1932

Abstract

Cryo–electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-110705
2022-06-21
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-110705.html?itemId=/content/journals/10.1146/annurev-biochem-032620-110705&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cheng Y. 2018. Single-particle cryo-EM—How did it get here and where will it go. Science 361:876–80
    [Google Scholar]
  2. 2.
    Turk M, Baumeister W. 2020. The promise and the challenges of cryo-electron tomography. FEBS Lett. 594:3243–61
    [Google Scholar]
  3. 3.
    Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S et al. 2020. Single-particle cryo-EM at atomic resolution. Nature 587:152–56
    [Google Scholar]
  4. 4.
    Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020. Atomic-resolution protein structure determination by cryo-EM. Nature 587:157–61
    [Google Scholar]
  5. 5.
    Zhang K, Pintilie GD, Li S, Schmid MF, Chiu W. 2020. Resolving individual atoms of protein complex by cryo-electron microscopy. Cell Res. 30:1136–39
    [Google Scholar]
  6. 6.
    Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. 2021. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5Å in cells. Nat. Methods 18:186–93
    [Google Scholar]
  7. 7.
    Dandey VP, Kahn P, Wei H, Carragher B, Potter CS. 2019. Scorpion: facilitating high throughput electron microscopy. Microsc. Microanal. 25:1002–3
    [Google Scholar]
  8. 8.
    Young G, Hundt N, Cole D, Fineberg A, Andrecka J et al. 2018. Quantitative mass imaging of single biological macromolecules. Science 360:423–27
    [Google Scholar]
  9. 9.
    Soltermann F, Foley EDB, Pagnoni V, Galpin M, Benesch JLP et al. 2020. Quantifying protein-protein interactions by molecular counting with mass photometry. Angew. Chem. Int. Ed. 59:10774–79
    [Google Scholar]
  10. 10.
    Olerinyova A, Sonn-Segev A, Gault J, Eichmann C, Schimpf J et al. 2021. Mass photometry of membrane proteins. Chem 7:224–36
    [Google Scholar]
  11. 11.
    Li Y, Struwe WB, Kukura P. 2020. Single molecule mass photometry of nucleic acids. Nucleic Acids Res. 48:e97
    [Google Scholar]
  12. 12.
    Choy BC, Cater RJ, Mancia F, Pryor EE Jr. 2021. A 10-year meta-analysis of membrane protein structural biology: detergents, membrane mimetics, and structure determination techniques. Biochim. Biophys. Acta Biomembranes 1863:183533
    [Google Scholar]
  13. 13.
    Autzen HE, Julius D, Cheng Y 2019. Membrane mimetic systems in CryoEM: keeping membrane proteins in their native environment. Curr. Opin. Struct. Biol. 58:259–68
    [Google Scholar]
  14. 14.
    Ho C-M, Beck JR, Lai M, Cui Y, Goldberg DE et al. 2018. Malaria parasite translocon structure and mechanism of effector export. Nature 561:70–75
    [Google Scholar]
  15. 15.
    Le Bon C, Michon B, Popot JL, Zoonens M 2021. Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q. Rev. Biophys. 54:e6
    [Google Scholar]
  16. 16.
    Yao X, Fan X, Yan N 2020. Cryo-EM analysis of a membrane protein embedded in the liposome. PNAS 117:18497–503
    [Google Scholar]
  17. 17.
    Tonggu L, Wang L. 2020. Cryo-EM sample preparation method for extremely low concentration liposomes. Ultramicroscopy 208:112849
    [Google Scholar]
  18. 18.
    Van Drie JH, Tong L. 2020. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett. 30:127524
    [Google Scholar]
  19. 19.
    Tan YZ, Zhang L, Rodrigues J, Zheng RB, Giacometti SI et al. 2020. Cryo-EM structures and regulation of arabinofuranosyltransferase AftD from mycobacteria. Mol. Cell 78:4683–99
    [Google Scholar]
  20. 20.
    Glaeser RM, Han BG. 2017. Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys. Rep. 3:1–7
    [Google Scholar]
  21. 21.
    Taylor KA, Glaeser RM. 2008. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J. Struct. Biol. 163:214–23
    [Google Scholar]
  22. 22.
    Noble AJ, Dandey VP, Wei H, Brasch J, Chase J et al. 2018. Routine single particle CryoEM sample and grid characterization by tomography. eLife 7:e34257
    [Google Scholar]
  23. 23.
    D'Imprima E, Floris D, Joppe M, Sánchez R, Grininger M, Kühlbrandt W 2019. Protein denaturation at the air-water interface and how to prevent it. eLife 8:e42747
    [Google Scholar]
  24. 24.
    Vinothkumar KR, Henderson R. 2016. Single particle electron cryomicroscopy: trends, issues and future perspective. Q. Rev. Biophys. 49:e13
    [Google Scholar]
  25. 25.
