglec-mediated regulation of immune cell function in disease. . Nat. Rev. Immunol. 14::65366
    [Crossref] [Google Scholar]
  114. 114.
    McEver RP, Cummings RD. 1997.. Cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. . J. Clin. Investig. 100::48591
    [Crossref] [Google Scholar]
  115. 115.
    Rodrigues Mantuano N, Natoli M, Zippelius A, Laubli H. 2020.. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. . J. Immunother. Cancer 8::e001222
    [Crossref] [Google Scholar]
  116. 116.
    Rabinovich GA, van Kooyk Y, Cobb BA. 2012.. Glycobiology of immune responses. . Ann. N. Y. Acad. Sci. 1253::115
    [Crossref] [Google Scholar]
  117. 117.
    McEver RP, Cummings RD. 1997.. Role of PSGL-1 binding to selectins in leukocyte recruitment. . J. Clin. Investig. 100::S97103
    [Crossref] [Google Scholar]
  118. 118.
    McEver RP. 2015.. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. . Cardiovasc. Res. 107::33139
    [Crossref] [Google Scholar]
  119. 119.
    Snapp KR, Heitzig CE, Ellies LG, Marth JD, Kansas GS. 2001.. Differential requirements for the O-linked branching enzyme core 2 β1–6-N-glucosaminyltransferase in biosynthesis of ligands for E-selectin and P-selectin. . Blood 97::380611
    [Crossref] [Google Scholar]
  120. 120.
    Ellies LG, Tsuboi S, Petryniak B, Lowe JB, Fukuda M, Marth JD. 1998.. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. . Immunity 9::88190
    [Crossref] [Google Scholar]
  121. 121.
    Luhn K, Marquardt T, Harms E, Vestweber D. 2001.. Discontinuation of fucose therapy in LADII causes rapid loss of selectin ligands and rise of leukocyte counts. . Blood 97::33032
    [Crossref] [Google Scholar]
  122. 122.
    Crocker PR, Paulson JC, Varki A. 2007.. Siglecs and their roles in the immune system. . Nat. Rev. Immunol. 7::25566
    [Crossref] [Google Scholar]
  123. 123.
    Büll C, Nason R, Sun L, Van Coillie J, Madriz Sørensen D, et al. 2021.. Probing the binding specificities of human Siglecs by cell-based glycan arrays. . PNAS 118::e2026102118
    [Crossref] [Google Scholar]
  124. 124.
    van Vliet SJ, Saeland E, van Kooyk Y. 2008.. Sweet preferences of MGL: carbohydrate specificity and function. . Trends Immunol. 29::8390
    [Crossref] [Google Scholar]
  125. 125.
    Iida S, Yamamoto K, Irimura T. 1999.. Interaction of human macrophage C-type lectin with O-linked N-acetylgalactosamine residues on mucin glycopeptides. . J. Biol. Chem. 274::10697705
    [Crossref] [Google Scholar]
  126. 126.
    Higashi N, Fujioka K, Denda-Nagai K, Hashimoto S, Nagai S, et al. 2002.. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. . J. Biol. Chem. 277::2068693
    [Crossref] [Google Scholar]
  127. 127.
    Gabba A, Bogucka A, Luz JG, Diniz A, Coelho H, et al. 2021.. Crystal structure of the carbohydrate recognition domain of the human macrophage galactose C-type lectin bound to GalNAc and the tumor-associated Tn antigen. . Biochemistry 60::132736
    [Crossref] [Google Scholar]
  128. 128.
    Diniz A, Coelho H, Dias JS, van Vliet SJ, Jimenez-Barbero J, et al. 2019.. The plasticity of the carbohydrate recognition domain dictates the exquisite mechanism of binding of human macrophage galactose-type lectin. . Chemistry 25::1394555
    [Crossref] [Google Scholar]
  129. 129.
    Mathiesen CBK, Carlsson MC, Brand S, Moller SR, Idorn M, et al. 2018.. Genetically engineered cell factories produce glycoengineered vaccines that target antigen-presenting cells and reduce antigen-specific T-cell reactivity. . J. Allergy Clin. Immunol. 142::198387
    [Crossref] [Google Scholar]
  130. 130.
    Keumatio Doungstop BC, van Vliet SJ, van Ree R, de Jong EC, van Kooyk Y. 2021.. Carbohydrates in allergy: from disease to novel immunotherapies. . Trends Immunol. 42::63548
    [Crossref] [Google Scholar]
  131. 131.
