1932

Abstract

The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3–EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-104553
2022-06-21
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-104553.html?itemId=/content/journals/10.1146/annurev-biochem-032620-104553&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305:3567–80
    [Google Scholar]
  2. 2.
    von Heijne G. 2007. The membrane protein universe: What's out there and why bother?. J. Intern. Med. 261:6543–57
    [Google Scholar]
  3. 3.
    Harris AJ, Goldman AD. 2021. The very early evolution of protein translocation across membranes. PLOS Comput. Biol. 17:3e1008623
    [Google Scholar]
  4. 4.
    Lewis AJO, Hegde RS. 2021. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 19:266
    [Google Scholar]
  5. 5.
    Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, Keenan RJ. 2015. A YidC-like protein in the archaeal plasma membrane. Structure 23:91715–24
    [Google Scholar]
  6. 6.
    Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. 2015. Assembly of β-barrel proteins in the mitochondrial outer membrane. Biochim. Biophys. Acta Mol. Cell Res. 1853:174–88
    [Google Scholar]
  7. 7.
    Hagan CL, Silhavy TJ, Kahne D. 2011. β-barrel membrane protein assembly by the Bam complex. Annu. Rev. Biochem. 80:189–210
    [Google Scholar]
  8. 8.
    White SH, von Heijne G. 2005. Transmembrane helices before, during, and after insertion. Curr. Opin. Struct. Biol. 15:4378–86
    [Google Scholar]
  9. 9.
    Zhao G, London E. 2006. An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci 15:81987–2001
    [Google Scholar]
  10. 10.
    White SH, Wimley WC. 1999. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319–65
    [Google Scholar]
  11. 11.
    Engelman DM, Steitz TA. 1981. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23:2411–22
    [Google Scholar]
  12. 12.
    White SH, Wimley WC. 1998. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta 1376:3339–52
    [Google Scholar]
  13. 13.
    Shao S, Hegde RS. 2011. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27:25–56
    [Google Scholar]
  14. 14.
    Osborne AR, Rapoport TA, van den Berg B. 2005. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21:529–50
    [Google Scholar]
  15. 15.
    Dalbey RE, Kuhn A, Zhu L, Kiefer D. 2014. The membrane insertase YidC. Biochim. Biophys. Acta Mol. Cell Res. 1843:81489–96
    [Google Scholar]
  16. 16.
    Hegde RS, Keenan RJ. 2011. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12:12787–98
    [Google Scholar]
  17. 17.
    Anghel SA, McGilvray PT, Hegde RS, Keenan RJ. 2017. Identification of Oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Rep 21:133708–16
    [Google Scholar]
  18. 18.
    Douglas SE. 1992. A secY homologue is found in the plastid genome of Cryptomonas Φ. FEBS Lett 298:193–96
    [Google Scholar]
  19. 19.
    Luirink J, Samuelsson T, De Gier JW. 2001. YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 501:11–5
    [Google Scholar]
  20. 20.
    Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB et al. 2011. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol. Biol. Evol. 28:51581–91
    [Google Scholar]
  21. 21.
    Rapoport TA, Li L, Park E 2017. Structural and mechanistic insights into protein translocation. Annu. Rev. Cell Dev. Biol. 33:369–90
    [Google Scholar]
  22. 22.
    Akopian D, Shen K, Zhang X, Shan S. 2013. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82:693–721
    [Google Scholar]
  23. 23.
    Chio US, Cho H, Shan SO. 2017. Mechanisms of tail-anchored membrane protein targeting and insertion. Annu. Rev. Cell Dev. Biol. 33:417–38
    [Google Scholar]
  24. 24.
    UniProt Consortium 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D1D158–69. Correction. Nucleic Acids Res. 46:52699
    [Google Scholar]
  25. 25.
    Teese MG, Langosch D. 2015. Role of GxxxG motifs in transmembrane domain interactions. Biochemistry 54:335125–35
    [Google Scholar]
  26. 26.
