1932

Abstract

Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-105344
2022-06-21
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-105344.html?itemId=/content/journals/10.1146/annurev-biochem-032620-105344&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Antolin AA, Tym JE, Komianou A, Collins I, Workman P, Al-Lazikani B. 2018. Objective, quantitative, data-driven assessment of chemical probes. Cell Chem. Biol. 25:194–205.e5
    [Google Scholar]
  2. 2.
    Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J et al. 2015. The promise and peril of chemical probes. Nat. Chem. Biol. 11:536–41
    [Google Scholar]
  3. 3.
    Blagg J, Workman P. 2017. Choose and use your chemical probe wisely to explore cancer biology. Cancer Cell 32:9–25
    [Google Scholar]
  4. 4.
    Copeland RA, Boriack-Sjodin PA. 2018. The elements of translational chemical biology. Cell Chem. Biol. 25:128–34
    [Google Scholar]
  5. 5.
    Frye SV. 2010. The art of the chemical probe. Nat. Chem. Biol. 6:159–61
    [Google Scholar]
  6. 6.
    Bunnage ME, Chekler EL, Jones LH. 2013. Target validation using chemical probes. Nat. Chem. Biol. 9:195–99
    [Google Scholar]
  7. 7.
    Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T et al. 2017. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9:eaag1166
    [Google Scholar]
  8. 8.
    Overington JP, Al-Lazikani B, Hopkins AL. 2006. How many drug targets are there?. Nat. Rev. Drug Discov. 5:993–96
    [Google Scholar]
  9. 9.
    Muller S, Ackloo S, Arrowsmith CH, Bauser M, Baryza JL et al. 2018. Donated chemical probes for open science. eLife 7:e34311
    [Google Scholar]
  10. 10.
    Rodgers G, Austin C, Anderson J, Pawlyk A, Colvis C et al. 2018. Glimmers in illuminating the druggable genome. Nat. Rev. Drug Discov. 17:301–2
    [Google Scholar]
  11. 11.
    Scheer S, Ackloo S, Medina TS, Schapira M, Li F et al. 2019. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat. Commun. 10:19
    [Google Scholar]
  12. 12.
    Wells CI, Al-Ali H, Andrews DM, Asquith CRM, Axtman AD et al. 2021. The kinase chemogenomic set (KCGS): an open science resource for kinase vulnerability identification. Int. J. Mol. Sci. 22:566
    [Google Scholar]
  13. 13.
    Wu Q, Heidenreich D, Zhou S, Ackloo S, Kramer A et al. 2019. A chemical toolbox for the study of bromodomains and epigenetic signaling. Nat. Commun. 10:1915
    [Google Scholar]
  14. 14.
    Carter AJ, Kraemer O, Zwick M, Mueller-Fahrnow A, Arrowsmith CH, Edwards AM. 2019. Target 2035: probing the human proteome. Drug Discov. Today 24:2111–15
    [Google Scholar]
  15. 15.
    Barsyte-Lovejoy D, Szewczyk MM, Prinos P, Lima-Fernandes E, Ackloo S, Arrowsmith CH. 2016. Chemical biology approaches for characterization of epigenetic regulators. Methods Enzymol 574:79–103
    [Google Scholar]
  16. 16.
    Gordon LJ, Allen M, Artursson P, Hann MM, Leavens BJ et al. 2016. Direct measurement of intracellular compound concentration by RapidFire mass spectrometry offers insights into cell permeability. J. Biomol. Screen. 21:156–64
    [Google Scholar]
  17. 17.
    Berben P, Bauer-Brandl A, Brandl M, Faller B, Flaten GE et al. 2018. Drug permeability profiling using cell-free permeation tools: overview and applications. Eur. J. Pharm. Sci. 119:219–33
    [Google Scholar]
  18. 18.
    Hubatsch I, Ragnarsson EG, Artursson P. 2007. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2:2111–19
    [Google Scholar]
  19. 19.
    Foley CA, Potjewyd F, Lamb KN, James LI, Frye SV. 2020. Assessing the cell permeability of bivalent chemical degraders using the chloroalkane penetration assay. ACS Chem. Biol. 15:290–95
    [Google Scholar]
  20. 20.