    Park EI, Mi Y, Unverzagt C, Gabius H-J, Baenziger JU. 2005.. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acidα2,6GalNAc. . PNAS 102::1712529
    [Crossref] [Google Scholar]
  132. 132.
    Sorensen AL, Rumjantseva V, Nayeb-Hashemi S, Clausen H, Hartwig JH, et al. 2009.. Role of sialic acid for platelet life span: exposure of β-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. . Blood 114::164554
    [Crossref] [Google Scholar]
  133. 133.
    Ellies LG, Ditto D, Levy GG, Wahrenbrock M, Ginsburg D, et al. 2002.. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. . PNAS 99::1004247
    [Crossref] [Google Scholar]
  134. 134.
    Liu FT, Stowell SR. 2023.. The role of galectins in immunity and infection. . Nat. Rev. Immunol. 23::47994
    [Crossref] [Google Scholar]
  135. 135.
    Ioffe E, Liu Y, Stanley P. 1996.. Essential role for complex N-glycans in forming an organized layer of bronchial epithelium. . PNAS 93::1104146
    [Crossref] [Google Scholar]
  136. 136.
    Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, et al. 2004.. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. . Science 306::12024
    [Crossref] [Google Scholar]
  137. 137.
    Demetriou M, Granovsky M, Quaggin S, Dennis JW. 2001.. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. . Nature 409::73339
    [Crossref] [Google Scholar]
  138. 138.
    Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW. 2000.. Suppression of tumor growth and metastasis in Mgat5-deficient mice. . Nat. Med. 6::30612
    [Crossref] [Google Scholar]
  139. 139.
    Johswich A, Longuet C, Pawling J, Abdel Rahman A, Ryczko M, et al. 2014.. N-glycan remodeling on glucagon receptor is an effector of nutrient sensing by the hexosamine biosynthesis pathway. . J. Biol. Chem. 289::1592741
    [Crossref] [Google Scholar]
  140. 140.
    Cheung P, Dennis JW. 2007.. Mgat5 and Pten interact to regulate cell growth and polarity. . Glycobiology 17::76773
    [Crossref] [Google Scholar]
  141. 141.
    Chen I-J, Chen H-L, Demetriou M. 2007.. Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. . J. Biol. Chem. 282::3536172
    [Crossref] [Google Scholar]
  142. 142.
    Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA. 2023.. Targeting galectin-driven regulatory circuits in cancer and fibrosis. . Nat. Rev. Drug Discov. 22::295316
    [Crossref] [Google Scholar]
  143. 143.
    Rudjord-Levann AM, Ye Z, Hafkenscheid L, Horn S, Wiegertjes R, et al. 2023.. Galectin-1 induces a tumor-associated macrophage phenotype and upregulates indoleamine 2,3-dioxygenase-1. . iScience 26::106984
    [Crossref] [Google Scholar]
  144. 144.
    Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD. 2005.. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. . Cell 123::130721
    [Crossref] [Google Scholar]
  145. 145.
    Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, et al. 2007.. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. . Cell 129::12334
    [Crossref] [Google Scholar]
  146. 146.
    Cheung P, Pawling J, Partridge EA, Sukhu B, Grynpas M, Dennis JW. 2007.. Metabolic homeostasis and tissue renewal are dependent on β1,6GlcNAc-branched N-glycans. . Glycobiology 17::82837
    [Crossref] [Google Scholar]
  147. 147.
    Johannes L, Jacob R, Leffler H. 2018.. Galectins at a glance. . J. Cell Sci. 131::jcs208884
    [Crossref] [Google Scholar]
  148. 148.
    Johannes L. 2021.. The cellular and chemical biology of endocytic trafficking and intracellular delivery—the GL–Lect hypothesis. . Molecules 26::3299
    [Crossref] [Google Scholar]
  149. 149.
    Margadant C, van den Bout I, van Boxtel AL, Thijssen VL, Sonnenberg A. 2012.. Epigenetic regulation of galectin-3 expression by β1 integrins promotes cell adhesion and migration. . J. Biol. Chem. 287::4468493
    [Crossref] [Google Scholar]
  150. 150.
    Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, et al. 2014.. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. . Nat. Cell Biol. 16::595606
    [Crossref] [Google Scholar]
  151. 151.