    Mravic M, Thomaston JL, Tucker M, Solomon PE, Liu L, DeGrado WF. 2019. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 363:64341418–23
    [Google Scholar]
  27. 27.
    Moore DT, Berger BW, DeGrado WF. 2008. Protein–protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16:7991–1001
    [Google Scholar]
  28. 28.
    Rabu C, High S. 2007. Membrane protein chaperones: a new twist in the tail?. Curr. Biol. 17:12R472–74
    [Google Scholar]
  29. 29.
    Chitwood PJ, Hegde RS. 2020. An intramembrane chaperone complex facilitates membrane protein biogenesis. Nature 584:7822630–34
    [Google Scholar]
  30. 30.
    Jonikas MC, Collins SR, Denic V, Oh E, Quan EM et al. 2009. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:59221693–97
    [Google Scholar]
  31. 31.
    Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD et al. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:55502364–68
    [Google Scholar]
  32. 32.
    Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A et al. 2003. Global analysis of protein expression in yeast. Nature 425:6959737–41
    [Google Scholar]
  33. 33.
    Krogan NJ, Cagney G, Yu H, Zhong G, Guo X et al. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:7084637–43
    [Google Scholar]
  34. 34.
    Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW et al. 2003. Global analysis of protein localization in budding yeast. Nature 425:6959686–91
    [Google Scholar]
  35. 35.
    Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A et al. 2005. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:3507–19
    [Google Scholar]
  36. 36.
    Taylor MR, Kikkawa S, Diez-Juan A, Ramamurthy V, Kawakami K et al. 2005. The zebrafish pob gene encodes a novel protein required for survival of red cone photoreceptor cells. Genetics 170:1263–73
    [Google Scholar]
  37. 37.
    Louie RJ, Guo J, Rodgers JW, White R, Shah N et al. 2012. A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis. Genome Med 4:12103
    [Google Scholar]
  38. 38.
    Richard M, Boulin T, Robert VJP, Richmond JE, Bessereau J-L. 2013. Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. PNAS 110:11E1055–63
    [Google Scholar]
  39. 39.
    Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK 2015. dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. eLife 4:e06306
    [Google Scholar]
  40. 40.
    Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ et al. 2011. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14:193–105
    [Google Scholar]
  41. 41.
    Volkmar N, Christianson JC. 2020. Squaring the EMC – how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J. Cell Sci. 133:8jcs243519
    [Google Scholar]
  42. 42.
    Wideman JG. 2015. The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?. F1000Research 4:624
    [Google Scholar]
  43. 43.
    Ando A, Suzuki C. 2005. Cooperative function of the CHD5-like protein Mdm39p with a P-type ATPase Spf1p in the maintenance of ER homeostasis in Saccharomyces cerevisiae. Mol. Genet. Genom. 273:6497–506
    [Google Scholar]
  44. 44.
    Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N et al. 2002. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell. 13:3847–53
    [Google Scholar]
  45. 45.
    Enyenihi AH, Saunders WS. 2003. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163:147–54
    [Google Scholar]
  46. 46.
    Shen J, Hsu CM, Kang BK, Rosen BP, Bhattacharjee H. 2003. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. BioMetals 16:3369–78
    [Google Scholar]
  47. 47.
    Stefanovic S, Hegde RS. 2007. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128:61147–59
    [Google Scholar]
  48. 48.
    Favaloro V, Spasic M, Schwappach B, Dobberstein B. 2008. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121:111832–40
    [Google Scholar]
  49. 49.
    Mandon EC, Gilmore R. 2007. The tail end of membrane insertion. Cell 128:61031–32
    [Google Scholar]
  50. 50.
    Brambillasca S, Yabal M, Soffientini P, Stefanovic S, Makarow M et al. 2005. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J 24:142533–42
    [Google Scholar]
  51. 51.
    Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M et al. 2008. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:4634–45
    [Google Scholar]
  52. 52.
    Wang F, Brown EC, Mak G, Zhuang J, Denic V. 2010. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell. 40:1159–71
    [Google Scholar]
  53. 53.
    Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A et al. 2010. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466:73101120–24
    [Google Scholar]
  54. 54.
