1932

Abstract

Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-040320-104628
2022-06-21
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-040320-104628.html?itemId=/content/journals/10.1146/annurev-biochem-040320-104628&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Waldron KJ, Rutherford JC, Ford D, Robinson NJ. 2009. Metalloproteins and metal sensing. Nature 460:823–30
    [Google Scholar]
  2. 2.
    Barnham KJ, Bush AI. 2008. Metals in Alzheimer's and Parkinson's diseases. Curr. Opin. Chem. Biol. 12:222–28
    [Google Scholar]
  3. 3.
    Hambley TW. 2007. Metal-based therapeutics. Science 318:1392–93
    [Google Scholar]
  4. 4.
    Johnstone TC, Suntharalingam K, Lippard SJ. 2016. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 116:3436–86
    [Google Scholar]
  5. 5.
    Wang XY, Wang XH, Guo ZJ. 2015. Functionalization of platinum complexes for biomedical applications. Acc. Chem. Res. 48:2622–31
    [Google Scholar]
  6. 6.
    Sullivan MP, Holtkamp HU, Hartinger CG. 2018. Antitumor metallodrugs that target proteins. Metal Ions Life Sci. 18:351–86
    [Google Scholar]
  7. 7.
    Pérez-Arellano E, Rodriguez-Garcia MI, Galera Rodenas AB, de la Morena-Madrigal E 2018. Eradication of Helicobacter pylori infection with a new bismuth-based quadruple therapy in clinical practice. Gastroenterol. Hepatol. 41:145–52
    [Google Scholar]
  8. 8.
    Waldron KJ, Robinson NJ. 2009. How do bacterial cells ensure that metalloproteins get the correct metal?. Nat. Rev. Microbiol. 7:23–25
    [Google Scholar]
  9. 9.
    Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL II et al. 2010. Microbial metalloproteomes are largely uncharacterized. Nature 466:779–82
    [Google Scholar]
  10. 10.
    Andreini C, Bertini I, Rosato A. 2009. Metalloproteomes: a bioinformatic approach. Acc. Chem. Res. 42:1471–79
    [Google Scholar]
  11. 11.
    Williams RJP. 2001. Chemical selection of elements by cells. Coord. Chem. Rev. 216:583–95
    [Google Scholar]
  12. 12.
    Mounicou S, Szpunar J, Lobinski R. 2009. Metallomics: the concept and methodology. Chem. Soc. Rev. 38:1119–38
    [Google Scholar]
  13. 13.
    Haraguchi H. 2004. Metallomics as integrated biometal science. J. Anal. Atom Spectrom. 19:5–14
    [Google Scholar]
  14. 14.
    Roberts EA, Sarkar B. 2014. Metalloproteomics: focus on metabolic issues relating to metals. Curr. Opin. Clin. Nutr. Metab. Care 17:425–30
    [Google Scholar]
  15. 15.
    Fu D, Finney L. 2014. Metalloproteomics: challenges and prospective for clinical research applications. Expert Rev. Proteom. 11:13–19
    [Google Scholar]
  16. 16.
    Hagedoorn PL. 2015. Microbial metalloproteomics. Proteomes 3:424–39
    [Google Scholar]
  17. 17.
    Roberts BR, Lothian A, Hare DJ, Masters CL, Ryan TM, Grimm R. 2013. Metalloproteomics: principles, challenges and applications to neurodegeneration. Front. Aging Neurosci. 5:35
    [Google Scholar]
  18. 18.
    Hare DJ, Rembach A, Roberts BR. 2016. The emerging role of metalloproteomics in Alzheimer's disease research. Methods Mol. Biol. 1303:379–89
    [Google Scholar]
  19. 19.
    Wang YC, Wang HB, Li HY, Sun HZ 2015. Metallomic and metalloproteomic strategies in elucidating the molecular mechanisms of metallodrugs. Dalton Trans. 44:437–47
    [Google Scholar]
  20. 20.
    Sun XS, Tsang CN, Sun HZ. 2009. Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics 1:25–31
    [Google Scholar]
  21. 21.
    Wang HB, Zhou Y, Xu XH, Li HY, Sun HZ. 2020. Metalloproteomics in conjunction with other omics for uncovering the mechanism of action of metallodrugs: mechanism-driven new therapy development. Curr. Opin. Chem. Biol. 55:171–79
    [Google Scholar]
  22. 22.