    Garland M, Yim JJ, Bogyo M. 2016. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol. 23:122–36
    [Google Scholar]
  21. 21.
    Hira J, Uddin MJ, Haugland MM, Lentz CS. 2020. From differential stains to next generation physiology: chemical probes to visualize bacterial cell structure and physiology. Molecules 25:4949
    [Google Scholar]
  22. 22.
    Kocaoglu O, Carlson EE. 2016. Progress and prospects for small-molecule probes of bacterial imaging. Nat. Chem. Biol. 12:472–78
    [Google Scholar]
  23. 23.
    Zheng N, Tsai HN, Zhang X, Rosania GR. 2011. The subcellular distribution of small molecules: from pharmacokinetics to synthetic biology. Mol. Pharm. 8:1619–28
    [Google Scholar]
  24. 24.
    Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD et al. 2020. Quantifying target occupancy of small molecules within living cells. Annu. Rev. Biochem. 89:557–81
    [Google Scholar]
  25. 25.
    Vater M, Mockl L, Gormanns V, Schultz Fademrecht C, Mallmann AM et al. 2017. New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci. Rep. 7:44277
    [Google Scholar]
  26. 26.
    Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K et al. 2012. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488:404–8
    [Google Scholar]
  27. 27.
    Cai XC, Zhang T, Kim EJ, Jiang M, Wang K et al. 2019. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. eLife 8:e47110
    [Google Scholar]
  28. 28.
    Szewczyk MM, Ishikawa Y, Organ S, Sakai N, Li F et al. 2020. Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat. Commun. 11:2396
    [Google Scholar]
  29. 29.
    Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. 2017. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci. Rep. 7:43047
    [Google Scholar]
  30. 30.
    Drewes G, Knapp S. 2018. Chemoproteomics and chemical probes for target discovery. Trends Biotechnol 36:1275–86
    [Google Scholar]
  31. 31.
    Pasquer QTL, Tsakoumagkos IA, Hoogendoorn S. 2020. From phenotypic hit to chemical probe: chemical biology approaches to elucidate small molecule action in complex biological systems. Molecules 25:5702
    [Google Scholar]
  32. 32.
    Harding MW, Galat A, Uehling DE, Schreiber SL. 1989. A receptor for the immunosuppressant FK506 is a cis–trans peptidyl-prolyl isomerase. Nature 341:758–60
    [Google Scholar]
  33. 33.
    Huber KV, Salah E, Radic B, Gridling M, Elkins JM et al. 2014. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508:222–27
    [Google Scholar]
  34. 34.
    Benns HJ, Wincott CJ, Tate EW, Child MA. 2021. Activity- and reactivity-based proteomics: recent technological advances and applications in drug discovery. Curr. Opin. Chem. Biol. 60:20–29
    [Google Scholar]
  35. 35.
    Niphakis MJ, Cravatt BF. 2014. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83:341–77
    [Google Scholar]
  36. 36.
    Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W et al. 2015. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol. Biol. 1263:287–98
    [Google Scholar]
  37. 37.
    Qu Y, Olsen JR, Yuan X, Cheng PF, Levesque MP et al. 2018. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat. Chem. Biol. 14:94–101
    [Google Scholar]
  38. 38.
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T et al. 2014. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9:2100–22
    [Google Scholar]
  39. 39.
    Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784
    [Google Scholar]
  40. 40.
    West GM, Tang L, Fitzgerald MC. 2008. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal. Chem. 80:4175–85
    [Google Scholar]
  41. 41.
    Ogburn RN, Jin L, Meng H, Fitzgerald MC 2017. Discovery of tamoxifen and N-desmethyl tamoxifen protein targets in MCF-7 cells using large-scale protein folding and stability measurements. J. Proteome Res. 16:4073–85
    [Google Scholar]
  42. 42.
    Axelsson H, Almqvist H, Seashore-Ludlow B, Lundbäck T 2004. Screening for target engagement using the cellular thermal shift assay—CETSA. Assay Guidance Manual S Markossian, A Grossman, K Brimacombe, M Arkin, D Auld et al.781–806 Bethesda, MD: Eli Lilly & Co. and Natl. Cent. Adv. Transl. Sci.