    Shao S, Rodrigo-Brenni MC, Kivlen MH, Hegde RS. 2017. Mechanistic basis for a molecular triage reaction. Science 355:6322298–302
    [Google Scholar]
  55. 55.
    Mateja A, Paduch M, Chang H-Y, Szydlowska A, Kossiakoff AA et al. 2015. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:62261152–55
    [Google Scholar]
  56. 56.
    Wang F, Whynot A, Tung M, Denic V. 2011. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell. 43:5738–50
    [Google Scholar]
  57. 57.
    Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ. 2011. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477:736261–66
    [Google Scholar]
  58. 58.
    Cho H, Shan S. 2018. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J 37:16e99264
    [Google Scholar]
  59. 59.
    Yamamoto Y, Sakisaka T. 2012. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell. 48:3387–97
    [Google Scholar]
  60. 60.
    Vilardi F, Stephan M, Clancy A, Janshoff A, Schwappach B. 2014. WRB and CAML are necessary and sufficient to mediate tail-anchored protein targeting to the ER membrane. PLOS ONE 9:1e85033
    [Google Scholar]
  61. 61.
    Vilardi F, Lorenz H, Dobberstein B. 2011. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J. Cell Sci. 124:81301–7
    [Google Scholar]
  62. 62.
    Colombo SF, Cardani S, Maroli A, Vitiello A, Soffientini P et al. 2016. Tail-anchored protein insertion in mammals: function and reciprocal interactions of the two subunits of the TRC40 receptor. J. Biol. Chem. 291:2915292–306
    [Google Scholar]
  63. 63.
    Rivera-Monroy J, Musiol L, Unthan-Fechner K, Farkas Á, Clancy A et al. 2016. Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo. Sci. Rep. 6:139464
    [Google Scholar]
  64. 64.
    Chio US, Cho H, Shan S. 2017. Mechanisms of tail-anchored membrane protein targeting and insertion. Annu. Rev. Cell Dev. Biol. 33:417–38
    [Google Scholar]
  65. 65.
    Stefer S, Reitz S, Wang F, Wild K, Pang Y-Y et al. 2011. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333:6043758–62
    [Google Scholar]
  66. 66.
    Wang F, Chan C, Weir NR, Denic V. 2014. The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512:7515441–44
    [Google Scholar]
  67. 67.
    Remmert M, Biegert A, Hauser A, Söding J. 2012. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods. 9:2173–75
    [Google Scholar]
  68. 68.
    McDowell MA, Heimes M, Sinning I. 2021. Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat. Struct. Mol. Biol. 28:3234–39
    [Google Scholar]
  69. 69.
    High S, Abell BM. 2004. Tail-anchored protein biosynthesis at the endoplasmic reticulum: the same but different. Biochem. Soc. Trans. 32:5659–62
    [Google Scholar]
  70. 70.
    Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG et al. 2016. The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540:7631134–38
    [Google Scholar]
  71. 71.
    Volkmar N, Thezenas M-L, Louie SM, Juszkiewicz S, Nomura DK et al. 2018. The ER membrane protein complex (EMC) promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J. Cell Sci. 132:2jcs.223453
    [Google Scholar]
  72. 72.
    Rao M, Okreglak V, Chio US, Cho H, Walter P, Shan S-O 2016. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. eLife 5:e21301
    [Google Scholar]
  73. 73.
    Guna A, Volkmar N, Christianson JC, Hegde RS. 2018. The EMC is a transmembrane domain insertase. Science 359:6374470–73
    [Google Scholar]
  74. 74.
    Ott M, Marques D, Funk C, Bailer SM. 2016. Asna1/TRC40 that mediates membrane insertion of tail-anchored proteins is required for efficient release of Herpes simplex virus 1 virions. Virol. J. 13:1175
    [Google Scholar]
  75. 75.
    Casson J, McKenna M, Haßdenteufel S, Aviram N, Zimmerman R, High S. 2017. Multiple pathways facilitate the biogenesis of mammalian tail-anchored proteins. J. Cell Sci. 130:223851–61
    [Google Scholar]
  76. 76.