    Klebl DP, Gravett MSC, Kontziampasis D, Wright DJ, Bon RS et al. 2020. Need for speed: examining protein behavior during cryoEM grid preparation at different timescales. Structure 28:1238–48.e4
    [Google Scholar]
  26. 26.
    Han Y, Fan X, Wang H, Zhao F, Tully CG et al. 2020. High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. PNAS 117:1009–14
    [Google Scholar]
  27. 27.
    Naydenova K, Peet MJ, Russo CJ. 2019. Multifunctional graphene supports for electron cryomicroscopy. PNAS 116:11718–24
    [Google Scholar]
  28. 28.
    Han BG, Watson Z, Kang H, Pulk A, Downing KH et al. 2016. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. J. Struct. Biol. 195:238–44
    [Google Scholar]
  29. 29.
    Llaguno MC, Xu H, Shi L, Huang N, Zhang H et al. 2014. Chemically functionalized carbon films for single molecule imaging. J. Struct. Biol. 185:405–17
    [Google Scholar]
  30. 30.
    Yu G, Li K, Jiang W. 2016. Antibody-based affinity cryo-EM grid. Methods 100:16–24
    [Google Scholar]
  31. 31.
    Kastner B, Fischer N, Golas MM, Sander B, Dube P et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5:53–55
    [Google Scholar]
  32. 32.
    Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B et al. 2017. A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25:663–70.e3
    [Google Scholar]
  33. 33.
    Ashtiani D, Venugopal H, Belousoff M, Spicer B, Mak J et al. 2018. Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation. J. Struct. Biol. 203:94–101
    [Google Scholar]
  34. 34.
    Arnold SA, Albiez S, Bieri A, Syntychaki A, Adaixo R et al. 2017. Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. J. Struct. Biol. 197:220–26
    [Google Scholar]
  35. 35.
    Ravelli RBG, Nijpels FJ, Henderikx RJ, Weissenberger G, Thewessem S et al. 2020. Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nat. Commun. 11:2563
    [Google Scholar]
  36. 36.
    Rubinstein JL, Guo H, Ripstein ZA, Haydaroglu A, Au A et al. 2019. Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device. Acta Crystallogr. D Struct. Biol. 75:1063–70
    [Google Scholar]
  37. 37.
    Tan YZ, Rubinstein JL. 2020. Through-grid wicking enables high-speed cryoEM specimen preparation. Acta Crystallogr. D Struct. Biol. 76:1092–1103
    [Google Scholar]
  38. 38.
    Jain T, Sheehan P, Crum J, Carragher B, Potter CS. 2012. Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J. Struct. Biol. 179:68–75
    [Google Scholar]
  39. 39.
    Han H, Fulcher JM, Dandey VP, Iwasa JH, Sundquist WI et al. 2019. Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ ATPases. eLife 8:e44071
    [Google Scholar]
  40. 40.
    Liu Y, Zhou K, Zhang N, Wei H, Tan YZ et al. 2020. FACT caught in the act of manipulating the nucleosome. Nature 577:426–31
    [Google Scholar]
  41. 41.
    Unwin N. 1995. Acetylcholine receptor channel imaged in the open state. Nature 373:37–43
    [Google Scholar]
  42. 42.
    Frank J. 2017. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 200:303–6
    [Google Scholar]
  43. 43.
    Dandey VP, Budell WC, Wei H, Bobe D, Maruthi K et al. 2020. Time-resolved cryo-EM using Spotiton. Nat. Methods 17:897–900
    [Google Scholar]
  44. 44.
    Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H et al. 2009. Monolithic microfluidic mixing–spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168:388–95
    [Google Scholar]
  45. 45.
    Chen B, Kaledhonkar S, Sun M, Shen B, Lu Z et al. 2015. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23:1097–105
    [Google Scholar]
  46. 46.
    Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC et al. 2012. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177:630–37
    [Google Scholar]
  47. 47.
    Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D et al. 2012. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–28
    [Google Scholar]
  48. 48.
    Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10:584–90
    [Google Scholar]
  49. 49.
    Scheres SH. 2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665
    [Google Scholar]
  50. 50.
    Russo CJ, Passmore LA. 2014. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–80
    [Google Scholar]
  51. 51.
    Tan YZ, Baldwin PR, Davis JH, Williamson JR, Potter CS et al. 2017. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14:793–96
    [Google Scholar]
  52. 52.
    Naydenova K, Jia P, Russo CJ. 2020. Cryo-EM with sub–1 Å specimen movement. Science 370:223–26
    [Google Scholar]
  53. 53.
    Engstrom T, Clinger JA, Spoth KA, Clarke OB, Closs DS et al. 2021. High-resolution single-particle cryo-EM of samples vitrified in boiling nitrogen. IUCrJ 8:867–77
    [Google Scholar]
  54. 54.