    [Google Scholar]
  43. 43.
    Henderson MJ, Holbert MA, Simeonov A, Kallal LA. 2020. High-throughput cellular thermal shift assays in research and drug discovery. SLAS Discov 25:137–47
    [Google Scholar]
  44. 44.
    Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA et al. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87
    [Google Scholar]
  45. 45.
    Seashore-Ludlow B, Axelsson H, Lundbäck T. 2020. Perspective on CETSA literature: toward more quantitative data interpretation. SLAS Discov 25:118–26
    [Google Scholar]
  46. 46.
    Gao K, Oerlemans R, Groves MR. 2020. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys. Rev. 12:85–104
    [Google Scholar]
  47. 47.
    McNulty DE, Bonnette WG, Qi H, Wang L, Ho TF et al. 2018. A high-throughput dose-response cellular thermal shift assay for rapid screening of drug target engagement in living cells, exemplified using SMYD3 and IDO1. SLAS Discov 23:34–46
    [Google Scholar]
  48. 48.
    Nikam R, Kulandaisamy A, Harini K, Sharma D, Gromiha MM. 2021. ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Res 49:D420–24
    [Google Scholar]
  49. 49.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M et al. 2014. Mass-spectrometry-based draft of the human proteome. Nature 509:582–87
    [Google Scholar]
  50. 50.
    Friman T. 2020. Mass spectrometry-based cellular thermal shift assay (CETSA®) for target deconvolution in phenotypic drug discovery. Bioorg. Med. Chem. 28:115174
    [Google Scholar]
  51. 51.
    Franken H, Mathieson T, Childs D, Sweetman GM, Werner T et al. 2015. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10:1567–93
    [Google Scholar]
  52. 52.
    Liang YY, Bacanu S, Sreekumar L, Ramos AD, Dai L et al. 2021. CETSA interaction proteomics define specific RNA-modification pathways as key components of fluorouracil-based cancer drug cytotoxicity. Cell Chem. Biol https://doi.org/10.1016/j.chembiol.2021.06.007
    [Crossref] [Google Scholar]
  53. 53.
    Mateus A, Kurzawa N, Becher I, Sridharan S, Helm D et al. 2020. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. Biol. 16:e9232
    [Google Scholar]
  54. 54.
    Carnero Corrales MA, Zinken S, Konstantinidis G, Rafehi M, Abdelrahman A et al. 2021. Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chem. Biol. 28:1750–57.e5
    [Google Scholar]
  55. 55.
    Dart ML, Machleidt T, Jost E, Schwinn MK, Robers MB et al. 2018. Homogeneous assay for target engagement utilizing bioluminescent thermal shift. ACS Med. Chem. Lett. 9:546–51
    [Google Scholar]
  56. 56.
    Martinez NJ, Asawa RR, Cyr MG, Zakharov A, Urban DJ et al. 2018. A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase. Sci. Rep. 8:9472
    [Google Scholar]
  57. 57.
    Olson KR, Eglen RM. 2007. β galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev. Technol. 5:137–44
    [Google Scholar]
  58. 58.
    Asiaban JN, Milosevich N, Chen E, Bishop TR, Wang J et al. 2020. Cell-based ligand discovery for the ENL YEATS domain. ACS Chem. Biol. 15:895–903
    [Google Scholar]
  59. 59.
    Ward JA, Pinto-Fernandez A, Cornelissen L, Bonham S, Diaz-Saez L et al. 2020. Re-evaluating the mechanism of action of α,β-unsaturated carbonyl DUB inhibitors b-AP15 and VLX1570: a paradigmatic example of unspecific protein cross-linking with Michael acceptor motif-containing drugs. J. Med. Chem. 63:3756–62
    [Google Scholar]
  60. 60.
    Howard RT, Hemsley P, Petteruti P, Saunders CN, Molina Bermejo JA et al. 2020. Structure-guided design and in-cell target profiling of a cell-active target engagement probe for PARP inhibitors. ACS Chem. Biol. 15:325–33
    [Google Scholar]
  61. 61.