    Abell BM, Pool MR, Schlenker O, Sinning I, High S. 2004. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J 23:142755–64
    [Google Scholar]
  77. 77.
    Brambillasca S, Yabal M, Makarow M, Borgese N. 2006. Unassisted translocation of large polypeptide domains across phospholipid bilayers. J. Cell Biol. 175:5767–77
    [Google Scholar]
  78. 78.
    Imamoglu R, Balchin D, Hayer-Hartl M, Hartl FU. 2020. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Nat. Commun. 11:1365
    [Google Scholar]
  79. 79.
    Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:7356324–32
    [Google Scholar]
  80. 80.
    Shao S, Hegde RS. 2011. A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147:71576–88
    [Google Scholar]
  81. 81.
    Lin KF, Fry MY, Saladi SM, Clemons WM. 2021. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J. Biol. Chem. 296:100441
    [Google Scholar]
  82. 82.
    Fry MY, Saladi SM, Clemons WM. 2021. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 30:4882–98
    [Google Scholar]
  83. 83.
    Pleiner T, Pinton Tomaleri G, Januszyk K, Inglis AJ, Hazu M, Voorhees RM 2020. Structural basis for membrane insertion by the human ER membrane protein complex. Science 369:6502433–36
    [Google Scholar]
  84. 84.
    O'Donnell JP, Phillips BP, Yagita Y, Juszkiewicz S, Wagner A et al. 2020. The architecture of EMC reveals a path for membrane protein insertion. eLife 9:e57887
    [Google Scholar]
  85. 85.
    Rosenbaum DM, Rasmussen SGF, Kobilka BK. 2009. The structure and function of G-protein-coupled receptors. Nature 459:7245356–63
    [Google Scholar]
  86. 86.
    Chitwood PJ, Juszkiewicz S, Guna A, Shao S, Hegde RS. 2018. EMC is required to initiate accurate membrane protein topogenesis. Cell 175:61507–19.e16
    [Google Scholar]
  87. 87.
    Spiess M, Lodish HF. 1986. An internal signal sequence: the asialoglycoprotein receptor membrane anchor. Cell 44:1177–85
    [Google Scholar]
  88. 88.
    Higy M, Junne T, Spiess M. 2004. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43:4012716–22
    [Google Scholar]
  89. 89.
    Wahlberg JM, Spiess M. 1997. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol. 137:3555–62
    [Google Scholar]
  90. 90.
    Denzer AJ, Nabholz CE, Spiess M. 1995. Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J 14:246311–17
    [Google Scholar]
  91. 91.
    Kocik L, Junne T, Spiess M. 2012. Orientation of internal signal-anchor sequences at the Sec61 translocon. J. Mol. Biol. 424:5368–78
    [Google Scholar]
  92. 92.
    Görlich D, Rapoport TA. 1993. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:4615–30
    [Google Scholar]
  93. 93.
    High S, Andersen SS, Görlich D, Hartmann E, Prehn S et al. 1993. Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J. Cell Biol. 121:4743–50
    [Google Scholar]
  94. 94.
    Heinrich SU, Mothes W, Brunner J, Rapoport TA. 2000. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:2233–44
    [Google Scholar]
  95. 95.
    Chitwood PJ, Hegde RS. 2019. The role of EMC during membrane protein biogenesis. Trends Cell Biol 29:5371–84
    [Google Scholar]
  96. 96.
    Whitley P, Zander T, Ehrmann M, Haardt M, Bremer E, von Heijne G 1994. Sec-independent translocation of a 100-residue periplasmic N-terminal tail in the E. coli inner membrane protein proW. EMBO J 13:194653–61
    [Google Scholar]
  97. 97.
    Cao G, Dalbey RE. 1994. Translocation of N-terminal tails across the plasma membrane. EMBO J 13:194662–69
    [Google Scholar]
  98. 98.
    Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA. 1998. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. PNAS 95:52250–55
    [Google Scholar]
  99. 99.