    Boscher C, Dennis JW, Nabi IR. 2011.. Glycosylation, galectins and cellular signaling. . Curr. Opin. Cell Biol. 23::38392
    [Crossref] [Google Scholar]
  152. 152.
    Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, et al. 2010.. GM1 structure determines SV40-induced membrane invagination and infection. . Nat. Cell Biol. 12::1118
    [Crossref] [Google Scholar]
  153. 153.
    Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, et al. 2007.. Shiga toxin induces tubular membrane invaginations for its uptake into cells. . Nature 450::67075
    [Crossref] [Google Scholar]
  154. 154.
    Zhang J, ten Dijke P, Wuhrer M, Zhang T. 2021.. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. . Protein Cell 12::89106
    [Crossref] [Google Scholar]
  155. 155.
    Pontier SM, Schweisguth F. 2012.. Glycosphingolipids in signaling and development: from liposomes to model organisms. . Dev. Dyn. 241::92106
    [Crossref] [Google Scholar]
  156. 156.
    Huang Y, Huang S, Di Scala C, Wang Q, Wandall HH, et al. 2018.. The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. . eLife 7::e38183
    [Crossref] [Google Scholar]
  157. 157.
    Hamel S, Fantini J, Schweisguth F. 2010.. Notch ligand activity is modulated by glycosphingolipid membrane composition in Drosophila melanogaster. . J. Cell Biol. 188::58194
    [Crossref] [Google Scholar]
  158. 158.
    Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, et al. 2022.. Sphingolipids control dermal fibroblast heterogeneity. . Science 376::eabh1623
    [Crossref] [Google Scholar]
  159. 159.
    Inokuchi JI, Kanoh H, Inamori KI, Nagafuku M, Nitta T, Fukase K. 2022.. Homeostatic and pathogenic roles of the GM3 ganglioside. . FEBS J. 289::515265
    [Crossref] [Google Scholar]
  160. 160.
    Crocker PR, Feizi T. 1996.. Carbohydrate recognition systems: functional triads in cell–cell interactions. . Curr. Opin. Struct. Biol. 6::67991
    [Crossref] [Google Scholar]
  161. 161.
    Imberty A, Bonnardel F, Lisacek F. 2021.. UniLectin, a one-stop-shop to explore and study carbohydrate-binding proteins. . Curr. Protoc. 1::e305
    [Crossref] [Google Scholar]
  162. 162.
    Bonnardel F, Mariethoz J, Pérez S, Imberty A, Lisacek F. 2020.. LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. . Nucleic Acids Res. 49::D154854
    [Crossref] [Google Scholar]
  163. 163.
    Varki A. 2013.. Account for the ‘dark matter’ of biology. . Nature 497::565
    [Crossref] [Google Scholar]
  164. 164.
    Tsuda T, Ikeda Y, Taniguchi N. 2000.. The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. . J. Biol. Chem. 275::2198894
    [Crossref] [Google Scholar]
  165. 165.
    Kaszuba K, Grzybek M, Orlowski A, Danne R, Rog T, et al. 2015.. N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. . PNAS 112::433439
    [Crossref] [Google Scholar]
  166. 166.
    Lee HS, Qi Y, Im W. 2015.. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. . Sci. Rep. 5::8926
    [Crossref] [Google Scholar]
  167. 167.
    Guo HB, Johnson H, Randolph M, Pierce M. 2009.. Regulation of homotypic cell-cell adhesion by branched N-glycosylation of N-cadherin extracellular EC2 and EC3 domains. . J. Biol. Chem. 284::3498697
    [Crossref] [Google Scholar]
  168. 168.
    Wang X, Inoue S, Gu J, Miyoshi E, Noda K, et al. 2005.. Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. . PNAS 102::1579196
    [Crossref] [Google Scholar]
  169. 169.
    Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N. 2006.. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. . J. Biol. Chem. 281::257277
    [Crossref] [Google Scholar]
  170. 170.
    Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, et al. 2006.. Deletion of core fucosylation on α3β1 integrin down-regulates its functions. . J. Biol. Chem. 281::3834350
    [Crossref] [Google Scholar]
  171. 171.
    Osumi D, Takahashi M, Miyoshi E, Yokoe S, Lee SH, et al. 2009.. Core fucosylation of E-cadherin enhances cell–cell adhesion in human colon carcinoma WiDr cells. . Cancer Sci. 100::88895
    [Crossref] [Google Scholar]
  172. 172.