    Boute N, Jockers R, Issad T. 2002. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 23:351–54
    [Google Scholar]
  62. 62.
    Dale NC, Johnstone EKM, White CW, Pfleger KDG. 2019. NanoBRET: the bright future of proximity-based assays. Front. Bioeng. Biotechnol. 7:56
    [Google Scholar]
  63. 63.
    Robers MB, Vasta JD, Corona CR, Ohana RF, Hurst R et al. 2019. Quantitative, real-time measurements of intracellular target engagement using energy transfer. Methods Mol. Biol. 1888:45–71
    [Google Scholar]
  64. 64.
    Boursier ME, Levin S, Zimmerman K, Machleidt T, Hurst R et al. 2020. The luminescent HiBiT peptide enables selective quantitation of G protein–coupled receptor ligand engagement and internalization in living cells. J. Biol. Chem. 295:5124–35
    [Google Scholar]
  65. 65.
    Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA et al. 2015. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 6:10091
    [Google Scholar]
  66. 66.
    Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR et al. 2018. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. 25:206–14.e11
    [Google Scholar]
  67. 67.
    Waring MJ, Chen H, Rabow AA, Walker G, Bobby R et al. 2016. Potent and selective bivalent inhibitors of BET bromodomains. Nat. Chem. Biol. 12:1097–104
    [Google Scholar]
  68. 68.
    Wells CI, Vasta JD, Corona CR, Wilkinson J, Zimprich CA et al. 2020. Quantifying CDK inhibitor selectivity in live cells. Nat. Commun. 11:2743
    [Google Scholar]
  69. 69.
    Machleidt T, Woodroofe CC, Schwinn MK, Mendez J, Robers MB et al. 2015. NanoBRET–a novel BRET platform for the analysis of protein–protein interactions. ACS Chem. Biol. 10:1797–804
    [Google Scholar]
  70. 70.
    Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K et al. 2018. LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med. Chem. Lett. 9:612–17
    [Google Scholar]
  71. 71.
    Eram MS, Shen Y, Szewczyk M, Wu H, Senisterra G et al. 2016. A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol. 11:772–81
    [Google Scholar]
  72. 72.
    Kaniskan HU, Szewczyk MM, Yu Z, Eram MS, Yang X et al. 2015. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew. Chem. 54:5166–70
    [Google Scholar]
  73. 73.
    Kruk M, Widstrom N, Jena S, Wolter NL, Blankenhorn JF et al. 2019. Assays for tyrosine phosphorylation in human cells. Methods Enzymol 626:375–406
    [Google Scholar]
  74. 74.
    Limbutara K, Kelleher A, Yang CR, Raghuram V, Knepper MA. 2019. Phosphorylation changes in response to kinase inhibitor H89 in PKA-null cells. Sci. Rep. 9:2814
    [Google Scholar]
  75. 75.
    Fedoriw A, Rajapurkar SR, O'Brien S, Gerhart SV, Mitchell LH et al. 2019. Anti-tumor activity of the type I PRMT inhibitor, GSK3368715, synergizes with PRMT5 inhibition through MTAP loss. Cancer Cell 36:100–14.e25
    [Google Scholar]
  76. 76.
    Fong JY, Pignata L, Goy PA, Kawabata KC, Lee SC et al. 2019. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36:194–209.e9
    [Google Scholar]
  77. 77.
    Zhang SM, Desroses M, Hagenkort A, Valerie NCK, Rehling D et al. 2020. Development of a chemical probe against NUDT15. Nat. Chem. Biol. 16:1120–28
    [Google Scholar]
  78. 78.
    Lu H, Zhou Q, He J, Jiang Z, Peng C et al. 2020. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal. Transduct. Target Ther. 5:213
    [Google Scholar]
  79. 79.
    Lambert TJ. 2019. FPbase: a community-editable fluorescent protein database. Nat. Methods 16:277–78
    [Google Scholar]
  80. 80.
    Lang K, Chin JW. 2014. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114:4764–806
    [Google Scholar]
  81. 81.