    Samuelson JC, Chen M, Jiang F, Möller I, Wiedmann M et al. 2000. YidC mediates membrane protein insertion in bacteria. Nature 406:6796637–41
    [Google Scholar]
  100. 100.
    Morel J-D, Paatero AO, Wei J, Yewdell JW, Guenin-Macé L et al. 2018. Proteomics reveals scope of mycolactone-mediated Sec61 blockade and distinctive stress signature. Mol. Cell. Proteom. 17:91750–65
    [Google Scholar]
  101. 101.
    McKenna M, Simmonds RE, High S. 2017. Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J. Cell Sci. 130:71307–20
    [Google Scholar]
  102. 102.
    O'Keefe S, Zong G, Duah KB, Andrews LE, Shi WQ, High S. 2021. An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum. Commun. Biol. 4:1828
    [Google Scholar]
  103. 103.
    Bai L, You Q, Feng X, Kovach A, Li H. 2020. Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 584:7821475–78
    [Google Scholar]
  104. 104.
    Miller-Vedam LE, Bräuning B, Popova KD, Oakdale NTS, Bonnar JL et al. 2020. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife 9:e62611
    [Google Scholar]
  105. 105.
    Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K et al. 2014. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:7501516–20
    [Google Scholar]
  106. 106.
    McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ et al. 2020. An ER translocon for multi-pass membrane protein biogenesis. eLife 9:e56889
    [Google Scholar]
  107. 107.
    McDowell MA, Heimes M, Fiorentino F, Mehmood S, Farkas Á et al. 2020. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell. 80:172–86
    [Google Scholar]
  108. 108.
    Wu X, Rapoport TA. 2021. Translocation of proteins through a distorted lipid bilayer. Trends Cell Biol 31:6473–84
    [Google Scholar]
  109. 109.
    Petriman NA, Jauß B, Hufnagel A, Franz L, Sachelaru I et al. 2018. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci. Rep. 8:1578
    [Google Scholar]
  110. 110.
    Kiefer D, Kuhn A. 2018. YidC-mediated membrane insertion. FEMS Microbiol. Lett. 365:12fny106
    [Google Scholar]
  111. 111.
    Tsukazaki T. 2019. Structural basis of the Sec translocon and YidC revealed through X-ray crystallography. Protein J 38:3249–61
    [Google Scholar]
  112. 112.
    Voorhees RM, Hegde RS. 2016. Structure of the Sec61 channel opened by a signal sequence. Science 351:626888–91
    [Google Scholar]
  113. 113.
    Pleiner T, Hazu M, Tomaleri GP, Januszyk K, Oania RS et al. 2021. WNK1 is an assembly factor for the human ER membrane protein complex. Mol. Cell. 81:132693–704.e12
    [Google Scholar]
  114. 114.
    Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D et al. 2018. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex. Science 360:6386eaar7924
    [Google Scholar]
  115. 115.
    Jomaa A, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K et al. 2021. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Rep 36:2109350
    [Google Scholar]
  116. 116.
    Gafvelin G, Sakaguchi M, Andersson H, von Heijne G 1997. Topological rules for membrane protein assembly in eukaryotic cells. J. Biol. Chem. 272:106119–27
    [Google Scholar]
  117. 117.
    Nilsson J, Persson B, von Heijne G 2005. Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins Struct. Funct. Genet. 60:4606–16
    [Google Scholar]
  118. 118.
    McKenna MJ, Sim SI, Ordureau A, Wei L, Harper JW et al. 2020. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 369:6511eabc5809
    [Google Scholar]
  119. 119.
    Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA et al. 2018. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife 7:e37018
    [Google Scholar]
  120. 120.
    Tian S, Wu Q, Zhou B, Choi MY, Ding B et al. 2019. Proteomic analysis identifies membrane proteins dependent on the ER membrane protein complex. Cell Rep 28:102517–26.e5
    [Google Scholar]
  121. 121.
