1932

Abstract

During the last ten years, developments in cryo–electron microscopy have transformed our understanding of eukaryotic ribosome assembly. As a result, the field has advanced from a list of the vast array of ribosome assembly factors toward an emerging molecular movie in which individual frames are represented by structures of stable ribosome assembly intermediates with complementary biochemical and genetic data. In this review, we discuss the mechanisms driving the assembly of yeast and human small and large ribosomal subunits. A particular emphasis is placed on the most recent findings that illustrate key concepts of ribosome assembly, such as folding of preribosomal RNA, the enforced chronology of assembly, enzyme-mediated irreversible transitions, and proofreading of preribosomal particles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030222-113611
2024-08-02
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030222-113611.html?itemId=/content/journals/10.1146/annurev-biochem-030222-113611&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Noller HF. 2012.. Evolution of protein synthesis from an RNA world. . Cold Spring Harb. Perspect. Biol. 4:(4):a003681
    [Crossref] [Google Scholar]
  2. 2.
    Palade GE. 1955.. A small particulate component of the cytoplasm. . J. Biophys. Biochem. Cytol. 1:(1):5968
    [Crossref] [Google Scholar]
  3. 3.
    Scherrer K, Latham H, Darnell JE. 1963.. Demonstration of an unstable RNA and of a precursor to ribosomal RNA in HeLa cells. . PNAS 49::24048
    [Crossref] [Google Scholar]
  4. 4.
    Scherrer K, Darnell JE. 1962.. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. . Biochem. Biophys. Res. Commun. 7::48690
    [Crossref] [Google Scholar]
  5. 5.
    Miller OL, Beatty BR. 1969.. Visualization of nucleolar genes. . Science 164:(3882):95557
    [Crossref] [Google Scholar]
  6. 6.
    Trapman J, Retèl J, Planta RJ. 1975.. Ribosomal precursor particles from yeast. . Exp. Cell Res. 90:(1):95104
    [Crossref] [Google Scholar]
  7. 7.
    Venema J, Tollervey D. 1999.. Ribosome synthesis in Saccharomyces cerevisiae. . Annu. Rev. Genet. 33::261311
    [Crossref] [Google Scholar]
  8. 8.
    Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B. 1999.. A generic protein purification method for protein complex characterization and proteome exploration. . Nat. Biotechnol. 17:(10):103032
    [Crossref] [Google Scholar]
  9. 9.
    Krogan NJ, Peng W-T, Cagney G, Robinson MD, Haw R, et al. 2004.. High-definition macromolecular composition of yeast RNA-processing complexes. . Mol. Cell 13:(2):22539
    [Crossref] [Google Scholar]
  10. 10.
    Woolford JL, Baserga SJ. 2013.. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. . Genetics 195:(3):64381
    [Crossref] [Google Scholar]
  11. 11.
    Ben-Shem A, Jenner L, Yusupova G, Yusupov M. 2010.. Crystal structure of the eukaryotic ribosome. . Science 330:(6008):12039
    [Crossref] [Google Scholar]
  12. 12.
    Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 2011.. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. . Science 331:(6018):73036
    [Crossref] [Google Scholar]
  13. 13.
    Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. 2011.. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. . Science 334:(6058):94148
    [Crossref] [Google Scholar]
  14. 14.
    Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. 2011.. The structure of the eukaryotic ribosome at 3.0 Å resolution. . Science 334:(6062):152429
    [Crossref] [Google Scholar]
  15. 15.
    Granneman S, Kudla G, Petfalski E, Tollervey D. 2009.. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. . PNAS 106:(24):961318
    [Crossref] [Google Scholar]
  16. 16.
    Kühlbrandt W. 2014.. The resolution revolution. . Science 343:(6178):144344
    [Crossref] [Google Scholar]
  17. 17.
    Wu S, Tutuncuoglu B, Yan K, Brown H, Zhang Y, et al. 2016.. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. . Nature 534:(7605):13337
    [Crossref] [Google Scholar]
  18. 18.
    Klinge S, Woolford JL. 2019.. Ribosome assembly coming into focus. . Nat. Rev. Mol. Cell Biol. 20:(2):11631
    [Crossref] [Google Scholar]
  19. 19.
    Dörner K, Ruggeri C, Zemp I, Kutay U. 2023.. Ribosome biogenesis factors—from names to functions. . EMBO J. 42::e112699
    [Crossref] [Google Scholar]
  20. 20.
    Tartakoff AM, Chen L, Raghavachari S, Gitiforooz D, Dhinakaran A, et al. 2021.. The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases. . Curr. Biol. 31:(12):250719.e4
    [Crossref] [Google Scholar]
  21. 21.
    Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. 2021.. The nucleolus as a multiphase liquid condensate. . Nat. Rev. Mol. Cell Biol. 22:(3):16582
    [Crossref] [Google Scholar]
  22. 22.