    Shiraiwa K, Cheng R, Nonaka H, Tamura T, Hamachi I. 2020. Chemical tools for endogenous protein labeling and profiling. Cell Chem. Biol. 27:970–85
    [Google Scholar]
  82. 82.
    Liss V, Barlag B, Nietschke M, Hensel M. 2015. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy. Sci. Rep. 5:17740
    [Google Scholar]
  83. 83.
    Mitchell AL, Addy PS, Chin MA, Chatterjee A. 2017. A unique genetically encoded FRET pair in mammalian cells. ChemBioChem 18:511–14
    [Google Scholar]
  84. 84.
    Park SH, Ko W, Lee HS, Shin I. 2019. Analysis of protein–protein interaction in a single live cell by using a FRET system based on genetic code expansion technology. J. Am. Chem. Soc. 141:4273–81
    [Google Scholar]
  85. 85.
    Shrestha D, Jenei A, Nagy P, Vereb G, Szollosi J. 2015. Understanding FRET as a research tool for cellular studies. Int. J. Mol. Sci. 16:6718–56
    [Google Scholar]
  86. 86.
    Sun Y, Hays NM, Periasamy A, Davidson MW, Day RN. 2012. Monitoring protein interactions in living cells with fluorescence lifetime imaging microscopy. Methods Enzymol 504:371–91
    [Google Scholar]
  87. 87.
    Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C et al. 2010. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 6:449–56
    [Google Scholar]
  88. 88.
    Rudkouskaya A, Smith JT, Intes X, Barroso M. 2020. Quantification of trastuzumab-HER2 engagement in vitro and in vivo. Molecules 25:5976
    [Google Scholar]
  89. 89.
    Zal T. 2008. Visualization of protein interactions in living cells. Adv. Exp. Med. Biol. 640:183–97
    [Google Scholar]
  90. 90.
    Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A et al. 2013. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497:638–42
    [Google Scholar]
  91. 91.
    England CG, Ehlerding EB, Cai W. 2016. NanoLuc: A small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 27:1175–87
    [Google Scholar]
  92. 92.
    Lin A, Sheltzer JM. 2020. Discovering and validating cancer genetic dependencies: approaches and pitfalls. Nat. Rev. Genet. 21:671–82
    [Google Scholar]
  93. 93.
    Matsuo Y, Park JH, Miyamoto T, Yamamoto S, Hisada S et al. 2014. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis. Sci. Transl. Med. 6:259ra145
    [Google Scholar]
  94. 94.
    Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C et al. 2019. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11:eaaw8412
    [Google Scholar]
  95. 95.
    Thomenius MJ, Totman J, Harvey D, Mitchell LH, Riera TV et al. 2018. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. PLOS ONE 13:e0197372
    [Google Scholar]
  96. 96.
    Gjaltema RAF, Schulz EG. 2018. CRISPR/dCas9 switch systems for temporal transcriptional control. Methods Mol. Biol. 1767:167–85
    [Google Scholar]
  97. 97.
    Anderson DJ, Le Moigne R, Djakovic S, Kumar B, Rice J et al. 2015. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28:653–65
    [Google Scholar]
  98. 98.
    Jost M, Weissman JS. 2018. CRISPR approaches to small molecule target identification. ACS Chem. Biol. 13:366–75
    [Google Scholar]
  99. 99.
    Samarasinghe KTG, Crews CM. 2021. Targeted protein degradation: a promise for undruggable proteins. Cell Chem. Biol. 28:934–51
    [Google Scholar]
  100. 100.
    El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: a phenomenon in search of mechanisms. PLOS Genet 13:e1006780
    [Google Scholar]
  101. 101.
    Knight ZA, Shokat KM. 2007. Chemical genetics: where genetics and pharmacology meet. Cell 128:425–30
    [Google Scholar]
  102. 102.
    Nam SM, Kim JW, Yoo DY, Choi JH, Kim W et al. 2015. Comparison of pharmacological and genetic inhibition of cyclooxygenase-2: effects on adult neurogenesis in the hippocampal dentate gyrus. J. Vet. Sci. 16:245–51
    [Google Scholar]
  103. 103.
