1932

Abstract

Peroxisomes are organelles that play a central role in lipid metabolism and cellular redox homeostasis. The import of peroxisomal matrix proteins by peroxisomal targeting signal (PTS) receptors is an ATP-dependent mechanism. However, the energy-dependent steps do not occur early during the binding of the receptor–cargo complex to the membrane but late, because they are linked to the peroxisomal export complex for the release of the unloaded receptor. The first ATP-demanding step is the cysteine-dependent monoubiquitination of the PTS receptors, which is required for recognition by the AAA+ peroxins. They execute the second ATP-dependent step by extracting the ubiqitinated PTS receptors from the membrane for release back to the cytosol. After deubiquitination, the PTS receptors regain import competence and can facilitate further rounds of cargo import. Here, we give a general overview and discuss recent data regarding the ATP-dependent steps in peroxisome protein import.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030222-111227
2024-08-02
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030222-111227.html?itemId=/content/journals/10.1146/annurev-biochem-030222-111227&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Islinger M, Voelkl A, Fahimi HD, Schrader M. 2018.. The peroxisome: an update on mysteries 2.0. Histochem. . Cell Biol. 150::44371
    [Google Scholar]
  2. 2.
    Smith JJ, Aitchison JD. 2013.. Peroxisomes take shape. . Nat. Rev. Mol. Cell Biol. 14::80317
    [Crossref] [Google Scholar]
  3. 3.
    Wanders RJ, Waterham HR. 2006.. Biochemistry of mammalian peroxisomes revisited. . Annu. Rev. Biochem. 75::295332
    [Crossref] [Google Scholar]
  4. 4.
    Fujiki Y, Abe Y, Imoto Y, Tanaka AJ, Okumoto K, et al. 2020.. Recent insights into peroxisome biogenesis and associated diseases. . J. Cell Sci. 133::jcs236943
    [Crossref] [Google Scholar]
  5. 5.
    Ferreira V, Ferreira AR, Ribeiro D. 2023.. Peroxisomes and viruses: overview on current knowledge and experimental approaches. . Methods Mol. Biol. 2643::27194
    [Crossref] [Google Scholar]
  6. 6.
    Zalckvar E, Schuldiner M. 2022.. Beyond rare disorders: a new era for peroxisomal pathophysiology. . Mol. Cell 82::222835
    [Crossref] [Google Scholar]
  7. 7.
    Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, et al. 1996.. A unified nomenclature for peroxisome biogenesis factors. . J. Cell Biol. 135::13
    [Crossref] [Google Scholar]
  8. 8.
    Singh R, Manivannan S, Krikken AM, de Boer R, Bordin N, et al. 2020.. Hansenula polymorpha Pex37 is a peroxisomal membrane protein required for organelle fission and segregation. . FEBS J. 287::174257
    [Crossref] [Google Scholar]
  9. 9.
    Jansen RLM, van der Klei IJ. 2019.. The peroxisome biogenesis factors Pex3 and Pex19: multitasking proteins with disputed functions. . FEBS Lett. 593::45774
    [Crossref] [Google Scholar]
  10. 10.
    Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. 2016.. Proliferation and fission of peroxisomes—an update. . Biochim. Biophys. Acta Mol. Cell Res. 1863::97183
    [Crossref] [Google Scholar]
  11. 11.
    Knoblach B, Rachubinski RA. 2016.. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. . Curr. Opin. Cell Biol. 41::7380
    [Crossref] [Google Scholar]
  12. 12.
    Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. 2020.. Maintaining social contacts: the physiological relevance of organelle interactions. . Biochim. Biophys. Acta Mol. Cell Res. 1867::118800
    [Crossref] [Google Scholar]
  13. 13.
    Barros-Barbosa A, Rodrigues TA, Ferreira MJ, Pedrosa AG, Teixeira NR, et al. 2019.. The intrinsically disordered nature of the peroxisomal protein translocation machinery. . FEBS J. 286::2438
    [Crossref] [Google Scholar]
  14. 14.
    Walter T, Erdmann R. 2019.. Current advances in protein import into peroxisomes. . Protein J. 38::35162
    [Crossref] [Google Scholar]
  15. 15.
    Yin Z, Popelka H, Lei Y, Yang Y, Klionsky DJ. 2020.. The roles of ubiquitin in mediating autophagy. . Cells 9::2025
    [Crossref] [Google Scholar]
  16. 16.
    Dammai V, Subramani S. 2001.. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. . Cell 105::18796
    [Crossref] [Google Scholar]
  17. 17.
    Nair DM, Purdue PE, Lazarow PB. 2004.. Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. . J. Cell Biol. 167::599604
    [Crossref] [Google Scholar]
  18. 18.
    Dodt G, Gould SJ. 1996.. Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. . J. Cell Biol. 135::176374
    [Crossref] [Google Scholar]
  19. 19.
    Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C. 2016.. Regulation of peroxisomal matrix protein import by ubiquitination. . Biochim. Biophys. Acta Mol. Cell Res. 1863::83849
    [Crossref] [Google Scholar]
  20. 20.
    Brocard C, Hartig A. 2006.. Peroxisome targeting signal 1: Is it really a simple tripeptide?. Biochim. Biophys. Acta Mol. Cell Res. 1763::156573
    [Crossref] [Google Scholar]
  21. 21.
    Hagen S, Drepper F, Fischer S, Fodor K, Passon D, et al. 2015.. Structural insights into cargo recognition by the yeast PTS1 receptor. . J. Biol. Chem. 290::2661026
    [Crossref] [Google Scholar]
  22. 22.
    Fodor K, Wolf J, Reglinski K, Passon DM, Lou Y, et al. 2015.. Ligand-induced compaction of the PEX5 receptor-binding cavity impacts protein import efficiency into peroxisomes. . Traffic 16::8598
    [Crossref] [Google Scholar]
  23. 23.
    Stanley WA, Filipp FV, Kursula P, Schüller N, Erdmann R, et al. 2006.. Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. . Mol. Cell 24::65363
    [Crossref] [Google Scholar]
  24. 24.
    Effelsberg D, Cruz-Zaragoza LD, Schliebs W, Erdmann R. 2016.. Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins. . J. Cell Sci. 129::405766
    [Crossref] [Google Scholar]
  25. 25.
    Yifrach E, Chuartzman SG, Dahan N, Maskit S, Zada L, et al. 2016.. Characterization of proteome dynamics during growth in oleate reveals a new peroxisome-targeting receptor. . J. Cell Sci. 129::406775
    [Crossref] [Google Scholar]
  26. 26.
    Kunze M. 2020.. The type-2 peroxisomal targeting signal. . Biochim. Biophys. Acta Mol. Cell Res. 1867::118609
    [Crossref] [Google Scholar]
  27. 27.
    Effelsberg D, Cruz-Zaragoza LD, Tonillo J, Schliebs W, Erdmann R. 2015.. Role of Pex21p for piggyback import of Gpd1p and Pnc1p into peroxisomes of Saccharomyces cerevisiae. . J. Biol. Chem. 290::2533342
    [Crossref] [Google Scholar]
  28. 28.
    Purdue PE, Yang X, Lazarow PB. 1998.. Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. . J. Cell Biol. 143::185969
    [Crossref] [Google Scholar]
  29. 29.
    Schliebs W, Kunau WH. 2006.. PTS2 co-receptors: diverse proteins with common features. . Biochim. Biophys. Acta Mol. Cell Res. 1763::160612
    [Google Scholar]
  30. 30.
    van der Klei IJ, Veenhuis M. 2006.. PTS1-independent sorting of peroxisomal matrix proteins by Pex5p. . Biochim. Biophys. Acta Mol. Cell Res. 1763::1794800
    [Crossref] [Google Scholar]
  31. 31.
    Gouveia AM, Guimaraes CP, Oliveira ME, Sa-Miranda C, Azevedo JE. 2003.. Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. . J. Biol. Chem. 278::438992
    [Crossref] [Google Scholar]
  32. 32.
    Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, et al. 2009.. Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. . Traffic 10::45160
    [Crossref] [Google Scholar]
  33. 33.
    Huhse B, Rehling P, Albertini M, Blank L, Meller K, Kunau W-H. 1998.. Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. . J. Cell Biol. 140::4960
    [Crossref] [Google Scholar]
  34. 34.
    Managadze D, Würtz C, Wiese S, Schneider M, Girzalsky W, et al. 2010.. Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. . Eur. J. Cell Biol. 89::95564
    [Crossref] [Google Scholar]
  35. 35.
    Opaliński L, Kiel JA, Homan TG, Veenhuis M, van der Klei IJ. 2010.. Penicillium chrysogenum Pex14/17p – a novel component of the peroxisomal membrane that is important for penicillin production. . FEBS J. 277::320318
    [Crossref] [Google Scholar]
  36. 36.
    Crowe LP, Wilkinson CL, Nicholson KR, Morris MT. 2020.. Trypanosoma brucei Pex13.2 is an accessory peroxin that functions in the import of peroxisome targeting sequence type 2 proteins and localizes to subdomains of the glycosome. . mSphere 5::e00744-19
    [Crossref] [Google Scholar]
  37. 37.
    Lill P, Hansen T, Wendscheck D, Klink BU, Jeziorek T, et al. 2020.. Towards the molecular architecture of the peroxisomal receptor docking complex. . PNAS 117::3321624
    [Crossref] [Google Scholar]
  38. 38.
    Erdmann R, Schliebs W. 2005.. Peroxisomal matrix protein import: the transient pore model. . Nat. Rev. Mol. Cell Biol. 6::73842
    [Crossref] [Google Scholar]
  39. 39.
    Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE. 2002.. Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. . J. Biol. Chem. 278::22632
    [Crossref] [Google Scholar]
  40. 40.