    Wang YC, Li HY, Sun HZ. 2019. Metalloproteomics for unveiling the mechanism of action of metallodrugs. Inorg. Chem. 58:13673–85
    [Google Scholar]
  23. 23.
    Skinner OS, Haverland NA, Fornelli L, Melani RD, Do Vale LH et al. 2018. Top-down characterization of endogenous protein complexes with native proteomics. Nat. Chem. Biol. 14:36–41
    [Google Scholar]
  24. 24.
    Li HY, Wang RM, Sun HZ. 2019. Systems approaches for unveiling the mechanism of action of bismuth drugs: new medicinal applications beyond Helicobacter pylori infection. Acc. Chem. Res. 52:216–27
    [Google Scholar]
  25. 25.
    Xu XH, Wang HB, Li HY, Sun HZ. 2020. Metalloproteomic approaches for matching metals to proteins: the power of inductively coupled plasma mass spectrometry (ICP-MS). Chem. Lett. 49:697–704
    [Google Scholar]
  26. 26.
    Yin XB, Li Y, Yan XP. 2008. CE-ICP-MS for studying interactions between metals and biomolecules. Trends Anal. Chem. 27:554–65
    [Google Scholar]
  27. 27.
    Ferrer M, Golyshina OV, Beloqui A, Golyshin PN, Timmis KN. 2007. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445:91–94
    [Google Scholar]
  28. 28.
    Hu LG, Cheng TF, He B, Li L, Wang YC et al. 2013. Identification of metal-associated proteins in cells by using continuous-flow gel electrophoresis and inductively coupled plasma mass spectrometry. Angew. Chem. Int. Ed. 52:5016–20
    [Google Scholar]
  29. 29.
    Wang YC, Hu LG, Xu F, Quan Q, Lai YT et al. 2017. Integrative approach for the analysis of the proteome-wide response to bismuth drugs in Helicobacter pylori. Chem. Sci. 8:4626–33
    [Google Scholar]
  30. 30.
    Xu XH, Wang HB, Li HY, Hu XQ, Zhang Y et al. 2019. S-Dimethylarsino-glutathione (darinaparsin®) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. Chem. Commun. 55:13120–23
    [Google Scholar]
  31. 31.
    Wang YC, Hu LG, Yang XM, Chang YY, Hu XQ et al. 2015. Online coupling of continuous-flow gel electrophoresis with inductively coupled plasma-mass spectrometry to quantitatively evaluate intracellular metal binding properties of metallochaperones HpHypA and HpHspA in E. coli cells. Metallomics 7:1399–406
    [Google Scholar]
  32. 32.
    Wang HB, Yan AX, Liu ZG, Yang XM, Xu ZL et al. 2019. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLOS Biol 17:e3000292
    [Google Scholar]
  33. 33.
    Yan X, He B, Wang D, Hu L, Liu L et al. 2018. Two-dimensional (weak anion exchange chromatography-gel electrophoresis) separations coupling to inductively coupled plasma mass spectrometry strategy for analysis of metalloproteins. Talanta 184:404–10
    [Google Scholar]
  34. 34.
    Wang HB, Wang MJ, Xu XH, Gao P, Xu ZL et al. 2021. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 12:3331
    [Google Scholar]
  35. 35.
    Tsang CN, Bianga J, Sun HZ, Szpunar J, Lobinski R. 2012. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation–inductively coupled plasma mass spectrometry. Metallomics 4:277–83
    [Google Scholar]
  36. 36.
    Marks KM, Nolan GP. 2006. Chemical labeling strategies for cell biology. Nat. Methods 3:591–96
    [Google Scholar]
  37. 37.
    Jiang N, Li HY, Sun HZ. 2019. Recognition of proteins by metal chelation–based fluorescent probes in cells. Front. Chem. 7:560
    [Google Scholar]
  38. 38.
    Griffin BA, Adams SR, Tsien RY. 1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–72
    [Google Scholar]
  39. 39.
    Luedtke NW, Dexter RJ, Fried DB, Schepartz A. 2007. Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat. Chem. Biol. 3:779–84
    [Google Scholar]
  40. 40.
    Lai YT, Chang YY, Hu LG, Yang Y, Chao AL et al. 2015. Rapid labelling of intracellular His-tagged proteins in living cells. PNAS 112:2948–53
    [Google Scholar]
  41. 41.
    Yang Y, Jiang N, Lai YT, Chang YY, Yang XM et al. 2019. Green fluorescent probe for imaging His6-tagged proteins inside living cells. ACS Sens 4:1190–96
    [Google Scholar]
  42. 42.