    Salanga CM, Salanga MC. 2021. Genotype to phenotype: CRISPR gene editing reveals genetic compensation as a mechanism for phenotypic disjunction of morphants and mutants. Int. J. Mol. Sci. 22:3472
    [Google Scholar]
  104. 104.
    Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. 2016. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep 15:210–18
    [Google Scholar]
  105. 105.
    Nabet B, Ferguson FM, Seong BKA, Kuljanin M, Leggett AL et al. 2020. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11:4687
    [Google Scholar]
  106. 106.
    Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S et al. 2018. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14:431–41
    [Google Scholar]
  107. 107.
    Chung HK, Jacobs CL, Huo Y, Yang J, Krumm SA et al. 2015. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11:713–20
    [Google Scholar]
  108. 108.
    Buckley DL, Raina K, Darricarrere N, Hines J, Gustafson JL et al. 2015. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem. Biol. 10:1831–37
    [Google Scholar]
  109. 109.
    Tovell H, Testa A, Maniaci C, Zhou H, Prescott AR et al. 2019. Rapid and reversible knockdown of endogenously tagged endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem. Biol. 14:882–92
    [Google Scholar]
  110. 110.
    Tomoshige S, Hashimoto Y, Ishikawa M. 2016. Efficient protein knockdown of HaloTag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand. Bioorg. Med. Chem. 24:3144–48
    [Google Scholar]
  111. 111.
    Jaeger MG, Winter GE. 2021. Fast-acting chemical tools to delineate causality in transcriptional control. Mol. Cell 81:1617–30
    [Google Scholar]
  112. 112.
    Prozzillo Y, Fattorini G, Santopietro MV, Suglia L, Ruggiero A et al. 2020. Targeted protein degradation tools: overview and future perspectives. Biology 9:421
    [Google Scholar]
  113. 113.
    Yesbolatova A, Tominari Y, Kanemaki MT. 2019. Ligand-induced genetic degradation as a tool for target validation. Drug Discov. Today Technol. 31:91–98
    [Google Scholar]
  114. 114.
    Schick S, Grosche S, Kohl KE, Drpic D, Jaeger MG et al. 2021. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53:269–78
    [Google Scholar]
  115. 115.
    Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L et al. 2017. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubule-destabilizing agent. Mol. Cell 68:210–23.e6
    [Google Scholar]
  116. 116.
    Kampmann M. 2017. Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells. Chem. Commun. 53:7162–67
    [Google Scholar]
  117. 117.
    Wei X, Yang J, Adair SJ, Ozturk H, Kuscu C et al. 2020. Targeted CRISPR screening identifies PRMT5 as synthetic lethality combinatorial target with gemcitabine in pancreatic cancer cells. PNAS 117:28068–79
    [Google Scholar]
  118. 118.
    Castells-Roca L, Tejero E, Rodriguez-Santiago B, Surralles J. 2021. CRISPR screens in synthetic lethality and combinatorial therapies for cancer. Cancers 13:1591
    [Google Scholar]
  119. 119.
    Volz JC, Schuller N, Elling U. 2019. Using functional genetics in haploid cells for drug target identification. Methods Mol. Biol. 1953:3–21
    [Google Scholar]
  120. 120.
    Allmeroth K, Horn M, Kroef V, Miethe S, Muller RU, Denzel MS. 2021. Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma. Leukemia 35:887–92
    [Google Scholar]
  121. 121.
    Goncalves E, Thomas M, Behan FM, Picco G, Pacini C et al. 2021. Minimal genome-wide human CRISPR-Cas9 library. Genome Biol 22:40
    [Google Scholar]
  122. 122.
    Blanck M, Budnik-Zawilska MB, Lenger SR, McGonigle JE, Martin GRA et al. 2020. A flexible, pooled CRISPR library for drug development screens. CRISPR J 3:211–22
    [Google Scholar]
  123. 123.
    Bodapati S, Daley TP, Lin X, Zou J, Qi LS. 2020. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol 21:62
    [Google Scholar]
  124. 124.