    Gouveia AM, Reguenga C, Oliveira ME, Sa-Miranda C, Azevedo JE. 2000.. Characterization of peroxisomal Pex5p from rat liver: Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. . J. Biol. Chem. 275::3244451
    [Crossref] [Google Scholar]
  41. 41.
    Kerssen D, Hambruch E, Klaas W, Platta HW, de Kruijff B, et al. 2006.. Membrane association of the cycling peroxisome import receptor Pex5p. . J. Biol. Chem. 281::2700315
    [Crossref] [Google Scholar]
  42. 42.
    Ma C, Schumann U, Rayapuram N, Subramani S. 2009.. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. . Mol. Biol. Cell 20::368089
    [Crossref] [Google Scholar]
  43. 43.
    Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, et al. 2010.. The peroxisomal importomer constitutes a large and highly dynamic pore. . Nat. Cell Biol. 12::27377
    [Crossref] [Google Scholar]
  44. 44.
    Montilla-Martinez M, Beck S, Klümper J, Meinecke M, Schliebs W, et al. 2015.. Distinct pores for peroxisomal import of PTS1 and PTS2 proteins. . Cell Rep. 13::212634
    [Crossref] [Google Scholar]
  45. 45.
    Ghosh M, Denkert N, Reuter M, Klümper J, Reglinski K, et al. 2023.. Dynamics of the translocation pore of the human peroxisomal protein import machinery. . Biol. Chem. 404::16978
    [Crossref] [Google Scholar]
  46. 46.
    Blum D, Reuter M, Schliebs W, Tomaschewski J, Erdmann R, Wagner R. 2023.. Membrane binding and pore forming insertion of PEX5 into horizontal lipid bilayer. . Biol. Chem. 404::15767
    [Crossref] [Google Scholar]
  47. 47.
    Grou CP, Carvalho AF, Pinto MP, Alencastre IS, Rodrigues TA, et al. 2009.. The peroxisomal protein import machinery – a case report of transient ubiquitination with a new flavor. . Cell Mol. Life Sci. 66::25462
    [Crossref] [Google Scholar]
  48. 48.
    Dias AF, Rodrigues TA, Pedrosa AG, Barros-Barbosa A, Francisco T, Azevedo JE. 2017.. The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo. . J. Biol. Chem. 292::15287300
    [Crossref] [Google Scholar]
  49. 49.
    Gao Y, Skowyra ML, Feng P, Rapoport TA. 2022.. Protein import into peroxisomes occurs through a nuclear pore-like phase. . Science 378::eadf3971
    [Crossref] [Google Scholar]
  50. 50.
    Ravindran R, Bacellar IOL, Castellanos-Girouard X, Wahba HM, Zhang Z, et al. 2023.. Peroxisome biogenesis initiated by protein phase separation. . Nature 617::60815
    [Crossref] [Google Scholar]
  51. 51.
    Schmidt HB, Görlich D. 2016.. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. . Trends Biochem. Sci. 41::4661
    [Crossref] [Google Scholar]
  52. 52.
    Skowyra ML, Rapoport TA. 2022.. PEX5 translocation into and out of peroxisomes drives matrix protein import. . Mol. Cell 82::320925.e7
    [Crossref] [Google Scholar]
  53. 53.
    Wang D, Visser NV, Veenhuis M, Van Der Klei IJ. 2003.. Physical interactions of the peroxisomal targeting signal 1-receptor, Pex5p, studied by fluorescence correlation spectroscopy. . J. Biol. Chem. 278::4334045
    [Crossref] [Google Scholar]
  54. 54.
    Ma C, Hagstrom D, Polley SG, Subramani S. 2013.. Redox regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. . J. Biol. Chem. 288::2722031
    [Crossref] [Google Scholar]
  55. 55.
    Kiel JA, Veenhuis M, van der Klei IJ. 2006.. PEX genes in fungal genomes: common, rare or redundant. . Traffic 7::1291303
    [Crossref] [Google Scholar]
  56. 56.
    Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, et al. 2011.. PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. . J. Biol. Chem. 286::4050919
    [Crossref] [Google Scholar]
  57. 57.
    Schliebs W, Girzalsky W, Erdmann R. 2010.. Peroxisomal protein import and ERAD: variations on a common theme. . Nat. Rev. Mol. Cell Biol. 11::88590
    [Crossref] [Google Scholar]
  58. 58.
    McClellan AJ, Laugesen SH, Ellgaard L. 2019.. Cellular functions and molecular mechanisms of non-lysine ubiquitination. . Open Biol. 9::190147
    [Crossref] [Google Scholar]
  59. 59.
    Clague MJ, Urbé S, Komander D. 2019.. Breaking the chains: deubiquitylating enzyme specificity begets function. . Nat. Rev. Mol. Cell Biol. 20::33852
    [Crossref] [Google Scholar]
  60. 60.
    Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, et al. 2007.. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. . J. Biol. Chem. 282::3126772
    [Crossref] [Google Scholar]
  61. 61.
    Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y. 2011.. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. . Traffic 12::106783
    [Crossref] [Google Scholar]
  62. 62.
    Williams C, van den Berg M, Sprenger RR, Distel B. 2007.. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. . J. Biol. Chem. 282::2253443
    [Crossref] [Google Scholar]
  63. 63.
    Schwartzkopff B, Platta HW, Hasan S, Girzalsky W, Erdmann R. 2015.. Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation. . Biosci. Rep. 35::e00215
    [Crossref] [Google Scholar]
  64. 64.
    Rudowitz M, Erdmann R, Schliebs W. 2020.. Membrane processing and steady-state regulation of the alternative peroxisomal import receptor Pex9p. . Front. Cell Dev. Biol. 8::566321
    [Crossref] [Google Scholar]
  65. 65.
    Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R. 2007.. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. . J. Cell Biol. 177::197204
    [Crossref] [Google Scholar]
  66. 66.
    El Magraoui F, Schrötter A, Brinkmeier R, Kunst L, Mastalski T, et al. 2014.. The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor. . PLOS ONE 9::e105894
    [Crossref] [Google Scholar]
  67. 67.
    Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M. 2012.. Insights into ubiquitin-conjugating enzyme/co-activator interactions from the structure of the Pex4p:Pex22p complex. . EMBO J. 31::391402
    [Crossref] [Google Scholar]
  68. 68.
    Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, et al. 2008.. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. . J. Biol. Chem. 283::1419097
    [Crossref] [Google Scholar]
  69. 69.
    Okumoto K, Noda H, Fujiki Y. 2014.. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. . J. Biol. Chem. 289::14089108
    [Crossref] [Google Scholar]
  70. 70.
    Gualdrón-López M, Chevalier N, Van Der Smissen P, Courtoy PJ, Rigden DJ, Michels PA. 2013.. Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features. . Biochim. Biophys. Acta Mol. Cell Res. 1833::307692
    [Crossref] [Google Scholar]
  71. 71.
    Kragt A, Voorn-Brouwer T, van den Berg M, Distel B. 2005.. The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. . J. Biol. Chem. 280::786774
    [Crossref] [Google Scholar]
  72. 72.
    Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R. 2009.. Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. . Mol. Cell. Biol. 29::550516
    [Crossref] [Google Scholar]
  73. 73.
    Williams C, van den Berg M, Geers E, Distel B. 2008.. Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. . Biochem. Biophys. Res. Commun. 374::62024
    [Crossref] [Google Scholar]
  74. 74.
    Agne B, Meindl NM, Niederhoff K, Einwächter H, Rehling P, et al. 2003.. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. . Mol. Cell 11::63546
    [Crossref] [Google Scholar]
  75. 75.
    Kao YT, Fleming WA, Ventura MJ, Bartel B. 2016.. Genetic interactions between PEROXIN12 and other peroxisome-associated ubiquitination components. . Plant Physiol. 172::164356
    [Crossref] [Google Scholar]
  76. 76.
    Koellensperger G, Daubert S, Erdmann R, Hann S, Rottensteiner H. 2007.. Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry. . Biol. Chem. 388::120914
    [Crossref] [Google Scholar]
  77. 77.
    Kaur N, Zhao Q, Xie Q, Hu J. 2013.. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins. . J. Integr. Plant. Biol. 55::10820
    [Crossref] [Google Scholar]
  78. 78.
    El Magraoui F, Bäumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R. 2012.. The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. . FEBS J. 279::206070
    [Crossref] [Google Scholar]
  79. 79.
    Feng P, Wu X, Erramilli SK, Paulo JA, Knejski P, et al. 2022.. A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel. . Nature 607::37480
    [Crossref] [Google Scholar]
  80. 80.
    Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, et al. 2014.. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. . Traffic 15::94103
    [Crossref] [Google Scholar]
  81. 81.
    Walton PA, Brees C, Lismont C, Apanasets O, Fransen M. 2017.. The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress. . Biochim. Biophys. Acta Mol. Cell Res. 1864::183343
    [Crossref] [Google Scholar]
  82. 82.
    Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sa-Miranda C, et al. 2009.. Properties of the ubiquitin-Pex5p thiol ester conjugate. . J. Biol. Chem. 284::1050413
    [Crossref] [Google Scholar]
  83. 83.
    Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, et al. 2012.. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on the ubiquitin-peroxin 5 (PEX5) thioester conjugate. . J. Biol. Chem. 287::1281527
    [Crossref] [Google Scholar]
  84. 84.
    Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, et al. 2011.. Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. . J. Biol. Chem. 286::2822334
    [Crossref] [Google Scholar]
  85. 85.
    El Magraoui F, Brinkmeier R, Mastalski T, Hupperich A, Strehl C, et al. 2019.. The deubiquitination of the PTS1-import receptor Pex5p is required for peroxisomal matrix protein import. . Biochim. Biophys. Acta Mol. Cell Res. 1866::199213
    [Crossref] [Google Scholar]
  86. 86.