    Armstrong M, Han B-G, Gomez S, Turner J, Fletcher DA, Glaeser RM. 2020. Microscale fluid behavior during cryo-EM sample blotting. Biophys. J. 118:708–19
    [Google Scholar]
  55. 55.
    Ricolleau C, Nelayah J, Oikawa T, Kohno Y, Braidy N et al. 2012. High resolution imaging and spectroscopy using CS-corrected TEM with cold FEG JEM-ARM200F. JEOL News 47:2–8
    [Google Scholar]
  56. 56.
    Kato T, Makino F, Nakane T, Terahara N, Kaneko T et al. 2019. CryoTEM with a cold field emission gun that moves structural biology into a new stage. Microsc. Microanal. 25:998–99
    [Google Scholar]
  57. 57.
    Wu M, Lander GC, Herzik MA Jr. 2020. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. J. Struct. Biol. X 4:100020
    [Google Scholar]
  58. 58.
    Peet MJ, Henderson R, Russo CJ. 2019. The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules. Ultramicroscopy 203:125–31
    [Google Scholar]
  59. 59.
    Naydenova K, McMullan G, Peet M, Lee Y, Edwards P et al. 2019. CryoEM at 100 keV: a demonstration and prospects. IUCrJ 6:1086–98
    [Google Scholar]
  60. 60.
    Zivanov J, Nakane T, Scheres SH. 2020. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7:253–67
    [Google Scholar]
  61. 61.
    Sun M, Azumaya CM, Tse E, Bulkley DP, Harrington MB et al. 2021. Practical considerations for using K3 cameras in CDS mode for high-resolution and high-throughput single particle cryo-EM. J. Struct. Biol. 213:107745
    [Google Scholar]
  62. 62.
    Eng ET, Kopylov M, Negro CJ, Dallaykan S, Rice WJ et al. 2019. Reducing cryoEM file storage using lossy image formats. J. Struct. Biol. 207:49–55
    [Google Scholar]
  63. 63.
    Guo H, Franken E, Deng Y, Benlekbir S, Singla Lezcano G et al. 2020. Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution. IUCrJ 7:860–69
    [Google Scholar]
  64. 64.
    Turnbaugh C, Axelrod JJ, Campbell SL, Dioquino JY, Petrov PN et al. 2021. High-power near-concentric Fabry-Perot cavity for phase contrast electron microscopy. Rev. Sci. Instrum. 92:053005
    [Google Scholar]
  65. 65.
    Buijsse B, Trompenaars P, Altin V, Danev R, Glaeser RM. 2020. Spectral DQE of the Volta phase plate. Ultramicroscopy 218:113079
    [Google Scholar]
  66. 66.
    Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS et al. 2000. Leginon: an automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132:33–45
    [Google Scholar]
  67. 67.
    Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F et al. 2005. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151:41–60
    [Google Scholar]
  68. 68.
    Cheng A, Negro C, Bruhn JF, Rice WJ, Dallakyan S et al. 2021. Leginon: new features and applications. Protein Sci 30:136–50
    [Google Scholar]
  69. 69.
    Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36–51
    [Google Scholar]
  70. 70.
    Zhang J, Nakamura N, Shimizu Y, Liang N, Liu X et al. 2009. JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles. J. Struct. Biol. 165:1–9
    [Google Scholar]
  71. 71.
    Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD et al. 2018. High resolution single particle cryo-electron microscopy using beam-image shift. J. Struct. Biol. 204:270–75
    [Google Scholar]
  72. 72.
    Glaeser RM, Typke D, Tiemeijer PC, Pulokas J, Cheng A. 2011. Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J. Struct. Biol. 174:1–10
    [Google Scholar]
  73. 73.
    Wu C, Huang X, Cheng J, Zhu D, Zhang X. 2019. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208:107396
    [Google Scholar]
  74. 74.
    Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ et al. 2018. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7:e42166
    [Google Scholar]
  75. 75.
    Xu H, Timm DE, Elhabian SY. 2020. Attention-guided quality assessment for automated cryo-EM grid screening. Medical Image Computing and Computer Assisted Intervention—MICCAI 2020 AL Martel 56–65 Cham, Switz: Springer
    [Google Scholar]
  76. 76.
    Yokoyama Y, Terada T, Shimizu K, Nishikawa K, Kozai D et al. 2020. Development of a deep learning-based method to identify “good” regions of a cryo-electron microscopy grid. Biophys. Rev. 12:349–54
    [Google Scholar]
  77. 77.
    Li Y, Cash JN, Tesmer JJG, Cianfrocco MA. 2020. High-throughput cryo-EM enabled by user-free preprocessing routines. Structure 28:858–69.e3
    [Google Scholar]
  78. 78.
