1932

Abstract

DNA replication and transcription occur in all living cells across all domains of life. Both essential processes occur simultaneously on the same template, leading to conflicts between the macromolecular machines that perform these functions. Numerous studies over the past few decades demonstrate that this is an inevitable problem in both prokaryotic and eukaryotic cells. We have learned that conflicts lead to replication fork reversal, breaks in the DNA, R-loop formation, topological stress, and mutagenesis and can ultimately impact evolution. Recent studies have also provided insight into the various mechanisms that mitigate, resolve, and allow tolerance of conflicts and how conflicts result in pathological consequences across divergent species. In this review, we summarize our current knowledge regarding the outcomes of the encounters between replication and transcription machineries and explore how these clashes are dealt with across species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-030222-115809
2024-08-02
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-030222-115809.html?itemId=/content/journals/10.1146/annurev-biochem-030222-115809&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Merrikh H, Machón C, Grainger WH, Grossman AD, Soultanas P. 2011.. Co-directional replication–transcription conflicts lead to replication restart. . Nature 470:(7335):55457
    [Crossref] [Google Scholar]
  2. 2.
    Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. 2011.. Linking RNA polymerase backtracking to genome instability in E. coli. . Cell 146:(4):53343
    [Crossref] [Google Scholar]
  3. 3.
    French S. 1992.. Consequences of replication fork movement through transcription units in vivo. . Science 258:(5086):136266
    [Crossref] [Google Scholar]
  4. 4.
    Liu B, Alberts BM. 1995.. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. . Science 267:(5201):113137
    [Crossref] [Google Scholar]
  5. 5.
    Deshpande AM, Newlon CS. 1996.. DNA replication fork pause sites dependent on transcription. . Science 272:(5264):103033
    [Crossref] [Google Scholar]
  6. 6.
    Prado F, Aguilera A. 2005.. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. . EMBO J. 24:(6):126776
    [Crossref] [Google Scholar]
  7. 7.
    Mirkin EV, Mirkin SM. 2005.. Mechanisms of transcription-replication collisions in bacteria. . Mol. Cell. Biol. 25:(3):88895
    [Crossref] [Google Scholar]
  8. 8.
    Pomerantz RT, O'Donnell M. 2008.. The replisome uses mRNA as a primer after colliding with RNA polymerase. . Nature 456:(7223):76266
    [Crossref] [Google Scholar]
  9. 9.
    Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H, et al. 2017.. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. . Cell 170:(4):78799.e18
    [Crossref] [Google Scholar]
  10. 10.
    De Septenville AL, Duigou S, Boubakri H, Michel B. 2012.. Replication fork reversal after replication–transcription collision. . PLOS Genet. 8:(4):e1002622
    [Crossref] [Google Scholar]
  11. 11.
    Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. 2017.. Transcription leads to pervasive replisome instability in bacteria. . eLife 6::e19848
    [Crossref] [Google Scholar]
  12. 12.
    Pomerantz RT, O'Donnell M. 2010.. Direct restart of a replication fork stalled by a head-on RNA polymerase. . Science 327:(5965):59092
    [Crossref] [Google Scholar]
  13. 13.
    Million-Weaver S, Samadpour AN, Merrikh H. 2015.. Replication restart after replication-transcription conflicts requires RecA in Bacillus subtilis. . J. Bacteriol. 197:(14):237482
    [Crossref] [Google Scholar]
  14. 14.
    Chappidi N, Nascakova Z, Boleslavska B, Zellweger R, Isik E, et al. 2020.. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. . Mol. Cell 77:(3):52841.e8
    [Crossref] [Google Scholar]
  15. 15.
    Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. 2017.. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. . Cell 170:(4):77486.e19
    [Crossref] [Google Scholar]
  16. 16.
    Lang KS, Merrikh H. 2021.. Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts. . Cell Rep. 34:(9):108797
    [Crossref] [Google Scholar]
  17. 17.
    Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 2013.. Accelerated gene evolution via replication–transcription conflicts. . Nature 495:(7442):51215
    [Crossref] [Google Scholar]
  18. 18.
    Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. 2016.. The nature of mutations induced by replication–transcription collisions. . Nature 535:(7610):17881
    [Crossref] [Google Scholar]
  19. 19.
    Helmrich A, Ballarino M, Nudler E, Tora L. 2013.. Transcription-replication encounters, consequences and genomic instability. . Nat. Struct. Mol. Biol. 20:(4):41218
    [Crossref] [Google Scholar]
  20. 20.