    Wang W, Xia ZJ, Farré JC, Subramani S. 2017.. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. . J. Cell Biol. 216::284358
    [Crossref] [Google Scholar]
  87. 87.
    Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, et al. 2015.. ATM functions at the peroxisome to induce pexophagy in response to ROS. . Nat. Cell Biol. 17::125969
    [Crossref] [Google Scholar]
  88. 88.
    Hensel A, Beck S, El Magraoui F, Platta HW, Girzalsky W, Erdmann R. 2011.. Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. . J. Biol. Chem. 286::43495505
    [Crossref] [Google Scholar]
  89. 89.
    Liu X, Subramani S. 2013.. Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. . J. Biol. Chem. 288::723040
    [Crossref] [Google Scholar]
  90. 90.
    Kao YT, Bartel B. 2015.. Elevated growth temperature decreases levels of the PEX5 peroxisome-targeting signal receptor and ameliorates defects of Arabidopsis mutants with an impaired PEX4 ubiquitin-conjugating enzyme. . BMC Plant Biol. 15::224
    [Crossref] [Google Scholar]
  91. 91.
    El Magraoui F, Brinkmeier R, Schrötter A, Girzalsky W, Müller T, et al. 2013.. Distinct ubiquitination cascades act on the peroxisomal targeting signal type 2 co-receptor Pex18p. . Traffic 14::1290301
    [Crossref] [Google Scholar]
  92. 92.
    Suaste-Olmos F, Zirión-Martínez C, Takano-Rojas H, Peraza-Reyes L. 2018.. Meiotic development initiation in the fungus Podospora anserina requires the peroxisome receptor export machinery. . Biochim. Biophys. Acta Mol. Cell Res. 1865::57286
    [Crossref] [Google Scholar]
  93. 93.
    Kiel JA, Emmrich K, Meyer HE, Kunau WH. 2005.. Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. . J. Biol. Chem. 280::192130
    [Crossref] [Google Scholar]
  94. 94.
    Platta HW, Girzalsky W, Erdmann R. 2004.. Ubiquitination of the peroxisomal import receptor Pex5p. . Biochem. J. 384::3745
    [Crossref] [Google Scholar]
  95. 95.
    Law KB, Bronte-Tinkew D, Di Pietro E, Snowden A, Jones RO, et al. 2017.. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. . Autophagy 13::86884
    [Crossref] [Google Scholar]
  96. 96.
    Sargent G, van Zutphen T, Shatseva T, Zhang L, Di Giovanni V, et al. 2016.. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. . J. Cell Biol. 214::67790
    [Crossref] [Google Scholar]
  97. 97.
    Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, et al. 2015.. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. . Autophagy 11::132640
    [Crossref] [Google Scholar]
  98. 98.
    Riccio V, Demers N, Hua R, Vissa M, Cheng DT, et al. 2019.. Deubiquitinating enzyme USP30 maintains basal peroxisome abundance by regulating pexophagy. . J. Cell Biol. 218::798807
    [Crossref] [Google Scholar]
  99. 99.
    Purdue PE, Lazarow PB. 2001.. Pex18p is constitutively degraded during peroxisome biogenesis. . J. Biol. Chem. 276::4768489
    [Crossref] [Google Scholar]
  100. 100.
    Hagstrom D, Ma C, Guha-Polley S, Subramani S. 2014.. The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. . Mol. Biol. Cell 25::263443
    [Crossref] [Google Scholar]
  101. 101.
    Chang J, Rachubinski RA. 2019.. Pex20p functions as the receptor for non-PTS1/non-PTS2 acyl-CoA oxidase import into peroxisomes of the yeast Yarrowia lipolytica. . Traffic 20::50415
    [Crossref] [Google Scholar]
  102. 102.
    Leon S, Subramani S. 2007.. A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. . J. Biol. Chem. 282::742430
    [Crossref] [Google Scholar]
  103. 103.
    Cui S, Fukao Y, Mano S, Yamada K, Hayashi M, Nishimura M. 2013.. Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7). . J. Biol. Chem. 288::601423
    [Crossref] [Google Scholar]
  104. 104.
    Miyauchi-Nanri Y, Mukai S, Kuroda K, Fujiki Y. 2014.. CUL4A-DDB1-Rbx1 E3 ligase controls the quality of the PTS2 receptor Pex7p. . Biochem. J. 463::6574
    [Crossref] [Google Scholar]
  105. 105.
    Romano FB, Blok NB, Rapoport TA. 2019.. Peroxisome protein import recapitulated in Xenopus egg extracts. . J. Cell Biol. 18::202134
    [Crossref] [Google Scholar]
  106. 106.
    Collins CS, Kalish JE, Morrell JC, McCaffery JM, Gould SJ. 2000.. The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. . Mol. Cell Biol. 20::751626
    [Crossref] [Google Scholar]
  107. 107.
    Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, et al. 2020.. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. . Nat. Commun. 11::477
    [Crossref] [Google Scholar]
  108. 108.