    Musacchio A. 2021.. On the role of phase separation in the biogenesis of membraneless compartments. . EMBO J. 41:(5):e109952
    [Crossref] [Google Scholar]
  23. 23.
    Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau V-V, et al. 2016.. Structure of RNA polymerase I transcribing ribosomal DNA genes. . Nature 540:(7634):60710
    [Crossref] [Google Scholar]
  24. 24.
    Engel C, Gubbey T, Neyer S, Sainsbury S, Oberthuer C, et al. 2017.. Structural basis of RNA polymerase I transcription initiation. . Cell 169:(1):12031.e22
    [Crossref] [Google Scholar]
  25. 25.
    Sadian Y, Baudin F, Tafur L, Murciano B, Wetzel R, et al. 2019.. Molecular insight into RNA polymerase I promoter recognition and promoter melting. . Nat. Commun. 10:(1):5543
    [Crossref] [Google Scholar]
  26. 26.
    Baudin F, Murciano B, Fung HKH, Fromm SA, Mattei S, et al. 2022.. Mechanism of RNA polymerase I selection by transcription factor UAF. . Sci. Adv. 8:(16):eabn5725
    [Crossref] [Google Scholar]
  27. 27.
    Kos M, Tollervey D. 2010.. Yeast pre-rRNA processing and modification occur cotranscriptionally. . Mol. Cell 37:(6):80920
    [Crossref] [Google Scholar]
  28. 28.
    Bohnsack KE, Bohnsack MT. 2019.. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. . EMBO J. 38:(13):e100278
    [Crossref] [Google Scholar]
  29. 29.
    Udem SA, Warner JR. 1972.. Ribosomal RNA synthesis in Saccharomyces cerevisiae. . J. Mol. Biol. 65:(2):22742
    [Crossref] [Google Scholar]
  30. 30.
    Sharma S, Lafontaine DLJ. 2015.. “ View from a bridge”: a new perspective on eukaryotic rRNA base modification. . Trends Biochem. Sci. 40:(10):56075
    [Crossref] [Google Scholar]
  31. 31.
    Sloan KE, Warda AS, Sharma S, Entian K-D, Lafontaine DLJ, Bohnsack MT. 2017.. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. . RNA Biol. 14:(9):113852
    [Crossref] [Google Scholar]
  32. 32.
    Höbartner C, Bohnsack KE, Bohnsack MT. 2024.. How natural enzymes and synthetic ribozymes generate methylated nucleotides in RNA. . Annu. Rev. Biochem. 93::10937
    [Google Scholar]
  33. 33.
    Lan P, Zhou B, Tan M, Li S, Cao M, et al. 2020.. Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. . Science 369:(6504):65663
    [Crossref] [Google Scholar]
  34. 34.
    Schneider C, Bohnsack KE. 2022.. Caught in the act—visualizing ribonucleases during eukaryotic ribosome assembly. . WIREs RNA 14:(4):e1766
    [Crossref] [Google Scholar]
  35. 35.
    Pillon MC, Gordon J, Frazier MN, Stanley RE. 2021.. HEPN RNases—an emerging class of functionally distinct RNA processing and degradation enzymes. . Crit. Rev. Biochem. Mol. Biol. 56:(1):88108
    [Crossref] [Google Scholar]
  36. 36.
    Martin R, Straub AU, Doebele C, Bohnsack MT. 2013.. DExD/H-box RNA helicases in ribosome biogenesis. . RNA Biol. 10:(1):418
    [Crossref] [Google Scholar]
  37. 37.
    Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. 2013.. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. . Biochim. Biophys. Acta Gene Regul. Mech. 1829:(8):77590
    [Crossref] [Google Scholar]
  38. 38.
    Mitterer V, Pertschy B. 2022.. RNA folding and functions of RNA helicases in ribosome biogenesis. . RNA Biol. 19:(1):781810
    [Crossref] [Google Scholar]
  39. 39.
    Khreiss A, Bohnsack KE, Bohnsack MT. 2023.. Molecular functions of RNA helicases during ribosomal subunit assembly. . Biol. Chem. 404:(8–9):78189
    [Crossref] [Google Scholar]
  40. 40.
    Prattes M, Lo Y-H, Bergler H, Stanley RE. 2019.. Shaping the nascent ribosome: AAA-ATPases in eukaryotic ribosome biogenesis. . Biomolecules 9:(11):715
    [Crossref] [Google Scholar]
  41. 41.
    Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, et al. 2022.. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. . eLife 11::e74255
    [Crossref] [Google Scholar]
  42. 42.
    Rössler I, Embacher J, Pillet B, Murat G, Liesinger L, et al. 2019.. Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. . Nucleic Acids Res. 47:(13):69847002
    [Crossref] [Google Scholar]
  43. 43.