    Wang J, Rojas P, Mao J, Mustè Sadurnì M, Garnier O, et al. 2021.. Persistence of RNA transcription during DNA replication delays duplication of transcription start sites until G2/M. . Cell Rep. 34:(7):108759
    [Crossref] [Google Scholar]
  21. 21.
    St Germain CP, Zhao H, Sinha V, Sanz LA, Chédin F, Barlow JH. 2022.. Genomic patterns of transcription–replication interactions in mouse primary B cells. . Nucleic Acids Res. 50:(4):205173
    [Crossref] [Google Scholar]
  22. 22.
    Martin MM, Ryan M, Kim R, Zakas AL, Fu H, et al. 2011.. Genome-wide depletion of replication initiation events in highly transcribed regions. . Genome Res. 21:(11):182232
    [Crossref] [Google Scholar]
  23. 23.
    Helmrich A, Ballarino M, Tora L. 2011.. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. . Mol. Cell 44:(6):96677
    [Crossref] [Google Scholar]
  24. 24.
    Saponaro M. 2022.. Transcription–replication coordination. . Life 12:(1):108
    [Crossref] [Google Scholar]
  25. 25.
    Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. 2009.. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. . Mol. Cell 34:(6):72234
    [Crossref] [Google Scholar]
  26. 26.
    Chen Y-H, Keegan S, Kahli M, Tonzi P, Fenyö D, et al. 2019.. Transcription shapes DNA replication initiation and termination in human cells. . Nat. Struct. Mol. Biol. 26:(1):6777
    [Crossref] [Google Scholar]
  27. 27.
    Bhowmick R, Mehta KPM, Lerdrup M, Cortez D. 2023.. Integrator facilitates RNAPII removal to prevent transcription-replication collisions and genome instability. . Mol. Cell 83:(13):235766.e8
    [Crossref] [Google Scholar]
  28. 28.
    Bedinger P, Hochstrasser M, Jongeneel CV, Alberts BM. 1983.. Properties of the T4 bacteriophage DNA replication apparatus: The T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. . Cell 34:(1):11523
    [Crossref] [Google Scholar]
  29. 29.
    Wu HY, Shyy SH, Wang JC, Liu LF. 1988.. Transcription generates positively and negatively supercoiled domains in the template. . Cell 53:(3):43340
    [Crossref] [Google Scholar]
  30. 30.
    Hiasa H, Marians KJ. 1996.. Two distinct modes of strand unlinking during θ-type DNA replication. . J. Biol. Chem. 271:(35):2152935
    [Crossref] [Google Scholar]
  31. 31.
    García-Muse T, Aguilera A. 2016.. Transcription–replication conflicts: how they occur and how they are resolved. . Nat. Rev. Mol. Cell Biol. 17:(9):55363
    [Crossref] [Google Scholar]
  32. 32.
    Brewer BJ. 1988.. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. . Cell 53:(5):67986
    [Crossref] [Google Scholar]
  33. 33.
    Polard P, Marsin S, McGovern S, Velten M, Wigley DB, et al. 2002.. Restart of DNA replication in Gram-positive bacteria: functional characterisation of the Bacillus subtilis PriA initiator. . Nucleic Acids Res. 30:(7):1593605
    [Crossref] [Google Scholar]
  34. 34.
    Sandler SJ, Marians KJ. 2000.. Role of PriA in replication fork reactivation in Escherichia coli. . J. Bacteriol. 182:(1):913
    [Crossref] [Google Scholar]
  35. 35.
    Sandler SJ, Marians KJ, Zavitz KH, Coutu J, Parent MA, Clark AJ. 1999.. dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. . Mol. Microbiol. 34:(1):91101
    [Crossref] [Google Scholar]
  36. 36.
    Seigneur M, Bidnenko V, Ehrlich SD, Michel B. 1998.. RuvAB acts at arrested replication forks. . Cell 95:(3):41930
    [Crossref] [Google Scholar]
  37. 37.
    McGlynn P, Lloyd RG. 2000.. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. . Cell 101:(1):3545
    [Crossref] [Google Scholar]
  38. 38.
    Neelsen KJ, Lopes M. 2015.. Replication fork reversal in eukaryotes: from dead end to dynamic response. . Nat. Rev. Mol. Cell Biol. 16:(4):20720
    [Crossref] [Google Scholar]
  39. 39.