    Mills DJ. 2021. Setting up and operating a cryo-EM laboratory. Q. Rev. Biophys. 54:e2
    [Google Scholar]
  79. 79.
    Sader K, Matadeen R, Castro Hartmann P, Halsan T, Schlichten C 2020. Industrial cryo-EM facility setup and management. Acta Crystallogr. D Struct. Biol. 76:313–25
    [Google Scholar]
  80. 80.
    Sherman MB, Trujillo J, Leahy I, Razmus D, Dehate R et al. 2013. Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB. J. Struct. Biol. 181:223–33
    [Google Scholar]
  81. 81.
    Alewijnse B, Ashton AW, Chambers MG, Chen S, Cheng A et al. 2017. Best practices for managing large cryoEM facilities. J. Struct. Biol. 199:225–36
    [Google Scholar]
  82. 82.
    Alink LM, Eng ET, Gheorghita R, Rice W, Cheng A et al. 2021. System environmental metrics collector for EM facilities. bioRxiv 2021.11.04.467268. https://doi.org/10.1101/2021.11.04.467268
    [Crossref]
  83. 83.
    Scapin G, Prosise WW, Wismer MK, Strickland C. 2017. A novel storage system for cryoEM samples. J. Struct. Biol. 199:84–86
    [Google Scholar]
  84. 84.
    Cianfrocco MA, Wong-Barmun M, Youn C, Wagner R, Leschziner A 2017. COSMIC2: a science gateway for cryo-electron microscopy structure determination. PEARC17: Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact D Hart , No. 22 New York: Assoc. Comput. Mach.
    [Google Scholar]
  85. 85.
    Bhella D. 2019. Cryo-electron microscopy: an introduction to the technique, and considerations when working to establish a national facility. Biophys. Rev. 11:515–19
    [Google Scholar]
  86. 86.
    Kandiah E, Giraud T, de Maria Antolinos A, Dobias F, Effantin G et al. 2019. CM01: a facility for cryo-electron microscopy at the European Synchrotron. Acta Crystallogr. D Struct. Biol. 75:528–35
    [Google Scholar]
  87. 87.
    Elmlund H, Elmlund D, Bengio S. 2013. PRIME: probabilistic initial 3D model generation for single-particle cryo-electron microscopy. Structure 21:1299–306
    [Google Scholar]
  88. 88.
    Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14:290–96
    [Google Scholar]
  89. 89.
    Li X, Grigorieff N, Cheng Y. 2010. GPU-enabled FREALIGN: accelerating single particle 3D reconstruction and refinement in Fourier space on graphics processors. J. Struct. Biol. 172:407–12
    [Google Scholar]
  90. 90.
    Tagare HD, Barthel A, Sigworth FJ 2010. An adaptive Expectation-Maximization algorithm with GPU implementation for electron cryomicroscopy. J. Struct. Biol. 171:256–65
    [Google Scholar]
  91. 91.
    Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B. 2009. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166:205–13
    [Google Scholar]
  92. 92.
    Wagner T, Merino F, Stabrin M, Moriya T, Antoni C et al. 2019. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2:218
    [Google Scholar]
  93. 93.
    Tegunov D, Cramer P. 2019. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16:1146–52
    [Google Scholar]
  94. 94.
    Bepler T, Morin A, Rapp M, Brasch J, Shapiro L et al. 2019. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16:1153–60
    [Google Scholar]
  95. 95.
    Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)779–88 Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96.
    Rogala KB, Gu X, Kedir JF, Abu-Remaileh M, Bianchi LF et al. 2019. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 366:468–75
    [Google Scholar]
  97. 97.
    Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, Sabatini DM 2019. Cryo-EM structure of the human FLCN-FNIP2-Rag-Ragulator complex. Cell 179:1319–29.e8
    [Google Scholar]
  98. 98.
    Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T et al. 2020. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27:1185–93
    [Google Scholar]
  99. 99.
    Consolati T, Locke J, Roostalu J, Chen ZA, Gannon J et al. 2020. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell 53:603–17.e8
    [Google Scholar]
  100. 100.
    Bilokapic S, Suskiewicz MJ, Ahel I, Halic M. 2020. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Nature 585:609–13
    [Google Scholar]
  101. 101.
    Sears AE, Albiez S, Gulati S, Wang B, Kiser P et al. 2020. Single particle cryo-EM of the complex between interphotoreceptor retinoid-binding protein and a monoclonal antibody. FASEB J. 34:13918–34
    [Google Scholar]
  102. 102.
    Stanisich JJ, Zyla DS, Afanasyev P, Xu J, Kipp A et al. 2020. The cryo-EM structure of the human uromodulin filament core reveals a unique assembly mechanism. eLife 9:e60265
    [Google Scholar]
  103. 103.