    Black JJ, Musalgaonkar S, Johnson AW. 2019.. Tsr4 is a cytoplasmic chaperone for the ribosomal protein Rps2 in Saccharomyces cerevisiae. . Mol. Cell. Biol. 39:(17):e00094-19
    [Crossref] [Google Scholar]
  44. 44.
    Pillet B, Mitterer V, Kressler D, Pertschy B. 2017.. Hold on to your friends: dedicated chaperones of ribosomal proteins. . BioEssays 39:(1):e201600153
    [Crossref] [Google Scholar]
  45. 45.
    Mougey EB, Pape LK, Sollner-Webb B. 1993.. A U3 small nuclear ribonucleoprotein-requiring processing event in the 5′ external transcribed spacer of Xenopus precursor rRNA. . Mol. Cell. Biol. 13:(10):599098
    [Google Scholar]
  46. 46.
    Mougey EB, O'Reilly M, Osheim Y, Miller OL, Beyer A, Sollner-Webb B. 1993.. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. . Genes Dev. 7:(8):160919
    [Crossref] [Google Scholar]
  47. 47.
    Dragon F, Gallagher JEG, Compagnone-Post PA, Mitchell BM, Porwancher KA, et al. 2002.. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. . Nature 417:(6892):96770
    [Crossref] [Google Scholar]
  48. 48.
    Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, et al. 2002.. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. . Mol. Cell 10:(1):10515
    [Crossref] [Google Scholar]
  49. 49.
    Tschochner H, Hurt E. 2003.. Pre-ribosomes on the road from the nucleolus to the cytoplasm. . Trends Cell Biol. 13:(5):25563
    [Crossref] [Google Scholar]
  50. 50.
    Kornprobst M, Turk M, Kellner N, Cheng J, Flemming D, et al. 2016.. Architecture of the 90S pre-ribosome: a structural view on the birth of the eukaryotic ribosome. . Cell 166:(2):38093
    [Crossref] [Google Scholar]
  51. 51.
    Chaker-Margot M, Barandun J, Hunziker M, Klinge S. 2017.. Architecture of the yeast small subunit processome. . Science 355:(6321):eaal1880
    [Crossref] [Google Scholar]
  52. 52.
    Sun Q, Zhu X, Qi J, An W, Lan P, et al. 2017.. Molecular architecture of the 90S small subunit pre-ribosome. . eLife 6::e22086
    [Crossref] [Google Scholar]
  53. 53.
    Cheng J, Kellner N, Berninghausen O, Hurt E, Beckmann R. 2017.. 3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. . Nat. Struct. Mol. Biol. 24:(11):95464
    [Crossref] [Google Scholar]
  54. 54.
    Barandun J, Chaker-Margot M, Hunziker M, Molloy KR, Chait BT, Klinge S. 2017.. The complete structure of the small-subunit processome. . Nat. Struct. Mol. Biol. 24:(11):94453
    [Crossref] [Google Scholar]
  55. 55.
    Cheng J, Lau B, Venuta GL, Ameismeier M, Berninghausen O, et al. 2020.. 90S pre-ribosome transformation into the primordial 40S subunit. . Science 369:(6510):147076
    [Crossref] [Google Scholar]
  56. 56.
    Du Y, An W, Zhu X, Sun Q, Qi J, Ye K. 2020.. Cryo-EM structure of 90S small ribosomal subunit precursors in transition states. . Science 369:(6510):147781
    [Crossref] [Google Scholar]
  57. 57.
    Singh S, Vanden Broeck A, Miller L, Chaker-Margot M, Klinge S. 2021.. Nucleolar maturation of the human small subunit processome. . Science 373:(6560):eabj5338
    [Crossref] [Google Scholar]
  58. 58.
    Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, et al. 2006.. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. . Nature 440:(7084):63743
    [Crossref] [Google Scholar]
  59. 59.
    Dosil M, Bustelo XR. 2004.. Functional characterization of Pwp2, a WD family protein essential for the assembly of the 90 S pre-ribosomal particle. . J. Biol. Chem. 279:(36):3738597
    [Crossref] [Google Scholar]
  60. 60.
    Pöll G, Li S, Ohmayer U, Hierlmeier T, Milkereit P, Perez-Fernandez J. 2014.. In vitro reconstitution of yeast tUTP/UTP A and UTP B subcomplexes provides new insights into their modular architecture. . PLOS ONE 9:(12):e114898
    [Crossref] [Google Scholar]
  61. 61.
    Hunziker M, Barandun J, Petfalski E, Tan D, Delan-Forino C, et al. 2016.. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. . Nat. Commun. 7::12090
    [Crossref] [Google Scholar]
  62. 62.