    Bhowmick R, Lerdrup M, Gadi SA, Rossetti GG, Singh MI, et al. 2022.. RAD51 protects human cells from transcription-replication conflicts. . Mol. Cell 82:(18):336681.e9
    [Crossref] [Google Scholar]
  40. 40.
    Merrikh CN, Brewer BJ, Merrikh H. 2015.. The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units. . PLOS Genet. 11:(6):e1005289
    [Crossref] [Google Scholar]
  41. 41.
    Stoy H, Zwicky K, Kuster D, Lang KS, Krietsch J, et al. 2023.. Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. . Nat. Struct. Mol. Biol. 30:(3):34859
    [Crossref] [Google Scholar]
  42. 42.
    Heller RC, Marians KJ. 2006.. Replisome assembly and the direct restart of stalled replication forks. . Nat. Rev. Mol. Cell Biol. 7:(12):93243
    [Crossref] [Google Scholar]
  43. 43.
    Mahdi AA, Buckman C, Harris L, Lloyd RG. 2006.. Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair. . Genes Dev. 20:(15):213547
    [Crossref] [Google Scholar]
  44. 44.
    Dimude JU, Midgley-Smith SL, Rudolph CJ. 2018.. Replication-transcription conflicts trigger extensive DNA degradation in Escherichia coli cells lacking RecBCD. . DNA Repair 70::3748
    [Crossref] [Google Scholar]
  45. 45.
    Xu L, Marians KJ. 2003.. PriA mediates DNA replication pathway choice at recombination intermediates. . Mol. Cell 11:(3):81726
    [Crossref] [Google Scholar]
  46. 46.
    Duckworth AT, Ducos PL, McMillan SD, Satyshur KA, Blumenthal KH, et al. 2023.. Replication fork binding triggers structural changes in the PriA helicase that govern DNA replication restart in E. coli. . Nat. Commun. 14::2725
    [Crossref] [Google Scholar]
  47. 47.
    Gottipati P, Cassel TN, Savolainen L, Helleday T. 2008.. Transcription-associated recombination is dependent on replication in mammalian cells. . Mol. Cell. Biol. 28:(1):15464
    [Crossref] [Google Scholar]
  48. 48.
    Wellinger RE, Prado F, Aguilera A. 2006.. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. . Mol. Cell. Biol. 26:(8):332734
    [Crossref] [Google Scholar]
  49. 49.
    Nickoloff JA, Reynolds RJ. 1990.. Transcription stimulates homologous recombination in mammalian cells. . Mol. Cell. Biol. 10:(9):483745
    [Google Scholar]
  50. 50.
    Takeuchi Y, Horiuchi T, Kobayashi T. 2003.. Transcription-dependent recombination and the role of fork collision in yeast rDNA. . Genes Dev. 17:(12):1497506
    [Crossref] [Google Scholar]
  51. 51.
    Nickoloff JA. 1992.. Transcription enhances intrachromosomal homologous recombination in mammalian cells. . Mol. Cell. Biol. 12:(12):531118
    [Google Scholar]
  52. 52.
    Patel PS, Algouneh A, Krishnan R, Reynolds JJ, Nixon KCJ, et al. 2023.. Excessive transcription-replication conflicts are a vulnerability of BRCA1-mutant cancers. . Nucleic Acids Res. 51:(9):434162
    [Crossref] [Google Scholar]
  53. 53.
    Shao X, Joergensen AM, Howlett NG, Lisby M, Oestergaard VH. 2020.. A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts. . Nucleic Acids Res. 48:(10):546784
    [Crossref] [Google Scholar]
  54. 54.
    Lei M, Kawasaki Y, Tye BK. 1996.. Physical interactions among Mcm proteins and effects of Mcm dosage on DNA replication in Saccharomyces cerevisiae. . Mol. Cell. Biol. 16:(9):508190
    [Crossref] [Google Scholar]
  55. 55.
    Donovan S, Harwood J, Drury LS, Diffley JFX. 1997.. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. . PNAS 94:(11):561116
    [Crossref] [Google Scholar]
  56. 56.
    Blow JJ, Ge XQ, Jackson DA. 2011.. How dormant origins promote complete genome replication. . Trends Biochem. Sci. 36:(8):40514
    [Crossref] [Google Scholar]
  57. 57.
    Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, et al. 2006.. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. . J. Cell Biol. 173:(5):67383
    [Crossref] [Google Scholar]
  58. 58.
    Ge XQ, Jackson DA, Blow JJ. 2007.. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. . Genes Dev. 21:(24):333141
    [Crossref] [Google Scholar]
  59. 59.
    Ibarra A, Schwob E, Méndez J. 2008.. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. . PNAS 105:(26):895661
    [Crossref] [Google Scholar]
  60. 60.
    Felipe-Abrio I, Lafuente-Barquero J, García-Rubio ML, Aguilera A. 2015.. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. . EMBO J. 34:(2):23650
    [Crossref] [Google Scholar]
  61. 61.
    Brüning J-G, Marians KJ. 2021.. Bypass of complex co-directional replication-transcription collisions by replisome skipping. . Nucleic Acids Res. 49:(17):987085
    [Crossref] [Google Scholar]
  62. 62.
    Thomas M, White RL, Davis RW. 1976.. Hybridization of RNA to double-stranded DNA: formation of R-loops. . PNAS 73:(7):229498
    [Crossref] [Google Scholar]
  63. 63.
    Gan W, Guan Z, Liu J, Gui T, Shen K, et al. 2011.. R-loop-mediated genomic instability is caused by impairment of replication fork progression. . Genes Dev. 25:(19):204156
    [Crossref] [Google Scholar]
  64. 64.
    Wahba L, Amon JD, Koshland D, Vuica-Ross M. 2011.. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. . Mol. Cell 44:(6):97888
    [Crossref] [Google Scholar]
  65. 65.
    Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. 2013.. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. . Nat. Commun. 4::2115
    [Crossref] [Google Scholar]
  66. 66.
    Zardoni L, Nardini E, Brambati A, Lucca C, Choudhary R, et al. 2021.. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. . Nucleic Acids Res. 49:(22):1276984
    [Crossref] [Google Scholar]
  67. 67.
    Mirkin EV, Mirkin SM. 2007.. Replication fork stalling at natural impediments. . Microbiol. Mol. Biol. Rev. 71:(1):1335
    [Crossref] [Google Scholar]
  68. 68.
    Brüning J-G, Marians KJ. 2020.. Replisome bypass of transcription complexes and R-loops. . Nucleic Acids Res. 48:(18):1035367
    [Crossref] [Google Scholar]
  69. 69.
    Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH, et al. 2020.. Replisome bypass of a protein-based R-loop block by Pif1. . PNAS 117:(48):3035461
    [Crossref] [Google Scholar]
  70. 70.
    García-Rubio M, Aguilera P, Lafuente-Barquero J, Ruiz JF, Simon M-N, et al. 2018.. Yra1-bound RNA–DNA hybrids cause orientation-independent transcription–replication collisions and telomere instability. . Genes Dev. 32:(13–14):96577
    [Crossref] [Google Scholar]
  71. 71.
    Kumar C, Batra S, Griffith JD, Remus D. 2021.. The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions. . eLife 10::e72286
    [Crossref] [Google Scholar]
  72. 72.
    Drolet M, Bi X, Liu LF. 1994.. Hypernegative supercoiling of the DNA template during transcription elongation in vitro. . J. Biol. Chem. 269:(3):206874
    [Crossref] [Google Scholar]
  73. 73.
    Massé E, Drolet M. 1999.. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. . J. Biol. Chem. 274:(23):1665964
    [Crossref] [Google Scholar]
  74. 74.
    Bermejo R, Doksani Y, Capra T, Katou Y-M, Tanaka H, et al. 2007.. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. . Genes Dev. 21:(15):192136
    [Crossref] [Google Scholar]
  75. 75.
    Tuduri S, Crabbé L, Conti C, Tourrière H, Holtgreve-Grez H, et al. 2009.. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. . Nat. Cell Biol. 11:(11):131524
    [Crossref] [Google Scholar]
  76. 76.
    El Hage A, French SL, Beyer AL, Tollervey D. 2010.. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. . Genes Dev. 24:(14):154658
    [Crossref] [Google Scholar]
  77. 77.
    Promonet A, Padioleau I, Liu Y, Sanz L, Biernacka A, et al. 2020.. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. . Nat. Commun. 11:(1):3940
    [Crossref] [Google Scholar]
  78. 78.
