1932

Abstract

Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-104731
2024-08-02
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-032620-104731.html?itemId=/content/journals/10.1146/annurev-biochem-032620-104731&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Firn RD, Jones CG. 2009.. A Darwinian view of metabolism: molecular properties determine fitness. . J. Exp. Bot. 60:(3):71926
    [Crossref] [Google Scholar]
  2. 2.
    Haas H, Eisendle M, Turgeon BG. 2008.. Siderophores in fungal physiology and virulence. . Annu. Rev. Phytopathol. 46::14987
    [Crossref] [Google Scholar]
  3. 3.
    Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A, et al. 2016.. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. . Science 352:(6289):11059
    [Crossref] [Google Scholar]
  4. 4.
    Cruz-Morales P, Yin K, Landera A, Cort JR, Young RP, et al. 2022.. Biosynthesis of polycyclopropanated high energy biofuels. . Joule 6:(7):1590605
    [Crossref] [Google Scholar]
  5. 5.
    Borel JF, Feurer C, Gubler HU, Stähelin H. 1976.. Biological effects of cyclosporin A: a new antilymphocytic agent. . Agents Actions 6::46875
    [Crossref] [Google Scholar]
  6. 6.
    Newman DJ, Cragg GM. 2020.. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. . J. Nat. Prod. 83:(3):770803
    [Crossref] [Google Scholar]
  7. 7.
    Mushtaq S, Abbasi BH, Uzair B, Abbasi R. 2018.. Natural products as reservoirs of novel therapeutic agents. . EXCLI J. 17::42051
    [Google Scholar]
  8. 8.
    Miner J, Hoffhines A. 2007.. The discovery of aspirin's antithrombotic effects. . Tex. Heart Inst. J. 34:(2):17986
    [Google Scholar]
  9. 9.
    Pasteur L, Joubert J. 1877.. Charbon et Septicémie. Paris:: Gauthier-Villars
    [Google Scholar]
  10. 10.
    Tyndall J. 1883.. Essays on the Floating-Matter of the Air in Relation to Putrefaction and Infection. London: Longmans, Green & Co:.
    [Google Scholar]
  11. 11.
    Duchesne ED. 1897.. Contribution à l'étude de la concurrence vitale chez les microorganismes, antagonisme entre les moisissures et les microbes. Lyon, Fr:.: Alexandre Rey
    [Google Scholar]
  12. 12.
    Fleming A. 1929.. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. . Br. J. Exp. Pathol. 10::22636
    [Google Scholar]
  13. 13.
    Hotchkiss RD, Dubos RJ. 1940.. Bactericidal fractions from an aerobic sporulating Bacillus. . J. Biol. Chem. 136:(3):8034
    [Crossref] [Google Scholar]
  14. 14.
    Chain E, Florey HW, Gardner AD, Heatley NG, Jennings MA, et al. 1940.. Penicillin as a chemotherapeutic agent. . Lancet 236:(6104):22628
    [Crossref] [Google Scholar]
  15. 15.
    Schatz A, Bugle E, Waksman SA. 1944.. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. . Exp. Biol. Med. 55:(1):6669
    [Crossref] [Google Scholar]
  16. 16.
    Podolsky SH. 2015.. The Antibiotic Era: Reform, Resistance, and the Pursuit of a Rational Therapeutics. Baltimore:: Johns Hopkins Univ. Press
    [Google Scholar]
  17. 17.
    Hopwood DA. 2007.. Streptomyces in Nature and Medicine: The Antibiotic Makers. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  18. 18.
    Malpartida F, Hopwood DA. 1986.. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). . Mol. Gen. Genet. 205:(1):6673
    [Crossref] [Google Scholar]
  19. 19.
    Motamedi H, Hutchinson CR. 1987.. Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens. . PNAS 84:(13):444549
    [Crossref] [Google Scholar]
  20. 20.
    Krause M, Marahiel MA. 1988.. Organization of the biosynthesis genes for the peptide antibiotic gramicidin S. . J. Bacteriol. 170:(10):466974
    [Crossref] [Google Scholar]
  21. 21.
    Butler MJ, Friend EJ, Hunter IS, Kaczmarek FS, Sugden DA, Warren M. 1989.. Molecular cloning of resistance genes and architecture of a linked gene cluster involved in biosynthesis of oxytetracycline by Streptomyces rimosus. . Mol. Gen. Genet. 215:(2):23138
    [Crossref] [Google Scholar]
  22. 22.
    Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. 2020.. Biosynthetic gene clusters and the evolution of fungal chemodiversity. . Nat. Prod. Rep. 37:(7):86878
    [Crossref] [Google Scholar]
  23. 23.
    Liu Z, Cheema J, Vigouroux M, Hill L, Reed J, et al. 2020.. Formation and diversification of a paradigm biosynthetic gene cluster in plants. . Nat. Commun. 11:(1):5354
    [Crossref] [Google Scholar]
  24. 24.
    Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. 2017.. Retrospective analysis of natural products provides insights for future discovery trends. . PNAS 114:(22):56016
    [Crossref] [Google Scholar]
  25. 25.
    Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, et al. 2002.. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). . Nature 417:(6885):14147
    [Crossref] [Google Scholar]
  26. 26.
    Hoskisson PA, Seipke RF. 2020.. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. . mBio 11:(5):02642-20
    [Crossref] [Google Scholar]
  27. 27.
    Ntie-Kang F, Svozil D. 2020.. An enumeration of natural products from microbial, marine and terrestrial sources. . Phys. Sci. Rev. 5:(8):20180121
    [Google Scholar]
  28. 28.
    Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, et al. 2023.. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. . Nucleic Acids Res. 51:(D1):D60310
    [Crossref] [Google Scholar]
  29. 29.
    Natl. Cent. Biotechnol. Inf. (NCBI). 2024.. Datasets: Genome. . National Library of Medicine, National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/datasets/genome
    [Google Scholar]
  30. 30.
    Gavriilidou A, Kautsar SA, Zaburannyi N, Krug D, Müller R, et al. 2022.. Author correction: compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. . Nat. Microbiol. 7:(8):1324
    [Crossref] [Google Scholar]
  31. 31.