    Dekkers G, Treffers L, Plomp R, Bentlage AE, de Boer M, et al. 2017.. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. . Front. Immunol. 8::877
    [Crossref] [Google Scholar]
  173. 173.
    Lux A, Nimmerjahn F. 2011.. Impact of differential glycosylation on IgG activity. . In Crossroads Between Innate and Adaptive Immunity III, ed. B Pulendran, PD Katsikis, SP Schoenberger , pp. 11324. New York:: Springer
    [Google Scholar]
  174. 174.
    Saporiti S, Laurenzi T, Guerrini U, Coppa C, Palinsky W, et al. 2023.. Effect of Fc core fucosylation and light chain isotype on IgG1 flexibility. . Commun. Biol. 6::237
    [Crossref] [Google Scholar]
  175. 175.
    Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, et al. 2020.. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. . ACS Central Sci. 6::172234
    [Crossref] [Google Scholar]
  176. 176.
    Hansson GC. 2020.. Mucins and the microbiome. . Annu. Rev. Biochem. 89::76993
    [Crossref] [Google Scholar]
  177. 177.
    Arike L, Holmen-Larsson J, Hansson GC. 2017.. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. . Glycobiology 27::31828
    [Google Scholar]
  178. 178.
    Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, et al. 2017.. Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. . Mucosal Immunol. 10::91103
    [Crossref] [Google Scholar]
  179. 179.
    Jacobs JP, Lin L, Goudarzi M, Ruegger P, McGovern DP, et al. 2017.. Microbial, metabolomic, and immunologic dynamics in a relapsing genetic mouse model of colitis induced by T-synthase deficiency. . Gut Microbes 8::116
    [Crossref] [Google Scholar]
  180. 180.
    Guda K, Moinova H, He J, Jamison O, Ravi L, et al. 2009.. Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. . PNAS 106::1292125
    [Crossref] [Google Scholar]
  181. 181.
    Schjoldager KT, Clausen H. 2012.. Site-specific protein O-glycosylation modulates proprotein processing—deciphering specific functions of the large polypeptide GalNAc-transferase gene family. . Biochim. Biophys. Acta Gen. Subj. 1820::207994
    [Crossref] [Google Scholar]
  182. 182.
    Jentoft N. 1990.. Why are proteins O-glycosylated?. Trends Biochem. Sci. 15::29194
    [Crossref] [Google Scholar]
  183. 183.
    Goth CK, Vakhrushev SY, Joshi HJ, Clausen H, Schjoldager KT. 2018.. Fine-tuning limited proteolysis: a major role for regulated site-specific O-glycosylation. . Trends Biochem. Sci. 43::26984
    [Crossref] [Google Scholar]
  184. 184.
    den Hollander B, Rasing A, Post MA, Klein WM, Oud MM, et al. 2021.. NANS-CDG: delineation of the genetic, biochemical, and clinical spectrum. . Front. Neurol. 12::668640
    [Crossref] [Google Scholar]
  185. 185.
    Varki A. 2006.. Nothing in glycobiology makes sense, except in the light of evolution. . Cell 126::84145
    [Crossref] [Google Scholar]
  186. 186.
    Radhakrishnan P, Dabelsteen S, Madsen FB, Francavilla C, Kopp KL, et al. 2014.. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. . PNAS 111::E406675
    [Crossref] [Google Scholar]
  187. 187.
    Ye Z, Kilic G, Dabelsteen S, Marinova IN, Thofner JFB, et al. 2022.. Characterization of TGF-β signaling in a human organotypic skin model reveals that loss of TGF-βRII induces invasive tissue growth. . Sci. Signal. 15::eabo2206
    [Crossref] [Google Scholar]
  188. 188.
    Chen R, Jiang X, Sun D, Han G, Wang F, et al. 2009.. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. . J. Proteome Res. 8::65161
    [Crossref] [Google Scholar]
  189. 189.
    Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M, et al. 2009.. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. . Nat. Biotechnol. 27::37886
    [Crossref] [Google Scholar]
  190. 190.
    Reiding KR, Lin Y-H, van Alphen FP, Meijer AB, Heck AJ. 2021.. Neutrophil azurophilic granule glycoproteins are distinctively decorated by atypical pauci- and phosphomannose glycans. . Commun. Biol. 4::1012
    [Crossref] [Google Scholar]
  191. 191.