    Pérez-Fernández J, Román A, Rivas JDL, Bustelo XR, Dosil M. 2007.. The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. . Mol. Cell. Biol. 27:(15):541429
    [Crossref] [Google Scholar]
  63. 63.
    Pérez-Fernández J, Martín-Marcos P, Dosil M. 2011.. Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. . Nucleic Acids Res. 39:(18):810521
    [Crossref] [Google Scholar]
  64. 64.
    Chen J, Zhang L, Ye K. 2020.. Functional regions in the 5′ external transcribed spacer of yeast pre-rRNA. . RNA 26:(7):86677
    [Crossref] [Google Scholar]
  65. 65.
    Chaker-Margot M, Hunziker M, Barandun J, Dill BD, Klinge S. 2015.. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. . Nat. Struct. Mol. Biol. 22:(11):92023
    [Crossref] [Google Scholar]
  66. 66.
    Zhang L, Wu C, Cai G, Chen S, Ye K. 2016.. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. . Genes Dev. 30:(6):71832
    [Crossref] [Google Scholar]
  67. 67.
    Hunziker M, Barandun J, Buzovetsky O, Steckler C, Molina H, Klinge S. 2019.. Conformational switches control early maturation of the eukaryotic small ribosomal subunit. . eLife 8::213
    [Crossref] [Google Scholar]
  68. 68.
    Tomecki R, Labno A, Drazkowska K, Cysewski D, Dziembowski A. 2015.. hUTP24 is essential for processing of the human rRNA precursor at site A1, but not at site A0. . RNA Biol. 12:(9):101029
    [Crossref] [Google Scholar]
  69. 69.
    Wells GR, Weichmann F, Colvin D, Sloan KE, Kudla G, et al. 2016.. The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. . Nucleic Acids Res. 44:(11):5399409
    [Crossref] [Google Scholar]
  70. 70.
    Lau B, Cheng J, Flemming D, Venuta GL, Berninghausen O, et al. 2021.. Structure of the maturing 90S pre-ribosome in association with the RNA exosome. . Mol. Cell 81:(2):293303.e4
    [Crossref] [Google Scholar]
  71. 71.
    Thoms M, Thomson E, Bassler J, Gnädig M, Griesel S, Hurt E. 2015.. The exosome is recruited to RNA substrates through specific adaptor proteins. . Cell 162:(5):102938
    [Crossref] [Google Scholar]
  72. 72.
    Vanden Broeck A, Klinge S. 2022.. An emerging mechanism for the maturation of the small subunit processome. . Curr. Opin. Struct. Biol. 73::102331
    [Crossref] [Google Scholar]
  73. 73.
    Roychowdhury A, Joret C, Bourgeois G, Heurgué-Hamard V, Lafontaine DLJ, Graille M. 2019.. The DEAH-box RNA helicase Dhr1 contains a remarkable carboxyl terminal domain essential for small ribosomal subunit biogenesis. . Nucleic Acids Res. 47:(14):754863
    [Crossref] [Google Scholar]
  74. 74.
    Boneberg FM, Brandmann T, Kobel L, van den Heuvel J, Bargsten K, et al. 2019.. Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis. . RNA 25:(6):685701
    [Crossref] [Google Scholar]
  75. 75.
    Sardana R, Liu X, Granneman S, Zhu J, Gill M, et al. 2015.. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. . PLOS Biol. 13:(2):e1002083
    [Crossref] [Google Scholar]
  76. 76.
    Choudhury P, Hackert P, Memet I, Sloan KE, Bohnsack MT. 2018.. The human RNA helicase DHX37 is required for release of the U3 snoRNP from pre-ribosomal particles. . RNA Biol. 16:(1):5468
    [Crossref] [Google Scholar]
  77. 77.
    Cheng J, Venuta GL, Lau B, Berninghausen O, Beckmann R, Hurt E. 2022.. In vitro structural maturation of an early stage pre-40S particle coupled with U3 snoRNA release and central pseudoknot formation. . Nucleic Acids Res. 50:(20):1191623
    [Crossref] [Google Scholar]
  78. 78.
    Black JJ, Sardana R, Elmir EW, Johnson AW. 2020.. Bud23 promotes the final disassembly of the small subunit processome in Saccharomyces cerevisiae. . PLOS Genet. 16:(12):e1009215
    [Crossref] [Google Scholar]
  79. 79.
    Ameismeier M, Cheng J, Berninghausen O, Beckmann R. 2018.. Visualizing late states of human 40S ribosomal subunit maturation. . Nature 558:(7709):24953
    [Crossref] [Google Scholar]
  80. 80.
    Ameismeier M, Zemp I, van den Heuvel J, Thoms M, Berninghausen O, et al. 2020.. Structural basis for the final steps of human 40S ribosome maturation. . Nature 587:(7835):68387
    [Crossref] [Google Scholar]
  81. 81.