    Chao AL, Jiang N, Yang Y, Li HY, Sun HZ. 2017. A Ni-NTA-based red fluorescence probe for protein labelling in live cells. J. Mater. Chem. B 5:1166–73
    [Google Scholar]
  43. 43.
    Yang XM, Koohi-Moghadam M, Wang RM, Chang YY, Woo PC et al. 2018. Metallochaperone UreG serves as a new target for design of urease inhibitor: a novel strategy for development of antimicrobials. PLOS Biol 16:e2003887
    [Google Scholar]
  44. 44.
    Lai YT, Yang Y, Hu LG, Cheng TF, Chang YY et al. 2017. Integration of fluorescence imaging with proteomics enables visualization and identification of metallo-proteomes in living cells. Metallomics 9:38–47
    [Google Scholar]
  45. 45.
    Jiang N, Cheng TF, Wang MJ, Chan GCF, Jin L et al. 2018. Tracking iron-associated proteomes in pathogens by a fluorescence approach. Metallomics 10:77–82
    [Google Scholar]
  46. 46.
    Wang YC, Han BJ, Xie YX, Wang HB, Wang RM et al. 2019. Combination of gallium (III) with acetate for combating antibiotic resistant Pseudomonas aeruginosa. Chem. Sci. 10:6099–106
    [Google Scholar]
  47. 47.
    Magnusdottir A, Johansson I, Dahlgren LG, Nordlund P, Berglund H. 2009. Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat. Methods 6:477–78
    [Google Scholar]
  48. 48.
    Abelin JG, Trantham PD, Penny SA, Patterson AM, Ward ST et al. 2015. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat. Protoc. 10:1308–18
    [Google Scholar]
  49. 49.
    Wang YC, Tsang CN, Xu F, Kong PW, Hu L et al. 2015. Bio-coordination of bismuth in Helicobacter pylori revealed by immobilized metal affinity chromatography. Chem. Commun. 51:16479–82
    [Google Scholar]
  50. 50.
    Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J et al. 2009. Immobilized-metal affinity chromatography (IMAC): a review. Method Enzymol 463:439–73
    [Google Scholar]
  51. 51.
    Ge RG, Sun HZ. 2007. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc. Chem. Res. 40:267–74
    [Google Scholar]
  52. 52.
    Lovett JH, Harris HH. 2021. Application of X-ray absorption and X-ray fluorescence techniques to the study of metallodrug action. Curr. Opin. Chem. Biol. 61:135–42
    [Google Scholar]
  53. 53.
    McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ. 2009. In situ imaging of metals in cells and tissues. Chem. Rev. 109:4780–827
    [Google Scholar]
  54. 54.
    Aitken JB, Levina A, Lay PA. 2011. Studies on the biotransformations and biodistributions of metal-containing drugs using X-ray absorption spectroscopy. Curr. Top. Med. Chem. 11:553–71
    [Google Scholar]
  55. 55.
    Shi W, Zhan C, Ignatov A, Manjasetty BA, Marinkovic N et al. 2005. Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics. Structure 13:1473–86
    [Google Scholar]
  56. 56.
    Grime GW, Zeldin OB, Snell ME, Lowe ED, Hunt JF et al. 2019. High-throughput PIXE as an essential quantitative assay for accurate metalloprotein structural analysis: development and application. J. Am. Chem. Soc. 142:185–97
    [Google Scholar]
  57. 57.
    Conesa JJ, Carrasco AC, Rodríguez-Fanjul V, Yang Y, Carrascosa JL et al. 2020. Unambiguous intracellular localization and quantification of a potent iridium anticancer compound by correlative 3D cryo X-ray imaging. Angew. Chem. Int. Ed. 59:1270–78
    [Google Scholar]
  58. 58.
    Romero-Canelón I, Sadler PJ. 2015. Systems approach to metal-based pharmacology. PNAS 112:4187–88
    [Google Scholar]
  59. 59.
    Anthony EJ, Bolitho EM, Bridgewater HE, Carter OW, Donnelly JM et al. 2020. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem. Sci. 11:12888–917
    [Google Scholar]
  60. 60.
    O'Connor A, Furuta T, Gisbert JP, O'Morain C 2020. Review—treatment of Helicobacter pylori infection 2020. Helicobacter 25:e12743
    [Google Scholar]
  61. 61.