    Polasky DA, Yu F, Teo GC, Nesvizhskii AI. 2020.. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. . Nat. Methods 17::112532
    [Crossref] [Google Scholar]
  192. 192.
    Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, et al. 2019.. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. . PNAS 116::727887
    [Crossref] [Google Scholar]
  193. 193.
    Vainauskas S, Guntz H, McLeod E, McClung C, Ruse C, et al. 2021.. A broad-specificity O-glycoprotease that enables improved analysis of glycoproteins and glycopeptides containing intact complex O-glycans. . Anal. Chem. 94::106069
    [Crossref] [Google Scholar]
  194. 194.
    Wong M, Xu G, Barboza M, Maezawa I, Jin L-W, et al. 2020.. Metabolic flux analysis of the neural cell glycocalyx reveals differential utilization of monosaccharides. . Glycobiology 30::85971
    [Crossref] [Google Scholar]
  195. 195.
    Xu G, Wong M, Li Q, Park D, Cheng Z, Lebrilla CB. 2019.. Unveiling the metabolic fate of monosaccharides in cell membranes with glycomic and glycoproteomic analyses. . Chem. Sci. 10::69927002
    [Crossref] [Google Scholar]
  196. 196.
    Stavenhagen K, Mehta AY, Laan L, Gao C, Heimburg-Molinaro J, et al. 2022.. N-glycosylation of mannose receptor (CD206) regulates glycan binding by C-type lectin domains. . J. Biol. Chem. 298::102591
    [Crossref] [Google Scholar]
  197. 197.
    Sanjurjo L, Schulkens IA, Touarin P, Heusschen R, Aanhane E, et al. 2021.. Chemokines modulate glycan binding and the immunoregulatory activity of galectins. . Commun. Biol. 4::1415
    [Crossref] [Google Scholar]
  198. 198.
    Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, et al. 2021.. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. . Eur. Respir. J. 57::2002559. Erratum . 2022.. Eur. Respir. J. 59::2052559
    [Google Scholar]
  199. 199.
    Brynedal B, Wojcik J, Esposito F, Debailleul V, Yaouanq J, et al. 2010.. MGAT5 alters the severity of multiple sclerosis. . J. Neuroimmunol. 220::12024
    [Crossref] [Google Scholar]
  200. 200.
    Klasic M, Markulin D, Vojta A, Samarzija I, Birus I, et al. 2018.. Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. . Clin. Epigenet. 10::75
    [Crossref] [Google Scholar]
  201. 201.
    Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, et al. 2008.. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. . Nat. Genet. 40::16169
    [Crossref] [Google Scholar]
  202. 202.
    Rudman N, Kaur S, Simunovic V, Kifer D, Soic D, et al. 2023.. Integrated glycomics and genetics analyses reveal a potential role for N-glycosylation of plasma proteins and IgGs, as well as the complement system, in the development of type 1 diabetes. . Diabetologia 66::107183
    [Crossref] [Google Scholar]
  203. 203.
    Haltiwanger RS. 2016.. Symbol Nomenclature for Glycans (SNFG). . Glycobiology 26::217
    [Crossref] [Google Scholar]
  204. 204.
    Tena J, Maezawa I, Barboza M, Wong M, Zhu C, et al. 2022.. Regio-specific N-glycome and N-glycoproteome map of the elderly human brain with and without Alzheimer's disease. . Mol. Cell. Proteom. 21::100427
    [Crossref] [Google Scholar]
  205. 205.
    Bladergroen MR, Reiding KR, Hipgrave Ederveen AL, Vreeker GC, Clerc F, et al. 2015.. Automation of high-throughput mass spectrometry-based plasma N-glycome analysis with linkage-specific sialic acid esterification. . J. Proteome Res. 14::408086
    [Crossref] [Google Scholar]
  206. 206.
    Wang D, Madunić K, Zhang T, Lageveen-Kammeijer G, Wuhrer M. 2022.. Profound diversity of the N-glycome from microdissected regions of colorectal cancer, stroma, and normal colon mucosa. . Engineering 26::3243
    [Crossref] [Google Scholar]
  207. 207.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, et al. 2015.. Tissue-based map of the human proteome. . Science 347::1260419
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030122-044347
Loading
/content/journals/10.1146/annurev-biochem-030122-044347
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error