    Yu Y, Zhang Q, Deng Z. 2017.. Parallel pathways in the biosynthesis of aminoglycoside antibiotics [version 1; peer review: 2 approved]. . F1000Research 6::723
    [Crossref] [Google Scholar]
  32. 32.
    Metcalf WW, van der Donk WA. 2009.. Biosynthesis of phosphonic and phosphinic acid natural products. . Annu. Rev. Biochem. 78::6594
    [Crossref] [Google Scholar]
  33. 33.
    Scott TA, Piel J. 2019.. The hidden enzymology of bacterial natural product biosynthesis. . Nat. Rev. Chem. 3:(7):40425
    [Crossref] [Google Scholar]
  34. 34.
    Walsh CT, Tang Y. 2017.. Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery. London:: R. Soc. Chem. , 1st ed..
    [Google Scholar]
  35. 35.
    Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF. 1990.. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. . Nature 348:(6297):17678
    [Crossref] [Google Scholar]
  36. 36.
    Nivina A, Yuet KP, Hsu J, Khosla C. 2019.. Evolution and diversity of assembly-line polyketide synthases. . Chem. Rev. 119:(24):1252447
    [Crossref] [Google Scholar]
  37. 37.
    Ridley CP, Lee HY, Khosla C. 2008.. Evolution of polyketide synthases in bacteria. . PNAS 105:(12):4595600
    [Crossref] [Google Scholar]
  38. 38.
    Cacho RA, Thuss J, Xu W, Sanichar R, Gao Z, et al. 2015.. Understanding programming of fungal iterative polyketide synthases: the biochemical basis for regioselectivity by the methyltransferase domain in the lovastatin megasynthase. . J. Am. Chem. Soc. 137:(50):1568891
    [Crossref] [Google Scholar]
  39. 39.
    Minami A, Ugai T, Ozaki T, Oikawa H. 2020.. Predicting the chemical space of fungal polyketides by phylogeny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. . Sci. Rep. 10:(1):13556
    [Crossref] [Google Scholar]
  40. 40.
    Navarro-Muñoz JC, Collemare J. 2019.. Evolutionary histories of type III polyketide synthases in fungi. . Front. Microbiol. 10::3018
    [Crossref] [Google Scholar]
  41. 41.
    Grininger M. 2023.. Enzymology of assembly line synthesis by modular polyketide synthases. . Nat. Chem. Biol. 19:(4):40115
    [Crossref] [Google Scholar]
  42. 42.
    Stachelhaus T, Marahiel MA. 1995.. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. . J. Biol. Chem. 270:(11):616369
    [Crossref] [Google Scholar]
  43. 43.
    Hertweck C. 2009.. The biosynthetic logic of polyketide diversity. . Angew. Chem. Int. Ed. 48:(26):4688716
    [Crossref] [Google Scholar]
  44. 44.
    Jenner M, Hai Y, Nguyen HH, Passmore M, Skyrud W, et al. 2022.. Elucidating the molecular programming of a nonlinear nonribosomal peptide synthetase responsible for fungal siderophore biosynthesis. . bioRxiv 2022.10.10.511241. https://doi.org/10.1101/2022.10.10.511241
  45. 45.
    Xu Y, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnár I. 2008.. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. . Chem. Biol. 15:(9):898907
    [Crossref] [Google Scholar]
  46. 46.
    Dell M, Dunbar KL, Hertweck C. 2022.. Ribosome-independent peptide biosynthesis: the challenge of a unifying nomenclature. . Nat. Prod. Rep. 39:(3):45359
    [Crossref] [Google Scholar]
  47. 47.
    Marahiel MA. 2016.. A structural model for multimodular NRPS assembly lines. . Nat. Prod. Rep. 33:(2):13640
    [Crossref] [Google Scholar]
  48. 48.
    Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C. 2018.. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. . mBio 9:(5):01211-18
    [Crossref] [Google Scholar]
  49. 49.
    Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, et al. 2010.. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. . Mol. Microbiol. 75:(5):126071
    [Crossref] [Google Scholar]
  50. 50.
    Murphy AC, Corney M, Monson RE, Matilla MA, Salmond GPC, Leeper FJ. 2023.. Biosynthesis of antifungal solanimycin may involve an iterative nonribosomal peptide synthetase module. . ACS Chem. Biol. 18:(5):114857
    [Crossref] [Google Scholar]
  51. 51.
    Hsieh M-H, Chang C-Y, Hsu S-J, Chen J-J. 2008.. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. . Plant Mol. Biol. 66:(6):66373
    [Crossref] [Google Scholar]
  52. 52.
    Gallagher KA, Jensen PR. 2015.. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. . BMC Genom. 16::960
    [Crossref] [Google Scholar]
  53. 53.
    Austin MB, O'Maille PE, Noel JP. 2008.. Evolving biosynthetic tangos negotiate mechanistic landscapes. . Nat. Chem. Biol. 4:(4):21722
    [Crossref] [Google Scholar]
  54. 54.
    Miles ZD, Diethelm S, Pepper HP, Huang DM, George JH, Moore BS. 2017.. A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis. . Nat. Chem. 9:(12):123542
    [Crossref] [Google Scholar]
  55. 55.
    Gross E, Morell JL. 1971.. The structure of nisin. . J. Am. Chem. Soc. 93:(18):463435
    [Crossref] [Google Scholar]
  56. 56.
    Schnell N, Entian KD, Schneider U, Götz F, Zähner H, et al. 1988.. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. . Nature 333:(6170):27678
    [Crossref] [Google Scholar]
  57. 57.
    Chekan JR, Estrada P, Covello PS, Nair SK. 2017.. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants. . PNAS 114:(25):655156
    [Crossref] [Google Scholar]
  58. 58.
    Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, et al. 2012.. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. . Science 338:(6105):38790
    [Crossref] [Google Scholar]
  59. 59.
    Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, et al. 2021.. New developments in RiPP discovery, enzymology and engineering. . Nat. Prod. Rep. 38:(1):130239
    [Crossref] [Google Scholar]
  60. 60.