    Kasinath V, Beck C, Sauer P, Poepsel S, Kosmatka J et al. 2021. JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371:abc3393
    [Google Scholar]
  104. 104.
    Kern DM, Sorum B, Mali SS, Hoel CM, Sridharan S et al. 2021. Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat. Struct. Mol. Biol. 28:573–82
    [Google Scholar]
  105. 105.
    Zivanov J, Nakane T, Scheres SH. 2019. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6:5–17
    [Google Scholar]
  106. 106.
    Russo CJ, Henderson R. 2018. Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 187:26–33
    [Google Scholar]
  107. 107.
    DeRosier DJ. 2000. Correction of high-resolution data for curvature of the Ewald sphere. Ultramicroscopy 81:83–98
    [Google Scholar]
  108. 108.
    Bai XC, Rajendra E, Yang G, Shi Y, Scheres SH 2015. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4:e11182
    [Google Scholar]
  109. 109.
    Nakane T, Kimanius D, Lindahl E, Scheres SH 2018. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7:e36861
    [Google Scholar]
  110. 110.
    Nakane T, Scheres SH 2021. Multi-body refinement of cryo-EM images in RELION. CryoEM: Methods and Protocols T Gonen, BL Nannenga 145–60 New York: Humana Press
    [Google Scholar]
  111. 111.
    Punjani A, Fleet DJ. 2021. 3D Variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213:107702
    [Google Scholar]
  112. 112.
    Maji S, Liao H, Dashti A, Mashayekhi G, Ourmazd A, Frank J. 2020. Propagation of conformational coordinates across angular space in mapping the continuum of states from cryo-EM data by manifold embedding. J. Chem. Inf. Model. 60:2484–91
    [Google Scholar]
  113. 113.
    Chen M, Ludtke SJ. 2021. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18:930–36
    [Google Scholar]
  114. 114.
    Zhong ED, Bepler T, Berger B, Davis JH. 2021. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18:176–85
    [Google Scholar]
  115. 115.
    Burnley T, Palmer CM, Winn M. 2017. Recent developments in the CCP-EM software suite. Acta Crystallogr. D Struct. Biol. 73:469–77
    [Google Scholar]
  116. 116.
    Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC et al. 2018. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74:531–44
    [Google Scholar]
  117. 117.
    Wang RY-R, Song Y, Barad BA, Cheng Y, Fraser JS, DiMaio F 2016. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5:e17219
    [Google Scholar]
  118. 118.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–12
    [Google Scholar]
  119. 119.
    Croll TI. 2018. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74:519–30
    [Google Scholar]
  120. 120.
    Casañal A, Lohkamp B, Emsley P. 2020. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29:1055–64
    [Google Scholar]
  121. 121.
    Marques MA, Purdy MD, Yeager M. 2019. CryoEM maps are full of potential. Curr. Opin. Struct. Biol. 58:214–23
    [Google Scholar]
  122. 122.
    Tan YZ, Aiyer S, Mietzsch M, Hull JA, McKenna R et al. 2018. Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant. Nat. Commun. 9:3628
    [Google Scholar]
  123. 123.
    Rout MP, Sali A. 2019. Principles for integrative structural biology studies. Cell 177:1384–403
    [Google Scholar]
  124. 124.
    Hoh SW, Burnley T, Cowtan K. 2020. Current approaches for automated model building into cryo-EM maps using Buccaneer with CCP-EM. Acta Crystallogr. D Struct. Biol. 76:531–41
    [Google Scholar]
  125. 125.
    Terashi G, Kihara D. 2018. De novo main-chain modeling for EM maps using MAINMAST. Nat. Commun. 9:1618
    [Google Scholar]
  126. 126.
    Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. 2018. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15:905–8
    [Google Scholar]
  127. 127.
    Si D, Moritz SA, Pfab J, Hou J, Cao R et al. 2020. Deep learning to predict protein backbone structure from high-resolution cryo-EM density maps. Sci. Rep. 10:4282
    [Google Scholar]
  128. 128.
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L et al. 2020. Improved protein structure prediction using potentials from deep learning. Nature 577:706–10
    [Google Scholar]
  129. 129.
    Callaway E. 2020.. ‘ It will change everything’: DeepMind's AI makes gigantic leap in solving protein structures. Nature 588:203–4
    [Google Scholar]
  130. 130.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  131. 131.
    Lawson CL, Kryshtafovych A, Adams PD, Afonine PV, Baker ML et al. 2021. Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nat. Methods 18:156–64
    [Google Scholar]
  132. 132.
    WHO (World Health Organ.) 2022. WHO coronavirus (COVID-19) dashboard. Internet Resour., WHO Geneva, Switz: https://covid19.who.int/
  133. 133.