    Kim N, Jinks-Robertson S. 2017.. The Top1 paradox: friend and foe of the eukaryotic genome. . DNA Repair 56::3341
    [Crossref] [Google Scholar]
  79. 79.
    Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R. 1998.. Segregation of transcription and replication sites into higher order domains. . Science 281:(5382):15025
    [Crossref] [Google Scholar]
  80. 80.
    Dimitrova DS. 2011.. DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. . J. Cell Sci. 124:(16):274352
    [Crossref] [Google Scholar]
  81. 81.
    Tsirkas I, Dovrat D, Thangaraj M, Brouwer I, Cohen A, et al. 2022.. Transcription-replication coordination revealed in single live cells. . Nucleic Acids Res. 50:(4):214356
    [Crossref] [Google Scholar]
  82. 82.
    Liu Y, Ai C, Gan T, Wu J, Jiang Y, et al. 2021.. Transcription shapes DNA replication initiation to preserve genome integrity. . Genome Biol. 22:(1):176
    [Crossref] [Google Scholar]
  83. 83.
    Gadaleta MC, Noguchi E. 2017.. Regulation of DNA replication through natural impediments in the eukaryotic genome. . Genes 8:(3):98
    [Crossref] [Google Scholar]
  84. 84.
    Brickner JR, Garzon JL, Cimprich KA. 2022.. Walking a tightrope: the complex balancing act of R-loops in genome stability. . Mol. Cell 82:(12):226797
    [Crossref] [Google Scholar]
  85. 85.
    Bayona-Feliu A, Aguilera A. 2021.. The role of chromatin at transcription-replication conflicts as a genome safeguard. . Biochem. Soc. Trans. 49:(6):272736
    [Crossref] [Google Scholar]
  86. 86.
    Lalonde M, Trauner M, Werner M, Hamperl S. 2021.. Consequences and resolution of transcription–replication conflicts. . Life 11:(7):637
    [Crossref] [Google Scholar]
  87. 87.
    Merrikh H. 2017.. Spatial and temporal control of evolution through replication–transcription conflicts. . Trends Microbiol. 25:(7):51521
    [Crossref] [Google Scholar]
  88. 88.
    Rocha EPC. 2004.. The replication-related organization of bacterial genomes. . Microbiology 150:(6):160927
    [Crossref] [Google Scholar]
  89. 89.
    Rocha EPC, Danchin A. 2003.. Essentiality, not expressiveness, drives gene-strand bias in bacteria. . Nat. Genet. 34:(4):37778
    [Crossref] [Google Scholar]
  90. 90.
    Zheng W-X, Luo C-S, Deng Y-Y, Guo F-B. 2015.. Essentiality drives the orientation bias of bacterial genes in a continuous manner. . Sci. Rep. 5::16431
    [Crossref] [Google Scholar]
  91. 91.
    Rocha EPC. 2002.. Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes?. Trends Microbiol. 10:(9):39395
    [Crossref] [Google Scholar]
  92. 92.
    Merrikh CN, Merrikh H. 2018.. Gene inversion potentiates bacterial evolvability and virulence. . Nat. Commun. 9::4662
    [Crossref] [Google Scholar]
  93. 93.
    Merrikh H, Merrikh C. 2022.. Reply to: Testing the adaptive hypothesis of lagging-strand encoding in bacterial genomes. . Nat. Commun. 13:(1):2627
    [Crossref] [Google Scholar]
  94. 94.
    Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, et al. 2016.. Replication landscape of the human genome. . Nat. Commun. 7::10208
    [Crossref] [Google Scholar]
  95. 95.
    Abdel-Monem M, Arthur HM, Benz I, Hoffmann-Berling H, Reygers U, et al. 1984.. Functions of DNA helicases in the DNA metabolism of Escherichia Coli. . In Proteins Involved in DNA Replication, ed. U Hübscher, S Spadari , pp. 38593. Boston, MA:: Springer US
    [Google Scholar]
  96. 96.
    Lane HED, Denhardt DT. 1975.. The rep mutation: IV. Slower movement of replication forks in Escherichia coli rep strains. . J. Mol. Biol. 97:(1):99112
    [Crossref] [Google Scholar]
  97. 97.
    Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, et al. 2009.. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. . Mol. Cell 36:(4):65466
    [Crossref] [Google Scholar]
  98. 98.
    Boubakri H, de Septenville AL, Viguera E, Michel B. 2010.. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. . EMBO J. 29:(1):14557
    [Crossref] [Google Scholar]
  99. 99.
    Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS, et al. 2019.. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. . Nucleic Acids Res. 47:(10):510013
    [Crossref] [Google Scholar]
  100. 100.
    Whinn KS, Xu Z-Q, Jergic S, Sharma N, Spenkelink LM, et al. 2023.. Single-molecule visualization of stalled replication-fork rescue by the Escherichia coli Rep helicase. . Nucleic Acids Res. 51:(7):330726
    [Crossref] [Google Scholar]
  101. 101.
    Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. 2013.. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. . PLOS ONE 8:(10):e78141
    [Crossref] [Google Scholar]
  102. 102.
    Petit M-A, Ehrlich D. 2002.. Essential bacterial helicases that counteract the toxicity of recombination proteins. . EMBO J. 21:(12):313747
    [Crossref] [Google Scholar]
  103. 103.
    Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, et al. 1998.. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. . Mol. Microbiol. 29:(1):26173
    [Crossref] [Google Scholar]
  104. 104.
    Brüning J-G, Howard JL, McGlynn P. 2014.. Accessory replicative helicases and the replication of protein-bound DNA. . J. Mol. Biol. 426:(24):391728
    [Crossref] [Google Scholar]
  105. 105.
    Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. 2003.. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. . Mol. Cell 12:(6):152536
    [Crossref] [Google Scholar]
  106. 106.
    Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. 2006.. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. . Genes Dev. 20:(22):310416
    [Crossref] [Google Scholar]
  107. 107.
    Osmundson JS, Kumar J, Yeung R, Smith DJ. 2017.. Pif1-family helicases cooperate to suppress widespread replication fork arrest at tRNA genes. . Nat. Struct. Mol. Biol. 24:(2):16270
    [Crossref] [Google Scholar]
  108. 108.
    Tran PLT, Pohl TJ, Chen C-F, Chan A, Pott S, Zakian VA. 2017.. PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. . Nat. Commun. 8::15025
    [Crossref] [Google Scholar]
  109. 109.
    Gómez-González B, García-Rubio M, Bermejo R, Gaillard H, Shirahige K, et al. 2011.. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. . EMBO J. 30:(15):310619
    [Crossref] [Google Scholar]
  110. 110.
    Koc KN, Singh SP, Stodola JL, Burgers PM, Galletto R. 2016.. Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase δ. . Nucleic Acids Res. 44:(8):381119
    [Crossref] [Google Scholar]
  111. 111.
    Boulé J-B, Zakian VA. 2007.. The yeast Pif1p DNA helicase preferentially unwinds RNA–DNA substrates. . Nucleic Acids Res. 35:(17):580918
    [Crossref] [Google Scholar]
  112. 112.
    Snow BE, Mateyak M, Paderova J, Wakeham A, Iorio C, et al. 2007.. Murine Pif1 interacts with telomerase and is dispensable for telomere function in vivo. . Mol. Cell. Biol. 27:(3):101726
    [Crossref] [Google Scholar]
  113. 113.
    Nudler E. 2012.. RNA polymerase backtracking in gene regulation and genome instability. . Cell 149:(7):143845
    [Crossref] [Google Scholar]
  114. 114.
    Kemiha S, Poli J, Lin Y-L, Lengronne A, Pasero P. 2021.. Toxic R-loops: cause or consequence of replication stress?. DNA Repair 107::103199
    [Crossref] [Google Scholar]
  115. 115.
    Toulmé F, Mosrin-Huaman C, Sparkowski J, Das A, Leng M, Rahmouni AR. 2000.. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. . EMBO J. 19:(24):685359
    [Crossref] [Google Scholar]
  116. 116.
    Izban MG, Luse DS. 1992.. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′–5′ direction in the presence of elongation factor SII. . Genes Dev. 6:(7):134256
    [Crossref] [Google Scholar]
  117. 117.
    Putnam CD, Allen-Soltero SR, Martinez SL, Chan JE, Hayes TK, Kolodner RD. 2012.. Bioinformatic identification of genes suppressing genome instability. . PNAS 109:(47):E325159
    [Crossref] [Google Scholar]
  118. 118.
    Zatreanu D, Han Z, Mitter R, Tumini E, Williams H, et al. 2019.. Elongation factor TFIIS prevents transcription stress and R-loop accumulation to maintain genome stability. . Mol. Cell 76:(1):5769.e9
    [Crossref] [Google Scholar]
  119. 119.
    Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, et al. 2014.. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. . Cell 157:(5):103749
    [Crossref] [Google Scholar]
  120. 120.
    Urban V, Dobrovolna J, Hühn D, Fryzelkova J, Bartek J, Janscak P. 2016.. RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells. . J. Cell Biol. 214:(4):40115
    [Crossref] [Google Scholar]
  121. 121.
    Landsverk HB, Sandquist LE, Bay LTE, Steurer B, Campsteijn C, et al. 2020.. WDR82/PNUTS-PP1 prevents transcription-replication conflicts by promoting RNA polymerase II degradation on chromatin. . Cell Rep. 33:(9):108469
    [Crossref] [Google Scholar]
  122. 122.
    Bharati BK, Gowder M, Zheng F, Alzoubi K, Svetlov V, et al. 2022.. Essential role and mechanism of transcription-coupled DNA repair in bacteria. . Nature 604:(7904):15259
    [Crossref] [Google Scholar]
  123. 123.
    Selby CP, Sancar A. 1993.. Molecular mechanism of transcription-repair coupling. . Science 260:(5104):5358
    [Crossref] [Google Scholar]
  124. 124.
    Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, et al. 2014.. UvrD facilitates DNA repair by pulling RNA polymerase backwards. . Nature 505:(7483):37277
    [Crossref] [Google Scholar]
  125. 125.
    Lainé J-P, Egly J-M. 2006.. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. . EMBO J. 25:(2):38797
    [Crossref] [Google Scholar]
  126. 126.
    Duan M, Speer RM, Ulibarri J, Liu KJ, Mao P. 2021.. Transcription-coupled nucleotide excision repair: new insights revealed by genomic approaches. . DNA Repair 103::103126
    [Crossref] [Google Scholar]
  127. 127.
    Chiou Y-Y, Hu J, Sancar A, Selby CP. 2018.. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. . J. Biol. Chem. 293:(7):247686
    [Crossref] [Google Scholar]
  128. 128.
    Selby CP. 2017.. Mfd protein and transcription-repair coupling in E. coli. . Photochem. Photobiol. 93:(1):28095
    [Crossref] [Google Scholar]
  129. 129.
    Ragheb M, Merrikh H. 2019.. The enigmatic role of Mfd in replication-transcription conflicts in bacteria. . DNA Repair 81::102659
    [Crossref] [Google Scholar]
  130. 130.
    Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, et al. 2015.. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. . PNAS 112:(10):E1096105
    [Crossref] [Google Scholar]
  131. 131.
    Carvajal-Garcia J, Samadpour AN, Hernandez Viera AJ, Merrikh H. 2023.. Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. . PNAS 120:(27):e2300761120
    [Crossref] [Google Scholar]
  132. 132.
    Moreno-del Álamo M, Carrasco B, Torres R, Alonso JC. 2021.. Bacillus subtilis PcrA helicase removes trafficking barriers. . Cells 10:(4):935
    [Crossref] [Google Scholar]
  133. 133.
    Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS. Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. . eLife 10::e68829
    [Crossref] [Google Scholar]
  134. 134.
    Hong X, Cadwell GW, Kogoma T. 1995.. Escherichia coli RecG and RecA proteins in R-loop formation. . EMBO J. 14:(10):238592
    [Crossref] [Google Scholar]
  135. 135.
    Vincent SD, Mahdi AA, Lloyd RG. 1996.. The RecG branch migration protein of Escherichia coli dissociates R-loops. . J. Mol. Biol. 264:(4):71321
    [Crossref] [Google Scholar]
  136. 136.
    Gowrishankar J, Leela JK, Anupama K. 2013.. R-loops in bacterial transcription. . Transcription 4:(4):15357
    [Crossref] [Google Scholar]
  137. 137.
    Raghunathan N, Kapshikar RM, Leela JK, Mallikarjun J, Bouloc P, Gowrishankar J. 2018.. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli. . Nucleic Acids Res. 46:(7):340011
    [Crossref] [Google Scholar]
  138. 138.
    Porrua O, Libri D. 2013.. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. . Nat. Struct. Mol. Biol. 20:(7):88491
    [Crossref] [Google Scholar]
  139. 139.
    Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G. 2020.. Sen1 is recruited to replication forks via Ctf4 and Mrc1 and promotes genome stability. . Cell Rep. 30:(7):2094105.e9
    [Crossref] [Google Scholar]
  140. 140.