    Kessler SC, Chooi Y-H. 2022.. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. . Nat. Prod. Rep. 39:(2):22230
    [Crossref] [Google Scholar]
  61. 61.
    Chigumba DN, Mydy LS, de Waal F, Li W, Shafiq K, et al. 2022.. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases. . Nat. Chem. Biol. 18:(1):1828
    [Crossref] [Google Scholar]
  62. 62.
    Brownstein MJ, Russell JT, Gainer H. 1980.. Synthesis, transport, and release of posterior pituitary hormones. . Science 207:(4429):37378
    [Crossref] [Google Scholar]
  63. 63.
    Yan Y, Liu N, Tang Y. 2020.. Recent developments in self-resistance gene directed natural product discovery. . Nat. Prod. Rep. 37:(7):87992
    [Crossref] [Google Scholar]
  64. 64.
    Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, et al. 2021.. Biofuels for a sustainable future. . Cell 184:(6):163647
    [Crossref] [Google Scholar]
  65. 65.
    Medema MH, Fischbach MA. 2015.. Computational approaches to natural product discovery. . Nat. Chem. Biol. 11:(9):63948
    [Crossref] [Google Scholar]
  66. 66.
    Zerikly M, Challis GL. 2009.. Strategies for the discovery of new natural products by genome mining. . ChemBioChem 10:(4):62533
    [Crossref] [Google Scholar]
  67. 67.
    Kaysser L, Tang X, Wemakor E, Sedding K, Hennig S, et al. 2011.. Identification of a napsamycin biosynthesis gene cluster by genome mining. . ChemBioChem 12:(3):47787
    [Crossref] [Google Scholar]
  68. 68.
    Yan X, Ge H, Huang T, Hindra, Yang D, et al. 2016.. Strain prioritization and genome mining for enediyne natural products. . mBio 7:(6):02104-16
    [Crossref] [Google Scholar]
  69. 69.
    Ju K-S, Gao J, Doroghazi JR, Wang K-KA, Thibodeaux CJ, et al. 2015.. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. . PNAS 112:(39):1217580
    [Crossref] [Google Scholar]
  70. 70.
    Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N. 2020.. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. . Nucleic Acids Res. 48:(W1):W54652
    [Crossref] [Google Scholar]
  71. 71.
    Yarlagadda V, Medina R, Johnson TA, Koteva KP, Cox G, et al. 2020.. Resistance-guided discovery of elfamycin antibiotic producers with antigonococcal activity. . ACS Infect. Dis. 6:(12):316373
    [Crossref] [Google Scholar]
  72. 72.
    Yeh H-H, Ahuja M, Chiang Y-M, Oakley CE, Moore S, et al. 2016.. Resistance gene-guided genome mining: Serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. . ACS Chem. Biol. 11:(8):227584
    [Crossref] [Google Scholar]
  73. 73.
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, et al. 2021.. AntiSMASH 6.0: improving cluster detection and comparison capabilities. . Nucleic Acids Res. 49:(W1):W2935
    [Crossref] [Google Scholar]
  74. 74.
    Wolf T, Shelest V, Nath N, Shelest E. 2016.. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. . Bioinformatics 32:(8):113843
    [Crossref] [Google Scholar]
  75. 75.
    Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, et al. 2010.. SMURF: genomic mapping of fungal secondary metabolite clusters. . Fungal Genet. Biol. 47:(9):73641
    [Crossref] [Google Scholar]
  76. 76.
    Almeida H, Palys S, Tsang A, Diallo AB. 2020.. TOUCAN: a framework for fungal biosynthetic gene cluster discovery. . NAR Genom. Bioinform. 2:(4):lqaa098
    [Crossref] [Google Scholar]
  77. 77.
    Blin K, Shaw S, Kautsar SA, Medema MH, Weber T. 2021.. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. . Nucleic Acids Res. 49:(D1):D63943
    [Crossref] [Google Scholar]
  78. 78.
    Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, et al. 2020.. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. . Nucleic Acids Res. 48:(D1):D45458
    [Google Scholar]
  79. 79.
    Hadjithomas M, Chen IM, Chu K, Ratner A, Palaniappan K, et al. 2015.. IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. . mBio 6:(4):e00932
    [Crossref] [Google Scholar]
  80. 80.
    Hemmerling F, Piel J. 2022.. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. . Nat. Rev. Drug Discov. 21:(5):35978
    [Crossref] [Google Scholar]
  81. 81.
    Chavali AK, Rhee SY. 2018.. Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites. . Brief. Bioinform. 19:(5):102234
    [Crossref] [Google Scholar]
  82. 82.
    Jenke-Kodama H, Sandmann A, Müller R, Dittmann E. 2005.. Evolutionary implications of bacterial polyketide synthases. . Mol. Biol. Evol. 22:(10):202739
    [Crossref] [Google Scholar]
  83. 83.
    Noda-Garcia L, Tawfik DS. 2020.. Enzyme evolution in natural products biosynthesis: target- or diversity-oriented?. Curr. Opin. Chem. Biol. 59::14754
    [Crossref] [Google Scholar]
  84. 84.
    Xu Z, Park T-J, Cao H. 2022.. Advances in mining and expressing microbial biosynthetic gene clusters. . Crit. Rev. Microbiol. 49::1837
    [Crossref] [Google Scholar]
  85. 85.
    Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA. 2014.. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. . PLOS Comput. Biol. 10:(12):e1004016
    [Crossref] [Google Scholar]
  86. 86.
    Adamek M, Alanjary M, Ziemert N. 2019.. Applied evolution: phylogeny-based approaches in natural products research. . Nat. Prod. Rep. 36:(9):1295312
    [Crossref] [Google Scholar]
  87. 87.
    van Santen JA, Poynton EF, Iskakova D, McMann E, Alsup TA, et al. 2022.. The Natural Products Atlas 2.0: a database of microbially-derived natural products. . Nucleic Acids Res. 50:(D1):D131723
    [Crossref] [Google Scholar]
  88. 88.
    Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimarães DO, et al. 2015.. Global biogeographic sampling of bacterial secondary metabolism. . eLife 4::e05048
    [Crossref] [Google Scholar]
  89. 89.
    Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, et al. 2020.. A computational framework to explore large-scale biosynthetic diversity. . Nat. Chem. Biol. 16:(1):6068
    [Crossref] [Google Scholar]
  90. 90.
    Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Brady SF. 2014.. Chemical-biogeographic survey of secondary metabolism in soil. . PNAS 111:(10):375762
    [Crossref] [Google Scholar]
  91. 91.
    Drott MT, Rush TA, Satterlee TR, Giannone RJ, Abraham PE, et al. 2021.. Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. . PNAS 118:(21):e2021683118
    [Crossref] [Google Scholar]
  92. 92.
    Mullins AJ, Murray JAH, Bull MJ, Jenner M, Jones C, et al. 2019.. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. . Nat. Microbiol. 4:(6):9961005
    [Crossref] [Google Scholar]
  93. 93.
    Cruz-Morales P, Kopp JF, Martinez-Guerrero CE, Yanez-Guerra LA, Selem-Mojica N, et al. 2015.. Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model streptomycetes. . Genome Biol. Evol. 8:(6):190616
    [Crossref] [Google Scholar]
  94. 94.
    Kang H-S. 2017.. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. . J. Ind. Microbiol. Biotechnol. 44:(2):28593
    [Crossref] [Google Scholar]
  95. 95.
    Tsukada K, Shinki S, Kaneko A, Murakami K, Irie K, et al. 2020.. Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. . Nat. Commun. 11:(1):1830
    [Crossref] [Google Scholar]
  96. 96.
    Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, et al. 2014.. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. . Cell 158:(2):41221
    [Crossref] [Google Scholar]
  97. 97.
    Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR, et al. 2014.. A roadmap for natural product discovery based on large-scale genomics and metabolomics. . Nat. Chem. Biol. 10:(11):96368
    [Crossref] [Google Scholar]
  98. 98.
    Robey MT, Caesar LK, Drott MT, Keller NP, Kelleher NL. 2021.. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. . PNAS 118:(19):e2020230118
    [Crossref] [Google Scholar]
  99. 99.
    Kautsar SA, van der Hooft JJJ, de Ridder D, Medema MH. 2021.. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. . Gigascience 10:(1):giaa154
    [Crossref] [Google Scholar]
  100. 100.
    Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. 2021.. BiG-FAM: the biosynthetic gene cluster families database. . Nucleic Acids Res. 49:(D1):D49097
    [Crossref] [Google Scholar]
  101. 101.
    Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR. 2012.. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. . PLOS ONE 7:(3):e34064
    [Crossref] [Google Scholar]
  102. 102.
    Sélem-Mojica N, Aguilar C, Gutiérrez-García K, Martínez-Guerrero CE, Barona-Gómez F. 2019.. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. . Microb. Genom. 5:(12):mgen.0.000260
    [Google Scholar]
  103. 103.
    Schniete JK, Selem-Mojica N, Birke AS, Cruz-Morales P, Hunter IS, et al. 2021.. ActDES – a curated actinobacterial database for evolutionary studies. . Microb. Genom. 7:(1):mgen.0.000498
    [Google Scholar]
  104. 104.
    Gluck-Thaler E, Haridas S, Binder M, Grigoriev IV, Crous PW, et al. 2020.. The architecture of metabolism maximizes biosynthetic diversity in the largest class of fungi. . Mol. Biol. Evol. 37:(10):283856
    [Crossref] [Google Scholar]
  105. 105.
    Vignolle GA, Schaffer D, Zehetner L, Mach RL, Mach-Aigner AR, Derntl C. 2021.. FunOrder: a robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution. . PLOS Comput. Biol. 17:(9):e1009372
    [Crossref] [Google Scholar]
  106. 106.
    Hubert J, Nuzillard J-M, Renault J-H. 2017.. Dereplication strategies in natural product research: how many tools and methodologies behind the same concept?. Phytochem. Rev. 16:(1):5595
    [Crossref] [Google Scholar]
  107. 107.
    Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, et al. 2016.. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. . Nat. Biotechnol. 34:(8):82837
    [Crossref] [Google Scholar]
  108. 108.
    Wandy J, Zhu Y, van der Hooft JJJ, Daly R, Barrett MP, Rogers S. 2018.. Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry. . Bioinformatics 34:(2):31718
    [Crossref] [Google Scholar]
  109. 109.
    Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias L-F, Wandy J, et al. 2019.. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. . Metabolites 9:(7):144
    [Crossref] [Google Scholar]
  110. 110.
    Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias L-F, et al. 2017.. Dereplication of peptidic natural products through database search of mass spectra. . Nat. Chem. Biol. 13:(1):3037
    [Crossref] [Google Scholar]
  111. 111.
    Gurevich A, Mikheenko A, Shlemov A, Korobeynikov A, Mohimani H, Pevzner PA. 2018.. Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. . Nat. Microbiol. 3:(3):31927
    [Crossref] [Google Scholar]
  112. 112.
    da Silva RR, Wang M, Nothias L-F, van der Hooft JJJ, Caraballo-Rodríguez AM, et al. 2018.. Propagating annotations of molecular networks using in silico fragmentation. . PLOS Comput. Biol. 14:(4):e1006089
    [Crossref] [Google Scholar]
  113. 113.
    Domingo-Almenara X, Guijas C, Billings E, Montenegro-Burke JR, Uritboonthai W, et al. 2019.. The METLIN small molecule dataset for machine learning-based retention time prediction. . Nat. Commun. 10:(1):5811
    [Crossref] [Google Scholar]
  114. 114.
    Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, et al. 2018.. METLIN: a technology platform for identifying knowns and unknowns. . Anal. Chem. 90:(5):315664
    [Crossref] [Google Scholar]
  115. 115.
    Xia J, Sinelnikov IV, Han B, Wishart DS. 2015.. MetaboAnalyst 3.0—making metabolomics more meaningful. . Nucleic Acids Res. 43:(W1):W25157
    [Crossref] [Google Scholar]
  116. 116.
    Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, et al. 2016.. Metabolomics workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. . Nucleic Acids Res. 44:(D1):D46370
    [Crossref] [Google Scholar]
  117. 117.
    Haug K, Cochrane K, Nainala VC, Williams M, Chang J, et al. 2020.. MetaboLights: a resource evolving in response to the needs of its scientific community. . Nucleic Acids Res. 48:(D1):D44044
    [Google Scholar]
  118. 118.
    Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, et al. 2019.. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. . Nat. Methods 16:(4):299302
    [Crossref] [Google Scholar]
  119. 119.
    Zdouc MM, Bayona Maldonado LM, Augustijn HE, Soldatou S, de Jonge NF, et al. 2022.. FERMO: a dashboard for streamlined rationalized prioritization of molecular features from mass spectrometry data. . bioRxiv 2022.12.21.521422. https://doi.org/10.1101/2022.12.21.521422
  120. 120.
    Bruguière A, Derbré S, Bréard D, Tomi F, Nuzillard J-M, Richomme P. 2021.. 13C NMR dereplication using MixONat software: a practical guide to decipher natural products mixtures. . Planta Med. 87:(12–13):106168
    [Google Scholar]
  121. 121.
    Egan JM, van Santen JA, Liu DY, Linington RG. 2021.. Development of an NMR-based platform for the direct structural annotation of complex natural products mixtures. . J. Nat. Prod. 84:(4):104455
    [Crossref] [Google Scholar]
  122. 122.
    Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. 2021.. COCONUT online: collection of open natural products database. . J. Cheminform. 13:(1):2
    [Crossref] [Google Scholar]
  123. 123.
    Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, et al. 2022.. The LOTUS initiative for open knowledge management in natural products research. . eLife 11::e70780
    [Crossref] [Google Scholar]
  124. 124.
    Goering AW, McClure RA, Doroghazi JR, Albright JC, Haverland NA, et al. 2016.. Metabologenomics: correlation of microbial gene clusters with metabolites drives discovery of a nonribosomal peptide with an unusual amino acid monomer. . ACS Cent. Sci. 2:(2):99108
    [Crossref] [Google Scholar]
  125. 125.
    van der Hooft JJJ, Mohimani H, Bauermeister A, Dorrestein PC, Duncan KR, Medema MH. 2020.. Linking genomics and metabolomics to chart specialized metabolic diversity. . Chem. Soc. Rev. 49:(11):3297314
    [Crossref] [Google Scholar]
  126. 126.
    Duncan KR, Crüsemann M, Lechner A, Sarkar A, Li J, et al. 2015.. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. . Chem. Biol. 22:(4):46071
    [Crossref] [Google Scholar]
  127. 127.
    Kersten RD, Ziemert N, Gonzalez DJ, Duggan BM, Nizet V, et al. 2013.. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. . PNAS 110:(47):E440716
    [Crossref] [Google Scholar]
  128. 128.
    Kersten RD, Yang Y-L, Xu Y, Cimermancic P, Nam S-J, et al. 2011.. A mass spectrometry–guided genome mining approach for natural product peptidogenomics. . Nat. Chem. Biol. 7:(11):794802
    [Crossref] [Google Scholar]
  129. 129.
    Mohimani H, Liu W-T, Kersten RD, Moore BS, Dorrestein PC, Pevzner PA. 2014.. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. . J. Nat. Prod. 77:(8):19029
    [Crossref] [Google Scholar]
  130. 130.
    Cao L, Gurevich A, Alexander KL, Naman CB, Leão T, et al. 2019.. MetaMiner: a scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. . Cell Syst. 9:(6):6008.e4
    [Crossref] [Google Scholar]
  131. 131.
    Merwin NJ, Mousa WK, Dejong CA, Skinnider MA, Cannon MJ, et al. 2020.. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. . PNAS 117:(1):37180
    [Crossref] [Google Scholar]
  132. 132.
    Medema MH, Paalvast Y, Nguyen DD, Melnik A, Dorrestein PC, et al. 2014.. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. . PLOS Comput. Biol. 10:(9):e1003822
    [Crossref] [Google Scholar]
  133. 133.
    Ricart E, Pupin M, Müller M, Lisacek F. 2020.. Automatic annotation and dereplication of tandem mass spectra of peptidic natural products. . Anal. Chem. 92:(24):1586271
    [Crossref] [Google Scholar]
  134. 134.
    Liu W-T, Kersten RD, Yang Y-L, Moore BS, Dorrestein PC. 2011.. Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. . J. Am. Chem. Soc. 133:(45):1801013
    [Crossref] [Google Scholar]
  135. 135.
    Hjörleifsson Eldjárn G, Ramsay A, van der Hooft JJJ, Duncan KR, Soldatou S, et al. 2021.. Ranking microbial metabolomic and genomic links in the NPLinker framework using complementary scoring functions. . PLOS Comput. Biol. 17:(5):e1008920
    [Crossref] [Google Scholar]
  136. 136.
    Leão TF, Wang M, da Silva R, Gurevich A, Bauermeister A, et al. 2022.. NPOmix: a machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters. . PNAS Nexus 1:(5):pgac257
    [Crossref] [Google Scholar]
  137. 137.
    Schorn MA, Verhoeven S, Ridder L, Huber F, Acharya DD, et al. 2021.. A community resource for paired genomic and metabolomic data mining. . Nat. Chem. Biol. 17:(4):36368
    [Crossref] [Google Scholar]
  138. 138.
    Stajich JE, Lovett B, Ettinger CL, Carter-House DA, Kurbessoian T, Kasson MT. 2022.. An improved 1.5-gigabase draft assembly of Massospora cicadina (zoopagomycota), an obligate fungal parasite of 13- and 17-year cicadas. . Microbiol. Resour. Announc. 11:(10):e0036722
    [Crossref] [Google Scholar]
  139. 139.
    Gomez-Escribano JP, Alt S, Bibb MJ. 2016.. Next generation sequencing of actinobacteria for the discovery of novel natural products. . Mar. Drugs 14:(4):78
    [Crossref] [Google Scholar]
  140. 140.