    Titorenko VI, Rachubinski RA. 2000.. Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. . J. Cell Biol. 150::88186
    [Crossref] [Google Scholar]
  109. 109.
    van der Zand A, Gent J, Braakman I, Tabak HF. 2012.. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. . Cell 149::397409
    [Crossref] [Google Scholar]
  110. 110.
    Knoops K, de Boer R, Kram A, van der Klei IJ. 2015.. Yeast pex1 cells contain peroxisomal ghosts that import matrix proteins upon reintroduction of Pex1. . J. Cell Biol. 211::95562
    [Crossref] [Google Scholar]
  111. 111.
    Motley AM, Galvin PC, Ekal L, Nuttall JM, Hettema EH. 2015.. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis. . J. Cell Biol. 211::104156
    [Crossref] [Google Scholar]
  112. 112.
    Ott J, Sehr J, Schmidt N, Schliebs W, Erdmann R. 2023.. Comparison of human PEX knockout cell lines suggests a dual role of PEX1 in peroxisome biogenesis. . Biol. Chem. 404::20919
    [Crossref] [Google Scholar]
  113. 113.
    Mastalski T, Brinkmeier R, Platta HW. 2020.. The peroxisomal PTS1-import defect of PEX1-deficient cells is independent of pexophagy in Saccharomyces cerevisiae. . Int. J. Mol. Sci. 21::867
    [Crossref] [Google Scholar]
  114. 114.
    Nuttall JM, Motley AM, Hettema EH. 2014.. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. . Autophagy 10::83545
    [Crossref] [Google Scholar]
  115. 115.
    Xie Q, Tzfadia O, Levy M, Weithorn E, Peled-Zehavi H, et al. 2016.. hfAIM: a reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. . Autophagy 12::87687
    [Crossref] [Google Scholar]
  116. 116.
    Miyata N, Fujiki Y. 2005.. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. . Mol. Cell. Biol. 25::1082232
    [Crossref] [Google Scholar]
  117. 117.
    Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y. 2012.. AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. . Traffic 13::16883
    [Crossref] [Google Scholar]
  118. 118.
    Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R. 2005.. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. . Nat. Cell Biol. 7::81722
    [Crossref] [Google Scholar]
  119. 119.
    Fröhlich KU, Fries HW, Rudiger M, Erdmann R, Botstein D, Mecke D. 1991.. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. . J. Cell Biol. 114::44353
    [Crossref] [Google Scholar]
  120. 120.
    Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, et al. 1991.. PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. . Cell 64::499510
    [Crossref] [Google Scholar]
  121. 121.
    Neuwald AF, Aravind L, Spouge JL, Koonin EV. 1999.. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. . Genome Res. 9::2743
    [Crossref] [Google Scholar]
  122. 122.
    Schieferdecker A, Wendler P. 2019.. Structural mapping of missense mutations in the Pex1/Pex6 complex. . Int. J. Mol. Sci. 20::3756
    [Crossref] [Google Scholar]
  123. 123.
    Wendler P, Ciniawsky S, Kock M, Kube S. 2012.. Structure and function of the AAA+ nucleotide binding pocket. . Biochim. Biophys. Acta Mol. Cell Res. 1823::214
    [Crossref] [Google Scholar]
  124. 124.
    Birschmann I, Rosenkranz K, Erdmann R, Kunau WH. 2005.. Structural and functional analysis of the interaction of the AAA-peroxins Pex1p and Pex6p. . FEBS J. 272::4758
    [Crossref] [Google Scholar]
  125. 125.
    Birschmann I, Stroobants AK, Van Den Berg M, Schäfer A, Rosenkranz K, et al. 2003.. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. . Mol. Biol. Cell 14::222636
    [Crossref] [Google Scholar]
  126. 126.
    Ciniawsky S, Grimm I, Saffian D, Girzalsky W, Erdmann R, Wendler P. 2015.. Molecular snapshots of the Pex1/6 AAA+ complex in action. . Nat. Commun. 6::7331
    [Crossref] [Google Scholar]
  127. 127.
    Rosenkranz K, Birschmann I, Grunau S, Girzalsky W, Kunau WH, Erdmann R. 2006.. Functional association of the AAA complex and the peroxisomal importomer. . FEBS J. 273::380415
    [Crossref] [Google Scholar]
  128. 128.
    Tamura S, Yasutake S, Matsumoto N, Fujiki Y. 2006.. Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p. . J. Biol. Chem. 281::27693704
    [Crossref] [Google Scholar]
  129. 129.
    Saffert P, Enenkel C, Wendler P. 2017.. Structure and function of p97 and Pex1/6 Type II AAA+ complexes. . Front. Mol. Biosci. 4::33
    [Crossref] [Google Scholar]
  130. 130.
    Saffian D, Grimm I, Girzalsky W, Erdmann R. 2012.. ATP-dependent assembly of the heteromeric Pex1p–Pex6p-complex of the peroxisomal matrix protein import machinery. . J. Struct. Biol. 179::12632
    [Crossref] [Google Scholar]
  131. 131.