    Plassart L, Shayan R, Montellese C, Rinaldi D, Larburu N, et al. 2021.. The final step of 40S ribosomal subunit maturation is controlled by a dual key lock. . eLife 10::e61254
    [Crossref] [Google Scholar]
  82. 82.
    Cheng J, Lau B, Thoms M, Ameismeier M, Berninghausen O, et al. 2022.. The nucleoplasmic phase of pre-40S formation prior to nuclear export. . Nucleic Acids Res. 50:(20):1192437
    [Crossref] [Google Scholar]
  83. 83.
    Mitterer V, Shayan R, Ferreira-Cerca S, Murat G, Enne T, et al. 2019.. Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism. . Nat. Commun. 10:(1):2754
    [Crossref] [Google Scholar]
  84. 84.
    Chen W, Xie Z, Yang F, Ye K. 2017.. Stepwise assembly of the earliest precursors of large ribosomal subunits in yeast. . Nucleic Acids Res. 45:(11):683747
    [Crossref] [Google Scholar]
  85. 85.
    Chaker-Margot M, Klinge S. 2019.. Assembly and early maturation of large subunit precursors. . RNA 25:(4):46571
    [Crossref] [Google Scholar]
  86. 86.
    Sanghai ZA, Piwowarczyk R, Vanden Broeck A, Klinge S. 2023.. A co-transcriptional ribosome assembly checkpoint controls nascent large ribosomal subunit maturation. . Nat. Struct. Mol. Biol. 30::59499
    [Crossref] [Google Scholar]
  87. 87.
    Joret C, Capeyrou R, Belhabich-Baumas K, Plisson-Chastang C, Ghandour R, et al. 2018.. The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. . PLOS Genet. 14:(8):e1007597
    [Crossref] [Google Scholar]
  88. 88.
    Bhutada P, Favre S, Jaafar M, Hafner J, Liesinger L, et al. 2022.. Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. . Nucleic Acids Res. 50:(17):1005377
    [Crossref] [Google Scholar]
  89. 89.
    Ismail S, Flemming D, Thoms M, Gomes-Filho JV, Randau L, et al. 2022.. Emergence of the primordial pre-60S from the 90S pre-ribosome. . Cell Rep. 39:(1):110640
    [Crossref] [Google Scholar]
  90. 90.
    Bohnsack KE, Henras AK, Nielsen H, Bohnsack MT. 2023.. Making ends meet: a universal driver of large ribosomal subunit biogenesis. . Trends Biochem. Sci. 48:(3):21315
    [Crossref] [Google Scholar]
  91. 91.
    Aquino GRR, Hackert P, Krogh N, Pan K-T, Jaafar M, et al. 2021.. The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly. . Nat. Commun. 12:(1):6152
    [Crossref] [Google Scholar]
  92. 92.
    Jaafar M, Contreras J, Dominique C, Martín-Villanueva S, Capeyrou R, et al. 2021.. Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast. . Nat. Commun. 12:(1):6153
    [Crossref] [Google Scholar]
  93. 93.
    Khreiss A, Capeyrou R, Lebaron S, Albert B, Bohnsack KE, et al. 2023.. The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. . Nucleic Acids Res. 51:(2):74464
    [Crossref] [Google Scholar]
  94. 94.
    Sanghai ZA, Miller L, Molloy KR, Barandun J, Hunziker M, et al. 2018.. Modular assembly of the nucleolar pre-60S ribosomal subunit. . Nature 556:(7699):12629
    [Crossref] [Google Scholar]
  95. 95.
    Kater L, Thoms M, Barrio-Garcia C, Cheng J, Ismail S, et al. 2017.. Visualizing the assembly pathway of nucleolar pre-60S ribosomes. . Cell 171:(7):1599610.e14
    [Crossref] [Google Scholar]
  96. 96.
    Zhou D, Zhu X, Zheng S, Tan D, Dong M-Q, Ye K. 2018.. Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. . Protein Cell 10::12030
    [Crossref] [Google Scholar]
  97. 97.
    Liang X, Zuo M-Q, Zhang Y, Li N, Ma C, et al. 2020.. Structural snapshots of human pre-60S ribosomal particles before and after nuclear export. . Nat. Commun. 11:(1):3542
    [Crossref] [Google Scholar]
  98. 98.
    Kater L, Mitterer V, Thoms M, Cheng J, Berninghausen O, et al. 2020.. Construction of the central protuberance and L1 stalk during 60S subunit biogenesis. . Mol. Cell 79:(4):61528.e5
    [Crossref] [Google Scholar]
  99. 99.
    Cruz VE, Sekulski K, Peddada N, Sailer C, Balasubramanian S, et al. 2022.. Sequence-specific remodeling of a topologically complex RNP substrate by Spb4. . Nat. Struct. Mol. Biol. 29:(12):122838
    [Crossref] [Google Scholar]
  100. 100.