    Fullwood MJ, Wei C-L, Liu ET, Ruan Y. 2009.. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. . Genome Res. 19:(4):52132
    [Crossref] [Google Scholar]
  141. 141.
    Sun Z, Zhang W, Guo C, Yang X, Liu W, et al. 2015.. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. . PLOS ONE 10:(2):e0117912
    [Crossref] [Google Scholar]
  142. 142.
    Meleshko D, Mohimani H, Tracanna V, Hajirasouliha I, Medema MH, et al. 2019.. BiosyntheticSPAdes: reconstructing biosynthetic gene clusters from assembly graphs. . Genome Res. 29:(8):135262
    [Crossref] [Google Scholar]
  143. 143.
    Ansorge WJ, Katsila T, Patrinos GP. 2017.. Perspectives for future DNA sequencing techniques and applications. . In Molecular Diagnostics, ed. GP Patrinos , pp. 14153. London:: Academic
    [Google Scholar]
  144. 144.
    Sahlin K, Medvedev P. 2021.. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. . Nat. Commun. 12:(1):2
    [Crossref] [Google Scholar]
  145. 145.
    Wagner GE, Dabernig-Heinz J, Lipp M, Cabal A, Simantzik J, et al. 2023.. Real-time nanopore Q20+ sequencing enables extremely fast and accurate core genome MLST typing and democratizes access to high-resolution bacterial pathogen surveillance. . J. Clin. Microbiol. 61:(4):e0163122
    [Crossref] [Google Scholar]
  146. 146.
    Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, et al. 2020.. Redefining fundamental concepts of transcription initiation in bacteria. . Nat. Rev. Genet. 21:(11):699714
    [Crossref] [Google Scholar]
  147. 147.
    Carretero-Molina D, Ortiz-López FJ, Gren T, Oves-Costales D, Martín J, et al. 2022.. Discovery of gargantulides B and C, new 52-membered macrolactones from Amycolatopsis sp. complete absolute stereochemistry of the gargantulide family. . Org. Chem. Front. 9:(2):46270
    [Crossref] [Google Scholar]
  148. 148.
    Yue Q, Chen L, Li Y, Bills GF, Zhang X, et al. 2015.. Functional operons in secondary metabolic gene clusters in Glarea lozoyensis (fungi, ascomycota, leotiomycetes). . mBio 6:(3):e00703
    [Crossref] [Google Scholar]
  149. 149.
    Kominek J, Doering DT, Opulente DA, Shen X-X, Zhou X, et al. 2019.. Eukaryotic acquisition of a bacterial operon. . Cell 176:(6):135666.e10
    [Crossref] [Google Scholar]
  150. 150.
    Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, et al. 2015.. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. . PLOS ONE 10:(7):e0132628
    [Crossref] [Google Scholar]
  151. 151.
    Pfannenstiel BT, Keller NP. 2019.. On top of biosynthetic gene clusters: how epigenetic machinery influences secondary metabolism in fungi. . Biotechnol. Adv. 37:(6):107345
    [Crossref] [Google Scholar]
  152. 152.
    Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A. 2017.. A global coexpression network approach for connecting genes to specialized metabolic pathways in plants. . Plant Cell 29:(5):94459
    [Crossref] [Google Scholar]
  153. 153.
    Smit SJ, Lichman BR. 2022.. Plant biosynthetic gene clusters in the context of metabolic evolution. . Nat. Prod. Rep. 39:(7):146582
    [Crossref] [Google Scholar]
  154. 154.
    Muzafar S, Sharma RD, Chauhan N, Prasad R. 2021.. Intron distribution and emerging role of alternative splicing in fungi. . FEMS Microbiol. Lett. 368:(19):fnab135
    [Crossref] [Google Scholar]
  155. 155.
    Nachtweide S, Stanke M. 2019.. Multi-genome annotation with AUGUSTUS. . Methods Mol. Biol. 1962::13960
    [Crossref] [Google Scholar]
  156. 156.
    Hoff KJ, Stanke M. 2019.. Predicting genes in single genomes with AUGUSTUS. . Curr. Protoc. Bioinform. 65:(1):e57
    [Crossref] [Google Scholar]
  157. 157.
    Priest SJ, Yadav V, Heitman J. 2020.. Advances in understanding the evolution of fungal genome architecture [version 1; peer review: 2 approved]. . F1000Research 9::776
    [Crossref] [Google Scholar]
  158. 158.
    Pan R, Bai X, Chen J, Zhang H, Wang H. 2019.. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. . Front. Microbiol. 10::294
    [Crossref] [Google Scholar]
  159. 159.
    Bode HB, Bethe B, Höfs R, Zeeck A. 2002.. Big effects from small changes: possible ways to explore nature's chemical diversity. . ChemBioChem 3:(7):61927
    [Crossref] [Google Scholar]
  160. 160.
    Hemphill CFP, Sureechatchaiyan P, Kassack MU, Orfali RS, Lin W, et al. 2017.. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. . J. Antibiot. 70:(6):72632
    [Crossref] [Google Scholar]
  161. 161.
    Seyedsayamdost MR. 2014.. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. . PNAS 111:(20):726671
    [Crossref] [Google Scholar]
  162. 162.
    Wang X, Sena Filho JG, Hoover AR, King JB, Ellis TK, et al. 2010.. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an Atlantic-forest-soil-derived Penicillium citreonigrum. . J. Nat. Prod. 73:(5):94248
    [Crossref] [Google Scholar]
  163. 163.
    Tomm HA, Ucciferri L, Ross AC. 2019.. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. . J. Ind. Microbiol. Biotechnol. 46:(9–10):1381400
    [Crossref] [Google Scholar]
  164. 164.
    Ancheeva E, Küppers L, Akone SH, Ebrahim W, Liu Z, et al. 2017.. Expanding the metabolic profile of the fungus Chaetomium sp. through co-culture with autoclaved Pseudomonas aeruginosa. . Eur. J. Org. Chem. 2017:(22):325664
    [Crossref] [Google Scholar]
  165. 165.