    Our World in Data 2022. Coronavirus (COVID-19) vaccinations Internet Resour., Our World in Data Oxford, UK: https://ourworldindata.org/covid-vaccinations#citation
  134. 134.
    Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–48
    [Google Scholar]
  135. 135.
    Liu L, Wang P, Nair MS, Yu J, Rapp M et al. 2020. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584:450–56
    [Google Scholar]
  136. 136.
    Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G et al. 2020. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 28:867–79.e5
    [Google Scholar]
  137. 137.
    Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR et al. 2020. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588:682–87
    [Google Scholar]
  138. 138.
    White JBR, Maskell DP, Howe A, Harrow M, Clare DK et al. 2021. Single particle cryo-electron microscopy: from sample to structure. J. Vis. Exp. 171:e62415
    [Google Scholar]
  139. 139.
    Weissenberger G, Henderikx RJM, Peters PJ. 2021. Understanding the invisible hands of sample preparation for cryo-EM. Nat. Methods 18:463–71
    [Google Scholar]
  140. 140.
    Punjani A, Zhang H, Fleet DJ. 2020. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17:1214–21
    [Google Scholar]
  141. 141.
    Terwilliger TC, Ludtke SJ, Read RJ, Adams PD, Afonine PV. 2020. Improvement of cryo-EM maps by density modification. Nat. Methods 17:923–27
    [Google Scholar]
  142. 142.
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–63
    [Google Scholar]
  143. 143.
    Leem J, Dunbar J, Georges G, Shi J, Deane CM. 2016. ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. mAbs 8:1259–68
    [Google Scholar]
  144. 144.
    Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67:355–67
    [Google Scholar]
  145. 145.
    Briggs JA. 2013. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23:261–67
    [Google Scholar]
  146. 146.
    Pyle E, Zanetti G. 2021. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem. J. 478:1827–45
    [Google Scholar]
  147. 147.
    Kaplan M, Nicolas WJ, Zhao W, Carter SD, Metskas LA et al. 2021. In situ imaging and structure determination of biomolecular complexes using electron cryo-tomography. CryoEM: Methods and Protocols T Gonen, BL Nannenga 83–111 New York: Humana Press
    [Google Scholar]
  148. 148.
    Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L 2021. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. bioRxiv 2021.04.04.438362. https://doi.org/10.1101/2021.04.04.438362
    [Crossref]
  149. 149.
    Bharat TA, Hoffmann PC, Kukulski W. 2018. Correlative microscopy of vitreous sections provides insights into BAR-domain organization in situ. Structure 26:879–86.e3
    [Google Scholar]
  150. 150.
    Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H et al. 2020. Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15:2041–70
    [Google Scholar]
  151. 151.
    Kuba J, Mitchels J, Hovorka M, Erdmann P, Berka L et al. 2021. Advanced cryo-tomography workflow developments–correlative microscopy, milling automation and cryo-lift-out. J. Microsc. 281:112–24
    [Google Scholar]
  152. 152.
    Jun S, Ro H-J, Bharda A, Kim SI, Jeoung D, Jung HS. 2019. Advances in cryo-correlative light and electron microscopy: applications for studying molecular and cellular events. Protein J. 38:609–15
    [Google Scholar]
  153. 153.
    Carter SD, Mamede JI, Hope TJ, Jensen GJ. 2020. Correlated cryogenic fluorescence microscopy and electron cryo-tomography shows that exogenous TRIM5α can form hexagonal lattices or autophagy aggregates in vivo. PNAS 117:29702–11
    [Google Scholar]
  154. 154.
    Yang JE, Larson MR, Sibert BS, Shrum S, Wright ER. 2021. CorRelator: interactive software for real-time high precision cryo-correlative light and electron microscopy. J. Struct. Biol. 213:107709
    [Google Scholar]
  155. 155.
    Gorelick S, Buckley G, Gervinskas G, Johnson TK, Handley A et al. 2019. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife 8:e45919
    [Google Scholar]
  156. 156.
    Klumpe S, Fung HKH, Goetz SK, Zagoriy I, Hampoelz B et al. 2021. A modular platform for streamlining automated cryo-FIB workflows. bioRxiv 2021.05.19.444745. https://doi.org/10.1101/2021.05.19.444745
    [Crossref]
  157. 157.
    Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T et al. 2019. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat. Methods 16:757–62
    [Google Scholar]
  158. 158.
    Moor H 1987. Theory and practice of high pressure freezing. Cryotechniques in Biological Electron Microscopy RA Steinbrecht, K Zierold 175–91 Berlin: Springer
    [Google Scholar]
  159. 159.
    Dahl R, Staehelin LA. 1989. High-pressure freezing for the preservation of biological structure: theory and practice. J. Electron Microsc. Tech. 13:165–74
    [Google Scholar]
  160. 160.