    Sekulski K, Cruz VE, Weirich CS, Erzberger JP. 2023.. rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly. . Nat. Commun. 14:(1):1207
    [Crossref] [Google Scholar]
  101. 101.
    Yelland JN, Bravo JPK, Black JJ, Taylor DW, Johnson AW. 2023.. A single 2′-O-methylation of ribosomal RNA gates assembly of a functional ribosome. . Nat. Struct. Mol. Biol. 30:(1):9198
    [Crossref] [Google Scholar]
  102. 102.
    Prattes M, Grishkovskaya I, Hodirnau V-V, Hetzmannseder C, Zisser G, et al. 2022.. Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1. . Nat. Struct. Mol. Biol. 29:(9):94253
    [Crossref] [Google Scholar]
  103. 103.
    Li Z, Chen S, Zhao L, Huang G, Xu H, et al. 2023.. Nuclear export of pre-60S particles through the nuclear pore complex. . Nature 618:(7964):41118
    [Crossref] [Google Scholar]
  104. 104.
    Lau B, Huang Z, Kellner N, Niu S, Berninghausen O, et al. 2023.. Mechanism of 5S RNP recruitment and helicase-surveilled rRNA maturation during pre-60S biogenesis. . EMBO Rep. 24::e56910
    [Crossref] [Google Scholar]
  105. 105.
    Mitterer V, Thoms M, Buschauer R, Berninghausen O, Hurt E, Beckmann R. 2023.. Concurrent remodelling of nucleolar 60S subunit precursors by the Rea1 ATPase and Spb4 RNA helicase. . eLife 12::e84877
    [Crossref] [Google Scholar]
  106. 106.
    Vanden Broeck A, Klinge S. 2023.. Principles of human pre-60S biogenesis. . Science 381:(6653):eadh3892
    [Crossref] [Google Scholar]
  107. 107.
    Pratte D, Singh U, Murat G, Kressler D. 2013.. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. . PLOS ONE 8:(12):e82741
    [Crossref] [Google Scholar]
  108. 108.
    Lo Y-H, Sobhany M, Hsu AL, Ford BL, Krahn JM, et al. 2019.. Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7. . Nat. Commun. 10:(1):513
    [Crossref] [Google Scholar]
  109. 109.
    Kocaman S, Lo Y-H, Krahn JM, Sobhany M, Dandey VP, et al. 2022.. Communication network within the essential AAA-ATPase Rix7 drives ribosome assembly. . PNAS Nexus 1:(4):pgac118
    [Crossref] [Google Scholar]
  110. 110.
    Brüning L, Hackert P, Martin R, Gallesio JD, Aquino GRR, et al. 2018.. RNA helicases mediate structural transitions and compositional changes in pre-ribosomal complexes. . Nat. Commun. 9:(1):5383
    [Crossref] [Google Scholar]
  111. 111.
    Gerhardy S, Oborská-Oplová M, Gillet L, Börner R, van Nues R, et al. 2021.. Puf6 primes 60S pre-ribosome nuclear export at low temperature. . Nat. Commun. 12:(1):4696
    [Crossref] [Google Scholar]
  112. 112.
    Chen Z, Suzuki H, Kobayashi Y, Wang AC, DiMaio F, et al. 2018.. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis. . Cell 175:(3):82234.e18
    [Crossref] [Google Scholar]
  113. 113.
    Sosnowski P, Urnavicius L, Boland A, Fagiewicz R, Busselez J, et al. 2018.. The cryoEM structure of the Saccharomyces cerevisiae ribosome maturation factor Rea1. . eLife 7::e39163
    [Crossref] [Google Scholar]
  114. 114.
    Gordon J, Chapus FL, Viverette EG, Williams JG, Deterding LJ, et al. 2022.. Cryo-EM reveals the architecture of the PELP1-WDR18 molecular scaffold. . Nat. Commun. 13:(1):6783
    [Crossref] [Google Scholar]
  115. 115.
    Micic J, Li Y, Wu S, Wilson D, Tutuncuoglu B, et al. 2020.. Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. . Nat. Commun. 11:(1):3751
    [Crossref] [Google Scholar]
  116. 116.
    Mickolajczyk KJ, Olinares PDB, Niu Y, Chen N, Warrington SE, et al. 2020.. Long-range intramolecular allostery and regulation in the dynein-like AAA protein Mdn1. . PNAS 117:(31):1845969
    [Crossref] [Google Scholar]
  117. 117.
    Thoms M, Mitterer V, Kater L, Falquet L, Beckmann R, et al. 2018.. Suppressor mutations in Rpf2–Rrs1 or Rpl5 bypass the Cgr1 function for pre-ribosomal 5S RNP-rotation. . Nat. Commun. 9:(1):4094
    [Crossref] [Google Scholar]
  118. 118.