    Hoshino S, Wong CP, Ozeki M, Zhang H, Hayashi F, et al. 2018.. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. . J. Antibiot. 71:(7):65357
    [Crossref] [Google Scholar]
  166. 166.
    Arora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. 2020.. Expanding the chemical diversity through microorganisms co-culture: current status and outlook. . Biotechnol. Adv. 40::107521
    [Crossref] [Google Scholar]
  167. 167.
    Zhang Z, He X, Zhang G, Che Q, Zhu T, et al. 2017.. Inducing secondary metabolite production by combined culture of Talaromyces aculeatus and Penicillium variabile. . J. Nat. Prod. 80:(12):316771
    [Crossref] [Google Scholar]
  168. 168.
    Khalil ZG, Cruz-Morales P, Licona-Cassani C, Marcellin E, Capon RJ. 2019.. Inter-kingdom beach warfare: Microbial chemical communication activates natural chemical defences. . ISME J. 13:(1):14758
    [Crossref] [Google Scholar]
  169. 169.
    Buijs Y, Zhang S-D, Jørgensen KM, Isbrandt T, Larsen TO, Gram L. 2021.. Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine Vibrionaceae strains. . FEMS Microbiol. Ecol. 97:(4):fiab041
    [Crossref] [Google Scholar]
  170. 170.
    Olano C, García I, González A, Rodriguez M, Rozas D, et al. 2014.. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. . Microb. Biotechnol. 7:(3):24256
    [Crossref] [Google Scholar]
  171. 171.
    Mingyar E, Mühling L, Kulik A, Winkler A, Wibberg D, et al. 2021.. A regulator based “semi-targeted” approach to activate silent biosynthetic gene clusters. . Int. J. Mol. Sci. 22:(14):7567
    [Crossref] [Google Scholar]
  172. 172.
    Alberti F, Leng DJ, Wilkening I, Song L, Tosin M, Corre C. 2019.. Triggering the expression of a silent gene cluster from genetically intractable bacteria results in scleric acid discovery. . Chem. Sci. 10:(2):45363
    [Crossref] [Google Scholar]
  173. 173.
    Albright JC, Henke MT, Soukup AA, McClure RA, Thomson RJ, et al. 2015.. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. . ACS Chem. Biol. 10:(6):153541
    [Crossref] [Google Scholar]
  174. 174.
    Gehrke EJ, Zhang X, Pimentel-Elardo SM, Johnson AR, Rees CA, et al. 2019.. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein lsr2. . eLife 8::e47691
    [Crossref] [Google Scholar]
  175. 175.
    Yuet KP, Liu CW, Lynch SR, Kuo J, Michaels W, et al. 2020.. Complete reconstitution and deorphanization of the 3 MDa nocardiosis-associated polyketide synthase. . J. Am. Chem. Soc. 142:(13):595257
    [Crossref] [Google Scholar]
  176. 176.
    Bilyk O, Sekurova ON, Zotchev SB, Luzhetskyy A. 2016.. Cloning and heterologous expression of the grecocycline biosynthetic gene cluster. . PLOS ONE 11:(7):e0158682
    [Crossref] [Google Scholar]
  177. 177.
    Sakai K, Kinoshita H, Nihira T. 2012.. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. . Appl. Microbiol. Biotechnol. 93:(5):201122
    [Crossref] [Google Scholar]
  178. 178.
    Luo Y, Zhang L, Barton KW, Zhao H. 2015.. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. . ACS Synth. Biol. 4:(9):100110
    [Crossref] [Google Scholar]
  179. 179.
    Eyles TH, Vior NM, Truman AW. 2018.. Rapid and robust yeast-mediated pathway refactoring generates multiple new bottromycin-related metabolites. . ACS Synth. Biol. 7:(5):121118
    [Crossref] [Google Scholar]
  180. 180.
    Gomez-Escribano JP, Bibb MJ. 2011.. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. . Microb. Biotechnol. 4:(2):20715
    [Crossref] [Google Scholar]
  181. 181.
    Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, et al. 2015.. Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA-specified Leu-tRNAUUA molecule. . ChemBioChem 16:(17):2498506
    [Crossref] [Google Scholar]
  182. 182.
    Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009.. Enzymatic assembly of DNA molecules up to several hundred kilobases. . Nat. Methods 6:(5):34345
    [Crossref] [Google Scholar]
  183. 183.
    Marillonnet S, Grützner R. 2020.. Synthetic DNA assembly using Golden Gate cloning and the hierarchical modular cloning pipeline. . Curr. Protoc. Mol. Biol. 130:(1):e115
    [Crossref] [Google Scholar]
  184. 184.
    Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, et al. 2004.. Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the multisite gateway system. . J. Biotechnol. 107:(3):23343
    [Crossref] [Google Scholar]
  185. 185.
    Luo X, Reiter MA, d'Espaux L, Wong J, Denby CM, et al. 2019.. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. . Nature 567:(7746):12326
    [Crossref] [Google Scholar]
  186. 186.
    Srinivasan P, Smolke CD. 2020.. Biosynthesis of medicinal tropane alkaloids in yeast. . Nature 585:(7826):61419
    [Crossref] [Google Scholar]
  187. 187.
    Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, et al. 2022.. A microbial supply chain for production of the anti-cancer drug vinblastine. . Nature 609:(7926):34147
    [Crossref] [Google Scholar]
  188. 188.
    Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. 2019.. Heterologous expression of bacterial natural product biosynthetic pathways. . Nat. Prod. Rep. 36:(10):141236
    [Crossref] [Google Scholar]
  189. 189.
    Whitford CM, Cruz-Morales P, Keasling JD, Weber T. 2021.. The Design-Build-Test-Learn cycle for metabolic engineering of streptomycetes. . Essays Biochem. 65:(2):26175
    [Crossref] [Google Scholar]
  190. 190.
    Palluk S, Arlow DH, de Rond T, Barthel S, Kang JS, et al. 2018.. De novo DNA synthesis using polymerase-nucleotide conjugates. . Nat. Biotechnol. 36:(7):64550
    [Crossref] [Google Scholar]
  191. 191.