    Zhang S, Mao Y. 2020.. AAA+ ATPases in protein degradation: structures, functions and mechanisms. . Biomolecules 10::629
    [Crossref] [Google Scholar]
  132. 132.
    Blok NB, Tan D, Wang RY, Penczek PA, Baker D, et al. 2015.. Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. . PNAS 112::E401725
    [Crossref] [Google Scholar]
  133. 133.
    Gardner BM, Chowdhury S, Lander GC, Martin A. 2015.. The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits. . J. Mol. Biol. 427::137588
    [Crossref] [Google Scholar]
  134. 134.
    Elgersma Y, Kwast L, van den Berg M, Snyder WB, Distel B, et al. 1997.. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. . EMBO J. 16::732641
    [Crossref] [Google Scholar]
  135. 135.
    Matsumoto N, Tamura S, Fujiki Y. 2003.. The pathogenic peroxin Pex26p recruits the Pex1p–Pex6p AAA ATPase complexes to peroxisomes. . Nat. Cell Biol. 5::45460
    [Crossref] [Google Scholar]
  136. 136.
    Goto S, Mano S, Nakamori C, Nishimura M. 2011.. Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. . Plant Cell 23::157387
    [Crossref] [Google Scholar]
  137. 137.
    Grimm I, Saffian D, Girzalsky W, Erdmann R. 2016.. Nucleotide-dependent assembly of the peroxisomal receptor export complex. . Sci. Rep. 6::19838
    [Crossref] [Google Scholar]
  138. 138.
    Tamura S, Matsumoto N, Takeba R, Fujiki Y. 2014.. AAA peroxins and their recruiter Pex26p modulate the interactions of peroxins involved in peroxisomal protein import. . J. Biol. Chem. 289::2433646
    [Crossref] [Google Scholar]
  139. 139.
    Weir NR, Kamber RA, Martenson JS, Denic V. 2017.. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane. . eLife 6::e28507
    [Crossref] [Google Scholar]
  140. 140.
    Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, et al. 2019.. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. . Biochim. Biophys. Acta Mol. Cell Res. 1866::51831
    [Crossref] [Google Scholar]
  141. 141.
    Zhang X, Wigley DB. 2008.. The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins. . Nat. Struct. Mol. Biol. 15::122327
    [Crossref] [Google Scholar]
  142. 142.
    Shiozawa K, Goda N, Shimizu T, Mizuguchi K, Kondo N, et al. 2006.. The common phospholipid-binding activity of the N-terminal domains of PEX1 and VCP/p97. . FEBS J. 273::495971
    [Crossref] [Google Scholar]
  143. 143.
    Shiozawa K, Maita N, Tomii K, Seto A, Goda N, et al. 2004.. Structure of the N-terminal domain of PEX1 AAA-ATPase. Characterization of a putative adaptor-binding domain. . J. Biol. Chem. 279::5006068
    [Crossref] [Google Scholar]
  144. 144.
    Park S, Isaacson R, Kim HT, Silver PA, Wagner G. 2005.. Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. . Structure 13::9951005
    [Crossref] [Google Scholar]
  145. 145.
    Pedrosa AG, Francisco T, Bicho D, Dias AF, Barros-Barbosa A, et al. 2018.. Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol. . J. Biol. Chem. 293::1155363
    [Crossref] [Google Scholar]
  146. 146.
    Schwerter D, Grimm I, Girzalsky W, Erdmann R. 2018.. Receptor recognition by the peroxisomal AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p. . J. Biol. Chem. 293::1545870
    [Crossref] [Google Scholar]
  147. 147.
    Bodnar NO, Rapoport TA. 2017.. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. . Cell 169::72235.e9
    [Crossref] [Google Scholar]
  148. 148.
    Twomey EC, Ji Z, Wales TE, Bodnar NO, Ficarro SB, et al. 2019.. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. . Science 365::eaax1033
    [Crossref] [Google Scholar]
  149. 149.
    Gardner BM, Castanzo DT, Chowdhury S, Stjepanovic G, Stefely MS, et al. 2018.. The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. . Nat. Commun. 9::135
    [Crossref] [Google Scholar]
  150. 150.
    Pedrosa AG, Francisco T, Rodrigues TA, Ferreira MJ, van der Heden van Noort GJ, Azevedo JE. 2023.. The extraction mechanism of monoubiquitinated PEX5 from the peroxisomal membrane. . J. Mol. Biol. 435::167896
    [Crossref] [Google Scholar]
  151. 151.
    Pedrosa AG, Francisco T, Ferreira MJ, Rodrigues TA, Barros-Barbosa A, Azevedo JE. 2019.. A mechanistic perspective on PEX1 and PEX6, two AAA+ proteins of the peroxisomal protein import machinery. . Int. J. Mol. Sci. 20::E5246
    [Crossref] [Google Scholar]
  152. 152.