    Chan YA, Aristizabal MJ, Lu PYT, Luo Z, Hamza A, et al. 2014.. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-Chip. . PLOS Genet. 10:(4):e1004288
    [Crossref] [Google Scholar]
  141. 141.
    Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, et al. 2011.. Yeast Sen1 helicase protects the genome from transcription-associated instability. . Mol. Cell 41:(1):2132
    [Crossref] [Google Scholar]
  142. 142.
    Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, et al. 2012.. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. . Cell 151:(4):83546
    [Crossref] [Google Scholar]
  143. 143.
    Aiello U, Challal D, Wentzinger G, Lengronne A, Appanah R, et al. 2022.. Sen1 is a key regulator of transcription-driven conflicts. . Mol. Cell 82:(16):295266.e6
    [Crossref] [Google Scholar]
  144. 144.
    San Martin-Alonso M, Soler-Oliva ME, García-Rubio M, García-Muse T, Aguilera A. 2021.. Harmful R-loops are prevented via different cell cycle-specific mechanisms. . Nat. Commun. 12::4451
    [Crossref] [Google Scholar]
  145. 145.
    Hasanova Z, Klapstova V, Porrua O, Stefl R, Sebesta M. 2023.. Human senataxin is a bona fide R-loop resolving enzyme and transcription termination factor. . Nucleic Acids Res. 51:(6):281837
    [Crossref] [Google Scholar]
  146. 146.
    Okamoto Y, Hejna J, Takata M. 2019.. Regulation of R-loops and genome instability in Fanconi anemia. . J. Biochem. 165:(6):46570
    [Crossref] [Google Scholar]
  147. 147.
    Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, et al. 2022.. R-loop-associated genomic instability and implication of WRN and WRNIP1. . Int. J. Mol. Sci. 23:(3):1547
    [Crossref] [Google Scholar]
  148. 148.
    Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM. 1998.. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. . PNAS 95:(17):1002025
    [Crossref] [Google Scholar]
  149. 149.
    Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. 2010.. Co-orientation of replication and transcription preserves genome integrity. . PLOS Genet. 6:(1):e1000810
    [Crossref] [Google Scholar]
  150. 150.
    Merrikh CN, Weiss E, Merrikh H. 2016.. The accelerated evolution of lagging strand genes is independent of sequence context. . Genome Biol. Evol. 8:(12):3696702
    [Google Scholar]
  151. 151.
    Lang KS, Merrikh H. 2018.. The clash of macromolecular titans: replication-transcription conflicts in bacteria. . Annu. Rev. Microbiol. 72::7188
    [Crossref] [Google Scholar]
  152. 152.
    Schroeder JW, Sankar TS, Wang JD, Simmons LA. 2020.. The roles of replication-transcription conflict in mutagenesis and evolution of genome organization. . PLOS Genet. 16:(8):e1008987
    [Crossref] [Google Scholar]
  153. 153.
    Foster PL, Niccum BA, Lee H. 2021.. DNA replication-transcription conflicts do not significantly contribute to spontaneous mutations due to replication errors in Escherichia coli. . mBio 12:(5):e02503-21
    [Crossref] [Google Scholar]
  154. 154.
    Jones RM, Mortusewicz O, Afzal I, Lorvellec M, García P, et al. 2013.. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. . Oncogene 32:(32):374453
    [Crossref] [Google Scholar]
  155. 155.
    Macheret M, Halazonetis TD. 2018.. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. . Nature 555:(7694):11216
    [Crossref] [Google Scholar]
  156. 156.
    Brison O, El-Hilali S, Azar D, Koundrioukoff S, Schmidt M, et al. 2019.. Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide. . Nat. Commun. 10::5693
    [Crossref] [Google Scholar]
  157. 157.
    Blin M, Le Tallec B, Nähse V, Schmidt M, Brossas C, et al. 2019.. Transcription-dependent regulation of replication dynamics modulates genome stability. . Nat. Struct. Mol. Biol. 26:(1):5866
    [Crossref] [Google Scholar]
  158. 158.
    Groh M, Lufino MMP, Wade-Martins R, Gromak N. 2014.. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and Fragile X syndrome. . PLOS Genet. 10:(5):e1004318
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-030222-115809
Loading
/content/journals/10.1146/annurev-biochem-030222-115809
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error