    Harvey CJB, Tang M, Schlecht U, Horecka J, Fischer CR, et al. 2018.. HEx: a heterologous expression platform for the discovery of fungal natural products. . Sci. Adv. 4:(4):eaar5459
    [Crossref] [Google Scholar]
  192. 192.
    Jarczynska ZD, Rendsvig JKH, Pagels N, Viana VR, Nødvig CS, et al. 2021.. DIVERSIFY: a fungal multispecies gene expression platform. . ACS Synth. Biol. 10:(3):57988
    [Crossref] [Google Scholar]
  193. 193.
    Tong Y, Whitford CM, Blin K, Jørgensen TS, Weber T, Lee SY. 2020.. CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. . Nat. Protoc. 15:(8):2470502
    [Crossref] [Google Scholar]
  194. 194.
    Steele AD, Teijaro CN, Yang D, Shen B. 2019.. Leveraging a large microbial strain collection for natural product discovery. . J. Biol. Chem. 294:(45):1656776
    [Crossref] [Google Scholar]
  195. 195.
    Klapper M, Hübner A, Ibrahim A, Wasmuth I, Borry M, et al. 2023.. Natural products from reconstructed bacterial genomes of the middle and upper paleolithic. . Science 380:(6645):61924
    [Crossref] [Google Scholar]
  196. 196.
    Crits-Christoph A, Diamond S, Al-Shayeb B, Valentin-Alvarado L, Banfield JF. 2022.. A widely distributed genus of soil acidobacteria genomically enriched in biosynthetic gene clusters. . ISME Commun. 2:(1):70
    [Crossref] [Google Scholar]
  197. 197.
    Hossain GS, Saini M, Miyake R, Ling H, Chang MW. 2020.. Genetic biosensor design for natural product biosynthesis in microorganisms. . Trends Biotechnol. 38:(7):797810
    [Crossref] [Google Scholar]
  198. 198.
    Abdel-Magid AF. 2019.. Rapalogs potential as practical alternatives to rapamycin. . ACS Med. Chem. Lett. 10:(6):84345
    [Crossref] [Google Scholar]
  199. 199.
    Losada AA, Méndez C, Salas JA, Olano C. 2017.. Exploring the biocombinatorial potential of benzoxazoles: generation of novel caboxamycin derivatives. . Microb. Cell Fact. 16:(1):93
    [Crossref] [Google Scholar]
  200. 200.
    Li M, Chen Z, Lin X, Zhang X, Song Y, et al. 2008.. Engineering of avermectin biosynthetic genes to improve production of ivermectin in Streptomyces avermitilis. . Bioorg. Med. Chem. Lett. 18:(20):535963
    [Crossref] [Google Scholar]
  201. 201.
    Malmierca MG, Pérez-Victoria I, Martín J, Reyes F, Méndez C, et al. 2020.. New sipanmycin analogues generated by combinatorial biosynthesis and mutasynthesis approaches relying on the substrate flexibility of key enzymes in the biosynthetic pathway. . Appl. Environ. Microbiol. 86:(3):e02453-19
    [Crossref] [Google Scholar]
  202. 202.
    Kufs JE, Hoefgen S, Rautschek J, Bissell AU, Graf C, et al. 2020.. Rational design of flavonoid production routes using combinatorial and precursor-directed biosynthesis. . ACS Synth. Biol. 9:(7):182332
    [Crossref] [Google Scholar]
  203. 203.
    Ruffner DE, Schmidt EW, Heemstra JR. 2015.. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. . ACS Synth. Biol. 4:(4):48292
    [Crossref] [Google Scholar]
  204. 204.
    Tan Y, Wang M, Chen Y. 2022.. Reprogramming the biosynthesis of precursor peptide to create a selenazole-containing nosiheptide analogue. . ACS Synth. Biol. 11:(1):8591
    [Crossref] [Google Scholar]
  205. 205.
    Tao XB, LaFrance S, Xing Y, Nava AA, Martin HG, et al. 2023.. ClusterCAD 2.0: an updated computational platform for chimeric type I polyketide synthase and nonribosomal peptide synthetase design. . Nucleic Acids Res. 51:(D1):D53238
    [Crossref] [Google Scholar]
  206. 206.
    Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, et al. 2017.. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. . Nat. Commun. 8:(1):1206
    [Crossref] [Google Scholar]
  207. 207.
    Yuzawa S, Deng K, Wang G, Baidoo EEK, Northen TR, et al. 2017.. Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. . ACS Synth. Biol. 6:(1):13947
    [Crossref] [Google Scholar]
  208. 208.
    Bozhüyük KAJ, Linck A, Tietze A, Kranz J, Wesche F, et al. 2019.. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. . Nat. Chem. 11:(7):65361
    [Crossref] [Google Scholar]
  209. 209.
    Bozhüyük KAJ, Präve L, Kegler C, Kaiser S, Shi Y-N, et al. 2022.. Evolution inspired engineering of megasynthetases. . bioRxiv 2022.12.02.518901. https://doi.org/10.1101/2022.12.02.518901
  210. 210.
    Yang Y, Arnold FH. 2021.. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. . Acc. Chem. Res. 54:(5):120925
    [Crossref] [Google Scholar]
  211. 211.
    Huang J, Quest A, Cruz-Morales P, Deng K, Pereira JH, et al. 2023.. Complete integration of carbene-transfer chemistry into biosynthesis. . Nature 617::4038
    [Crossref] [Google Scholar]
  212. 212.
    Li JW-H, Vederas JC. 2009.. Drug discovery and natural products: end of an era or an endless frontier?. Science 325:(5937):16165
    [Crossref] [Google Scholar]
  213. 213.
    Delgadillo DA, Burch JE, Kim LJ, de Moraes LS, Niwa K, et al. 2023.. High-throughput identification of crystalline natural products from crude extracts enabled by microarray technology and microed. . ACS Cent. Sci. 10:(1):17683
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-104731
Loading
/content/journals/10.1146/annurev-biochem-032620-104731
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error