    Carvalho AF, Costa-Rodrigues J, Correia I, Costa Pessoa J, Faria TQ, et al. 2006.. The N-terminal half of the peroxisomal cycling receptor Pex5p is a natively unfolded domain. . J. Mol. Biol. 356::86475
    [Crossref] [Google Scholar]
  153. 153.
    Costa-Rodrigues J, Carvalho AF, Gouveia AM, Fransen M, Sa-Miranda C, Azevedo JE. 2004.. The N-terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol. . J. Biol. Chem. 279::4657379
    [Crossref] [Google Scholar]
  154. 154.
    Ratzel SE, Lingard MJ, Woodward AW, Bartel B. 2011.. Reducing PEX13 expression ameliorates physiological defects of late-acting peroxin mutants. . Traffic 12::12134
    [Crossref] [Google Scholar]
  155. 155.
    Francisco T, Rodrigues TA, Freitas MO, Grou CP, Carvalho AF, et al. 2013.. A cargo-centered perspective on the PEX5 receptor-mediated peroxisomal protein import pathway. . J. Biol. Chem. 288::2915159
    [Crossref] [Google Scholar]
  156. 156.
    Emmanouilidis L, Gopalswamy M, Passon DM, Wilmanns M, Sattler M. 2016.. Structural biology of the import pathways of peroxisomal matrix proteins. . Biochim. Biophys. Acta Mol. Cell Res. 1863::80413
    [Crossref] [Google Scholar]
  157. 157.
    Burkhart SE, Kao YT, Bartel B. 2014.. Peroxisomal ubiquitin-protein ligases peroxin2 and peroxin10 have distinct but synergistic roles in matrix protein import and peroxin5 retrotranslocation in Arabidopsis. . Plant Physiol. 166::132944
    [Crossref] [Google Scholar]
  158. 158.
    Cotton TR, Lechtenberg BC. 2020.. Chain reactions: molecular mechanisms of RBR ubiquitin ligases. . Biochem. Soc. Trans. 48::173750
    [Crossref] [Google Scholar]
  159. 159.
    Baldridge RD, Rapoport TA. 2016.. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. . Cell 166::394407
    [Crossref] [Google Scholar]
  160. 160.
    Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, et al. 2017.. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. . Nature 548::35255
    [Crossref] [Google Scholar]
  161. 161.
    Vasic V, Denkert N, Schmidt CC, Riedel D, Stein A, Meinecke M. 2020.. Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. . Nat. Cell Biol. 22::27481
    [Crossref] [Google Scholar]
  162. 162.
    Chen X, Devarajan S, Danda N, Williams C. 2018.. Insights into the role of the peroxisomal ubiquitination machinery in Pex13p degradation in the yeast Hansenula polymorpha. . J. Mol. Biol. 430::154558
    [Crossref] [Google Scholar]
  163. 163.
    Devarajan S, Meuer M, van Roermund CWT, Chen X, Hettema EH, et al. 2020.. Proteasome-dependent protein quality control of the peroxisomal membrane protein Pxa1p. . Biochim. Biophys. Acta Biomembr. 1862::183342
    [Crossref] [Google Scholar]
  164. 164.
    Yu H, Kamber RA, Denic V. 2022.. The peroxisomal exportomer directly inhibits phosphoactivation of the pexophagy receptor Atg36 to suppress pexophagy in yeast. . eLife 11::e74531
    [Crossref] [Google Scholar]
  165. 165.
    Zhao M, Brunger AT. 2016.. Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF). . J. Mol. Biol. 428::191226
    [Crossref] [Google Scholar]
  166. 166.
    Olszewski MM, Williams C, Dong KC, Martin A. 2019.. The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome. . Commun. Biol. 2::29
    [Crossref] [Google Scholar]
  167. 167.
    Fischer S, Bürgi J, Gabay-Maskit S, Maier R, Mastalski T, et al. 2023.. Phosphorylation of the receptor protein Pex5p modulates import of proteins into peroxisomes. . Biol. Chem. 404::13555
    [Crossref] [Google Scholar]
  168. 168.
    Okumoto K, El Shermely M, Natsui M, Kosako H, Natsuyama R, et al. 2020.. The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation. . eLife 9::e55896
    [Crossref] [Google Scholar]
  169. 169.
    Schummer A, Maier R, Gabay-Maskit S, Hansen T, Mühlhäuser WWD, et al. 2020.. Pex14p phosphorylation modulates import of citrate synthase 2 into peroxisomes in Saccharomyces cerevisiae. . Front. Cell Dev. Biol. 8::549451
    [Crossref] [Google Scholar]
  170. 170.
    Oeljeklaus S, Schummer A, Mastalski T, Platta HW, Warscheid B. 2016.. Regulation of peroxisome dynamics by phosphorylation. . Biochim. Biophys. Acta Mol. Cell Res. 1863::102737
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030222-111227
Loading
/content/journals/10.1146/annurev-biochem-030222-111227
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error