    Moy TI, Boettner D, Rhodes JC, Silver PA, Askew DS. 2002.. Identification of a role for Saccharomyces cerevisiae Cgr1p in pre-rRNA processing and 60S ribosome subunit synthesis. . Microbiology 148:(4):108190
    [Crossref] [Google Scholar]
  119. 119.
    Cepeda LPP, Bagatelli FFM, Santos RM, Santos MDM, Nogueira FCS, Oliveira CC. 2019.. The ribosome assembly factor Nop53 controls association of the RNA exosome with pre-60S particles in yeast. . J. Biol. Chem. 294:(50):1936580
    [Crossref] [Google Scholar]
  120. 120.
    Galani K, Nissan TA, Petfalski E, Tollervey D, Hurt E. 2004.. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. . J. Biol. Chem. 279:(53):5541118
    [Crossref] [Google Scholar]
  121. 121.
    Gordon J, Pillon MC, Stanley RE. 2019.. Nol9 is a spatial regulator for the human ITS2 pre-rRNA endonuclease-kinase complex. . J. Mol. Biol. 431:(19):377186
    [Crossref] [Google Scholar]
  122. 122.
    Fromm L, Falk S, Flemming D, Schuller JM, Thoms M, et al. 2017.. Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome. . Nat. Commun. 8:(1):1787
    [Crossref] [Google Scholar]
  123. 123.
    Schuller JM, Falk S, Fromm L, Hurt E, Conti E. 2018.. Structure of the nuclear exosome captured on a maturing preribosome. . Science 360:(6385):21922
    [Crossref] [Google Scholar]
  124. 124.
    Zhou Y, Musalgaonkar S, Johnson AW, Taylor DW. 2019.. Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome. . Nat. Commun. 10:(1):958
    [Crossref] [Google Scholar]
  125. 125.
    Kargas V, Castro-Hartmann P, Escudero-Urquijo N, Dent K, Hilcenko C, et al. 2019.. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. . eLife 8::213
    [Crossref] [Google Scholar]
  126. 126.
    Musalgaonkar S, Black JJ, Johnson AW. 2019.. The L1 stalk is required for efficient export of nascent large ribosomal subunits in yeast. . RNA 25:(11):154960
    [Crossref] [Google Scholar]
  127. 127.
    Sarkar A, Thoms M, Barrio-Garcia C, Thomson E, Flemming D, et al. 2017.. Preribosomes escaping from the nucleus are caught during translation by cytoplasmic quality control. . Nat. Struct. Mol. Biol. 24:(12):110715
    [Crossref] [Google Scholar]
  128. 128.
    Biedka S, Micic J, Wilson D, Brown H, Diorio-Toth L, Woolford JL. 2018.. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes. . J. Cell Biol. 248::jcb.201711037
    [Google Scholar]
  129. 129.
    Prattes M, Grishkovskaya I, Hodirnau V-V, Rössler I, Klein I, et al. 2021.. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. . Nat. Commun. 12:(1):3483
    [Crossref] [Google Scholar]
  130. 130.
    Ma C, Wu D, Chen Q, Gao N. 2022.. Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition. . Nat. Commun. 13:(1):6765
    [Crossref] [Google Scholar]
  131. 131.
    Nicolas E, Parisot P, Pinto-Monteiro C, de Walque R, Vleeschouwer CD, Lafontaine DLJ. 2016.. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. . Nat. Commun. 7::11390
    [Crossref] [Google Scholar]
  132. 132.
    Yao R-W, Xu G, Wang Y, Shan L, Luan P-F, et al. 2019.. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. . Mol. Cell 76:(5):76783
    [Crossref] [Google Scholar]
  133. 133.
    Shan L, Xu G, Yao R-W, Luan P-F, Huang Y, et al. 2023.. Nucleolar URB1 ensures 3′ ETS rRNA removal to prevent exosome surveillance. . Nature 615:(7952):52634
    [Crossref] [Google Scholar]
  134. 134.
    Pelava A, Schneider C, Watkins NJ. 2016.. The importance of ribosome production, and the 5S RNP–MDM2 pathway, in health and disease. . Biochem. Soc. Trans. 44:(4):108690
    [Crossref] [Google Scholar]
  135. 135.
    Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, et al. 2018.. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. . Cell 173:(1):90103.e19
    [Crossref] [Google Scholar]
  136. 136.
    Mills EW, Green R. 2017.. Ribosomopathies: There's strength in numbers. . Science 358:(6363):eaan2755
    [Crossref] [Google Scholar]
  137. 137.
    Farley-Barnes KI, Ogawa LM, Baserga SJ. 2019.. Ribosomopathies: old concepts, new controversies. . Trends Genet. 35:(10):75467
    [Crossref] [Google Scholar]
  138. 138.
    Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, et al. 2019.. The genetic landscape of Diamond-Blackfan anemia. . Am. J. Hum. Genet. 103:(6):93047. Correction . 2019.. Am. J. Hum. Genet. 104:(2):356
    [Google Scholar]
  139. 139.
    Lezzerini M, Penzo M, O'Donohue M-F, dos Santos Vieira CM, Saby M, et al. 2020.. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism. . Nucleic Acids Res. 48:(2):77087
    [Crossref] [Google Scholar]
  140. 140.
    Lebaron S, O'Donohue M, Smith SC, Engleman KL, Juusola J, et al. 2022.. Functionally impaired RPL8 variants associated with Diamond-Blackfan anemia and a Diamond-Blackfan anemia-like phenotype. . Hum. Mutat. 43:(3):389402
    [Crossref] [Google Scholar]
  141. 141.
    O'Donohue M-F, Costa LD, Lezzerini M, Unal S, Joret C, et al. 2022.. HEATR3 variants impair nuclear import of uL18 (RPL5) and drive Diamond-Blackfan anemia. . Blood 139:(21):311126
    [Crossref] [Google Scholar]
  142. 142.
    Hannan KM, Soo P, Wong MS, Lee JK, Hein N, et al. 2022.. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway. . Cell Rep. 41:(5):111571
    [Crossref] [Google Scholar]
  143. 143.
    Robertson N, Shchepachev V, Wright D, Turowski TW, Spanos C, et al. 2022.. A disease-linked lncRNA mutation in RNase MRP inhibits ribosome synthesis. . Nat. Commun. 13:(1):649
    [Crossref] [Google Scholar]
  144. 144.
    Nieto B, Gaspar SG, Moriggi G, Pestov DG, Bustelo XR, Dosil M. 2020.. Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis. . Nat. Commun. 11:(1):156
    [Crossref] [Google Scholar]
  145. 145.
    Nieto B, Gaspar SG, Sapio RT, Clavaín L, Bustelo XR, et al. 2021.. Efficient fractionation and analysis of ribosome assembly intermediates in human cells. . RNA Biol. 18:(Suppl. 1):18297
    [Crossref] [Google Scholar]
  146. 146.
    Pellegrino S, Dent KC, Spikes T, Warren AJ. 2023.. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. . Nucleic Acids Res. 51:(8):404354
    [Crossref] [Google Scholar]
  147. 147.
    Faille A, Dent KC, Pellegrino S, Jaako P, Warren AJ. 2023.. The chemical landscape of the human ribosome at 1.67 Å resolution. . bioRxiv 2023.02.28.530191. https://doi.org/10.1101/2023.02.28.530191
  148. 148.
    Holm M, Natchiar SK, Rundlet EJ, Myasnikov AG, Watson ZL, et al. 2023. mRNA decoding in human is kinetically and structurally distinct from bacteria. . Nature 617:(7959):2007
    [Crossref] [Google Scholar]
  149. 149.
    Rodgers ML, Woodson SA. 2021.. A roadmap for rRNA folding and assembly during transcription. . Trends Biochem. Sci. 46:(11):889901
    [Crossref] [Google Scholar]
  150. 150.
    Gor K, Duss O. 2023.. Emerging quantitative biochemical, structural, and biophysical methods for studying ribosome and protein–RNA complex assembly. . Biomolecules 13:(5):866
    [Crossref] [Google Scholar]
  151. 151.
    Han X-R, Sasaki N, Jackson SC, Wang P, Li Z, et al. 2020.. CRL4DCAF1/VprBP E3 ubiquitin ligase controls ribosome biogenesis, cell proliferation, and development. . Sci. Adv. 6:(51):eabd6078
    [Crossref] [Google Scholar]
  152. 152.
    Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, et al. 2022.. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. . Nucleic Acids Res. 50:(5):287288
    [Crossref] [Google Scholar]
  153. 153.
    Erdmann PS, Hou Z, Klumpe S, Khavnekar S, Beck F, et al. 2021.. In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. . Nat. Commun. 12:(1):536469
    [Crossref] [Google Scholar]
  154. 154.
    Lucas BA, Zhang K, Loerch S, Grigorieff N. 2022.. In situ single particle classification reveals distinct 60S maturation intermediates in cells. . eLife 11::e79272
    [Crossref] [Google Scholar]
  155. 155.
    Xing H, Taniguchi R, Khusainov I, Kreysing JP, Welsch S, et al. 2023.. Translation dynamics in human cells visualized at high resolution reveal cancer drug action. . Science 381:(6653):7075
    [Crossref] [Google Scholar]
  156. 156.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030222-113611
Loading
/content/journals/10.1146/annurev-biochem-030222-113611
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error