    Marquez J, Criscione J, Charney RM, Prasad MS, Hwang WY et al. 2020. Disrupted ER membrane protein complex–mediated topogenesis drives congenital neural crest defects. J. Clin. Investig. 130:2813–26
    [Google Scholar]
  122. 122.
    Jan CH, Williams CC, Weissman JS. 2014. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:62101257521
    [Google Scholar]
  123. 123.
    Lakshminarayan R, Phillips BP, Binnian IL, Gomez-Navarro N, Escudero-Urquijo N et al. 2020. Pre-emptive quality control of a misfolded membrane protein by ribosome-driven effects. Curr. Biol. 30:5854–64
    [Google Scholar]
  124. 124.
    Zhu L, Kaback HR, Dalbey RE. 2013. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J. Biol. Chem. 288:3928180–94
    [Google Scholar]
  125. 125.
    Nagamori S, Smirnova IN, Kaback HR. 2004. Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165:153–62
    [Google Scholar]
  126. 126.
    Serdiuk T, Balasubramaniam D, Sugihara J, Mari SA, Kaback HR, Müller DJ. 2016. YidC assists the stepwise and stochastic folding of membrane proteins. Nat. Chem. Biol. 12:11911–17
    [Google Scholar]
  127. 127.
    Hell K, Neupert W, Stuart RA. 2001. Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20:61281–88
    [Google Scholar]
  128. 128.
    Samuelson JC, Jiang F, Yi L, Chen M, De Gier JW et al. 2001. Function of YidC for the insertion of M13 procoat protein in Escherichia coli: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. J. Biol. Chem. 276:3734847–52
    [Google Scholar]
  129. 129.
    Facey SJ, Neugebauer SA, Krauss S, Kuhn A. 2007. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J. Mol. Biol. 365:4995–1004
    [Google Scholar]
  130. 130.
    Feige MJ, Hendershot LM. 2013. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol. Cell. 51:3297–309
    [Google Scholar]
  131. 131.
    Enquist K, Fransson M, Boekel C, Bengtsson I, Geiger K et al. 2009. Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein. J. Mol. Biol. 387:51153–64
    [Google Scholar]
  132. 132.
    Lu Y, Turnbull IR, Bragin A, Carveth K, Verkman AS, Skach WR. 2000. Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell. 11:92973–85
    [Google Scholar]
  133. 133.
    Sun S, Mariappan M. 2020. C-terminal tail length guides insertion and assembly of membrane proteins. J. Biol. Chem. 295:4615498–510
    [Google Scholar]
  134. 134.
    Inglis AJ, Page KR, Guna A, Voorhees RM. 2020. Differential modes of orphan subunit recognition for the WRB/CAML complex. Cell Rep 30:113691–98
    [Google Scholar]
  135. 135.
    Carvalho HJF, Del Bondio A, Maltecca F, Colombo SF, Borgese N 2019. The WRB subunit of the Get3 receptor is required for the correct integration of its partner CAML into the ER. Sci. Rep. 9:111887
    [Google Scholar]
  136. 136.
    Cheung JC, Li J, Reithmeier RAF. 2005. Topology of transmembrane segments 1–4 in the human chloride/bicarbonate anion exchanger 1 (AE1) by scanning N-glycosylation mutagenesis. Biochem. J. 390:1137–44
    [Google Scholar]
  137. 137.
    Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M et al. 2021. Highly accurate protein structure prediction for the human proteome. Nature 596:7873590–96
    [Google Scholar]
  138. 138.
    Luo W, Gong X, Chang A 2002. An ER membrane protein, Sop4, facilitates ER export of the yeast plasma membrane [H+]ATPase, Pma1. Traffic 3:10730–39
    [Google Scholar]
  139. 139.
    Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS. 2019. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J. Biol. Chem. 294:3412655–69
    [Google Scholar]
  140. 140.
    Tang X, Snowball JM, Xu Y, Na C-L, Weaver TE et al. 2017. EMC3 coordinates surfactant protein and lipid homeostasis required for respiration. J. Clin. Investig. 127:124314–25
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-104553
Loading
/content/journals/10.1146/annurev-biochem-032620-104553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error