    Kelley K, Raczkowski AM, Klykov O, Jaroenlak P, Bobe D et al. 2021. Waffle method: a general and flexible approach for improving throughput in FIB-milling. bioRxiv 2020.10.28.359372. https://doi.org/10.1101/2020.10.28.359372
    [Crossref]
  161. 161.
    Watanabe R, Buschauer R, Böhning J, Audagnotto M, Lasker K et al. 2020. The in situ structure of Parkinson's disease-linked LRRK2. Cell 182:1508–18.e16
    [Google Scholar]
  162. 162.
    Tuijtel MW, Koster AJ, Jakobs S, Faas FG, Sharp TH. 2019. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9:1369
    [Google Scholar]
  163. 163.
    Moser F, Pražák V, Mordhorst V, Andrade DM, Baker LA et al. 2019. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. PNAS 116:4804–9
    [Google Scholar]
  164. 164.
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M et al. 2020. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367:aaz5357
    [Google Scholar]
  165. 165.
    Yan R, Venkatakrishnan SV, Liu J, Bouman CA, Jiang W. 2019. MBIR: a cryo-ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information. J. Struct. Biol. 206:183–92
    [Google Scholar]
  166. 166.
    Chen Y, Wang Z, Zhang J, Li L, Wan X et al. 2017. Accelerating electron tomography reconstruction algorithm ICON with GPU. Biophys. Rep. 3:36–42
    [Google Scholar]
  167. 167.
    Buchholz T-O, Jordan M, Pigino G, Jug F. 2019. Cryo-care: content-aware image restoration for cryo-transmission electron microscopy data Presented at 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) Venice, Italy:April 8–11
  168. 168.
    Bepler T, Kelley K, Noble AJ, Berger B. 2020. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11:5208
    [Google Scholar]
  169. 169.
    Chen M, Dai W, Sun SY, Jonasch D, He CY et al. 2017. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14:983
    [Google Scholar]
  170. 170.
    Zeng X, Leung MR, Zeev-Ben-Mordehai T, Xu M. 2018. A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation. J. Struct. Biol. 202:150–60
    [Google Scholar]
  171. 171.
    Xu M, Singla J, Tocheva EI, Chang YW, Stevens RC et al. 2019. De novo structural pattern mining in cellular electron cryotomograms. Structure 27:679–91.e14
    [Google Scholar]
  172. 172.
    Martinez-Sanchez A, Kochovski Z, Laugks U, Meyer zum Alten Borgloh J, Chakraborty S et al. 2020. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat. Methods 17:209–16
    [Google Scholar]
  173. 173.
    Gubins I, Chaillet ML, van der Schot G, Veltkamp RC, Förster F et al. 2020. SHREC 2020: classification in cryo-electron tomograms. Comput. Graph. 91:279–89
    [Google Scholar]
  174. 174.
    Lucas BA, Himes BA, Xue L, Grant T, Mahamid J, Grigorieff N 2021. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. eLife 10:e68946
    [Google Scholar]
  175. 175.
    Himes BA, Zhang P. 2018. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15:955–61
    [Google Scholar]
  176. 176.
    Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ 2019. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 16:1161–68
    [Google Scholar]
  177. 177.
    Bouvette J, Liu H-F, Du X, Zhou Y, Sikkema AP et al. 2021. Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography. Nat. Commun. 12:1957
    [Google Scholar]
  178. 178.
    Chen M, Ludtke S. 2021. Deep learning based mixed-dimensional GMM for characterizing variability in CryoEM. arXiv:2101.10356 [q-bio.BM]
  179. 179.
    Nguyen C, Gonen T. 2020. Beyond protein structure determination with MicroED. Curr. Opin. Struct. Biol. 64:51–58
    [Google Scholar]
  180. 180.
    Wang Y, Yang T, Xu H, Zou X, Wan W 2018. On the quality of the continuous rotation electron diffraction data for accurate atomic structure determination of inorganic compounds. J. Appl. Crystallogr. 51:1094–101
    [Google Scholar]
  181. 181.
    Bucker R, Hogan-Lamarre P, Mehrabi P, Schulz EC, Bultema LA et al. 2020. Serial protein crystallography in an electron microscope. Nat. Commun. 11:996
    [Google Scholar]
  182. 182.
    Lanza A, Margheritis E, Mugnaioli E, Cappello V, Garau G, Gemmi M. 2019. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ 6:178–88
    [Google Scholar]
  183. 183.
    Nannenga BL, Gonen T. 2019. The cryo-EM method microcrystal electron diffraction (MicroED). Nat. Methods 16:369–79
    [Google Scholar]
  184. 184.
    Xu H, Lebrette H, Clabbers MTB, Zhao J, Griese JJ et al. 2019. Solving a new R2lox protein structure by microcrystal electron diffraction. Sci. Adv. 5:eaax4621
    [Google Scholar]
  185. 185.