    Colic M, Wang G, Zimmermann M, Mascall K, McLaughlin M et al. 2019. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med 11:52
    [Google Scholar]
  125. 125.
    Zaritsky A. 2018. Sharing and reusing cell image data. Mol. Biol. Cell 29:1274–80
    [Google Scholar]
  126. 126.
    Ziegler S, Sievers S, Waldmann H. 2021. Morphological profiling of small molecules. Cell Chem. Biol. 28:300–19
    [Google Scholar]
  127. 127.
    Bray MA, Gustafsdottir SM, Rohban MH, Singh S, Ljosa V et al. 2017. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the cell painting assay. Gigascience 6:giw014
    [Google Scholar]
  128. 128.
    Ljosa V, Sokolnicki KL, Carpenter AE. 2012. Annotated high-throughput microscopy image sets for validation. Nat. Methods 9:637
    [Google Scholar]
  129. 129.
    Orloff DN, Iwasa JH, Martone ME, Ellisman MH, Kane CM. 2013. The cell: an image library–CCDB: a curated repository of microscopy data. Nucleic Acids Res 41:D1241–50
    [Google Scholar]
  130. 130.
    Singer JW, Al-Fayoumi S, Taylor J, Velichko S, O'Mahony A. 2019. Comparative phenotypic profiling of the JAK2 inhibitors ruxolitinib, fedratinib, momelotinib, and pacritinib reveals distinct mechanistic signatures. PLOS ONE 14:e0222944
    [Google Scholar]
  131. 131.
    Aissa AF, Islam A, Ariss MM, Go CC, Rader AE et al. 2021. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat. Commun. 12:1628
    [Google Scholar]
  132. 132.
    McFarland JM, Paolella BR, Warren A, Geiger-Schuller K, Shibue T et al. 2020. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11:4296
    [Google Scholar]
  133. 133.
    Yang X, Kui L, Tang M, Li D, Wei K et al. 2020. High-throughput transcriptome profiling in drug and biomarker discovery. Front. Genet. 11:19
    [Google Scholar]
  134. 134.
    Ho YJ, Anaparthy N, Molik D, Mathew G, Aicher T et al. 2018. Single-cell RNA-seq analysis identifies markers of resistance to targeted BRAF inhibitors in melanoma cell populations. Genome Res 28:1353–63
    [Google Scholar]
  135. 135.
    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC et al. 2006. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–35
    [Google Scholar]
  136. 136.
    Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE et al. 2017. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171:1437–52.e17
    [Google Scholar]
  137. 137.
    Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E et al. 2018. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst 6:13–24
    [Google Scholar]
  138. 138.
    Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ et al. 2018. Data portal for the library of integrated network-based cellular signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids Res. 46:D558–66
    [Google Scholar]
  139. 139.
    Fang M, Richardson B, Cameron CM, Dazard JE, Cameron MJ 2021. Drug perturbation gene set enrichment analysis (dpGSEA): a new transcriptomic drug screening approach. BMC Bioinform. 22:22
    [Google Scholar]
  140. 140.
    Gao S, Han L, Luo D, Liu G, Xiao Z et al. 2021. Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform. BMC Bioinform. 22:17
    [Google Scholar]
  141. 141.
    Kutchukian PS, Chang C, Fox SJ, Cook E, Barnard R et al. 2018. CHEMGENIE: integration of chemogenomics data for applications in chemical biology. Drug Discov. Today 23:151–60
    [Google Scholar]
  142. 142.
    Ren Y, Sivaganesan S, Clark NA, Zhang L, Biesiada J et al. 2020. Predicting mechanism of action of cellular perturbations with pathway activity signatures. Bioinformatics 36:4781–88
    [Google Scholar]
  143. 143.
    Ye C, Ho DJ, Neri M, Yang C, Kulkarni T et al. 2018. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 9:4307
    [Google Scholar]
  144. 144.
    Antolin AA, Workman P, Al-Lazikani B. 2021. Public resources for chemical probes: the journey so far and the road ahead. Future Med. Chem. 13:731–47
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-105344
Loading
/content/journals/10.1146/annurev-biochem-032620-105344
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error