    Wampler RD, Begue NJ, Simpson GJ. 2008. Molecular design strategies for optimizing the nonlinear optical properties of chiral crystals. Cryst. Growth Des. 8:2589–94
    [Google Scholar]
  186. 186.
    de Wijn R, Rollet K, Engilberge S, McEwen AG, Hennig O et al. 2020. Monitoring the production of high diffraction-quality crystals of two enzymes in real time using in situ dynamic light scattering. Crystals 10:65
    [Google Scholar]
  187. 187.
    Gruene T, Wennmacher JTC, Zaubitzer C, Holstein JJ, Heidler J et al. 2018. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57:16313–17
    [Google Scholar]
  188. 188.
    Zhao J, Xu H, Lebrette H, Carroni M, Taberman H et al. 2021. A simple pressure-assisted method for MicroED specimen preparation. bioRxiv 665448. https://doi.org/10.1101/665448
    [Crossref]
  189. 189.
    Martynowycz MW, Shiriaeva A, Ge X, Hattne J, Nannenga BL et al. 2020. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. bioRxiv 2020.09.27.316109. https://doi.org/10.1101/2020.09.27.316109
    [Crossref]
  190. 190.
    Duyvesteyn HME, Kotecha A, Ginn HM, Hecksel CW, Beale EV et al. 2018. Machining protein microcrystals for structure determination by electron diffraction. PNAS 115:9569–73
    [Google Scholar]
  191. 191.
    Yonekura K, Ishikawa T, Maki-Yonekura S. 2019. A new cryo-EM system for electron 3D crystallography by eEFD. J. Struct. Biol. 206:243–53
    [Google Scholar]
  192. 192.
    Cichocka MO, Angstrom J, Wang B, Zou X, Smeets S. 2018. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 51:1652–61
    [Google Scholar]
  193. 193.
    Yonekura K, Maki-Yonekura S, Naitow H, Hamaguchi T, Takaba K. 2021. Machine learning-based real-time object locator/evaluator for cryo-EM data collection. Commun. Biol. 4:1044
    [Google Scholar]
  194. 194.
    Jones CG, Martynowycz MW, Hattne J, Fulton TJ, Stoltz BM et al. 2018. The cryoEM method microED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4:1587–92
    [Google Scholar]
  195. 195.
    Martynowycz MW, Clabbers MTB, Hattne J, Gonen T. 2021. Ab initio phasing macromolecular structures using electron-counted MicroED data. bioRxiv 2021.10.16.464672. https://doi.org/10.1101/2021.10.16.464672
    [Crossref]
  196. 196.
    Wolff AM, Young ID, Sierra RG, Brewster AS, Martynowycz MW et al. 2020. Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals. IUCrJ 7:306–23
    [Google Scholar]
  197. 197.
    Yonekura K, Maki-Yonekura S. 2016. Refinement of cryo-EM structures using scattering factors of charged atoms. J. Appl. Crystallogr. 49:1517–23
    [Google Scholar]
  198. 198.
    Blum TB, Housset D, Clabbers MTB, van Genderen E, Bacia-Verloop M et al. 2021. Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals. Acta Crystallogr. D Struct. Biol. 77:75–85
    [Google Scholar]
  199. 199.
    Yonekura K, Kato K, Ogasawara M, Tomita M, Toyoshima C. 2015. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. PNAS 112:3368–73
    [Google Scholar]
  200. 200.
    Martynowycz MW, Gonen T. 2021. Ligand incorporation into protein microcrystals for microED by on-grid soaking. Structure 29:88–95.e2
    [Google Scholar]
  201. 201.
    Lawson CL, Berman HM, Chiu W. 2020. Evolving data standards for cryo-EM structures. Struct. Dyn. 7:014701
    [Google Scholar]
  202. 202.
    Patwardhan A. 2017. Trends in the electron microscopy data bank (EMDB). Acta Crystallogr. D Struct. Biol. 73:503–8
    [Google Scholar]
  203. 203.
    Chiu W, Schmid MF, Pintilie G, Lawson CL. 2021. Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB and EMDB. J. Biol. Chem. 296:100560
    [Google Scholar]
  204. 204.
    Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ, Patwardhan A. 2016. EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13:387–88
    [Google Scholar]
  205. 205.
    Ellenberg J, Swedlow JR, Barlow M, Cook CE, Sarkans U et al. 2018. A call for public archives for biological image data. Nat. Methods 15:849–54
    [Google Scholar]
  206. 206.
    Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B et al. 2019. Federating structural models and data: outcomes from a workshop on archiving integrative structures. Structure 27:1745–59
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-110705
Loading
/content/journals/10.1146/annurev-biochem-032620-110705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error