    Han BJ, Zhang Z, Xie Y, Hu X, Wang H et al. 2018. Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem. Sci. 9:7488–97
    [Google Scholar]
  62. 62.
    Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. 2013. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 5:190ra81
    [Google Scholar]
  63. 63.
    Wang HB, Wang MJ, Yang XM, Xu XH, Hao Q et al. 2019. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli. Chem. Sci. 10:7193–99
    [Google Scholar]
  64. 64.
    Wang HB, Yang XM, Wang MJ, Hu ML, Xu XH et al. 2020. Atomic differentiation of silver binding preference in protein targets: Escherichia coli malate dehydrogenase as a paradigm. Chem. Sci. 11:11714–19
    [Google Scholar]
  65. 65.
    Steel TR, Hartinger CG. 2020. Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs. Metallomics 12:1627–23
    [Google Scholar]
  66. 66.
    Cunningham RM, DeRose VJ. 2017. Platinum binds proteins in the endoplasmic reticulum of S. cerevisiae and induces endoplasmic reticulum stress. ACS Chem. Biol. 12:2737–45
    [Google Scholar]
  67. 67.
    Chavez JD, Hoopmann MR, Weisbrod CR, Takara K, Bruce JE. 2011. Quantitative proteomic and interaction network analysis of cisplatin resistance in HeLa cells. PLOS ONE 6:e19892
    [Google Scholar]
  68. 68.
    Chappell NP, Teng PN, Hood BL, Wane GS, Darcy KM et al. 2012. Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer. J. Proteome Res. 11:4605–14
    [Google Scholar]
  69. 69.
    Coscia F, Lengyel E, Duraiswamy J, Ashcroft B, Bassani-Sternberg M et al. 2018. Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer. Cell 175:159–70
    [Google Scholar]
  70. 70.
    Shen S, Li XF, Cullen WR, Weinfeld M, Le XC. 2013. Arsenic binding to proteins. Chem. Rev. 113:7769–92
    [Google Scholar]
  71. 71.
    Chen B, Liu Q, Popowich A, Shen S, Yan X et al. 2015. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 7:39–55
    [Google Scholar]
  72. 72.
    Zhang HN, Yang LN, Ling JY, Czajkowsky DM, Wang JF et al. 2015. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. PNAS 112:15084–89
    [Google Scholar]
  73. 73.
    Zhang XY, Yang F, Shim JY, Kirk KL, Anderson DE, Chen XX. 2007. Identification of arsenic-binding proteins in human breast cancer cells. Cancer Lett. 255:95–106
    [Google Scholar]
  74. 74.
    Yan XW, Li JH, Liu QQ, Peng HY, Popowich A et al. 2016. p-Azidophenylarsenoxide: an arsenical “bait” for the in situ capture and identification of cellular arsenic-binding proteins. Angew. Chem. Int. Ed. 55:14051–56
    [Google Scholar]
  75. 75.
    Xu XH, Wang HB, Li HY, Sun HZ. 2021. Dynamic and temporal transcriptomic analysis reveals ferroptosis-mediated antileukemia activity of S-dimethylarsino-glutathione: insights into novel therapeutic strategy. CCS Chem. 3:1089–100
    [Google Scholar]
  76. 76.
    Babak MV, Meier SM, Huber KV, Reynisson J, Legin AA et al. 2015. Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action. Chem. Sci. 6:2449–56
    [Google Scholar]
  77. 77.
    Meier SM, Kreutz D, Winter L, Klose MH, Cseh K et al. 2017. An organoruthenium anticancer agent shows unexpected target selectivity for plectin. Angew. Chem. Int. Ed. 56:8267–71
    [Google Scholar]
  78. 78.
    Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S et al. 2021. Interaction with ribosomal proteins accompanies stress induction of the anticancer metallodrug BOLD-100/KP1339 in the endoplasmic reticulum. Angew. Chem. Int. Ed. 60:5063–68
    [Google Scholar]
  79. 79.
    Hu D, Liu Y, Lai YT, Tong KC, Fung YM et al. 2016. Anticancer gold(III) porphyrins target mitochondrial chaperone Hsp60. Angew. Chem. Int. Ed. 55:1387–91
    [Google Scholar]
  80. 80.
    Fung SK, Zou T, Cao B, Lee PY, Fung YME et al. 2017. Cyclometalated gold(III) complexes containing N-heterocyclic carbene ligands engage multiple anti-cancer molecular targets. Angew. Chem. Int. Ed. 56:3950–54
    [Google Scholar]
  81. 81.
    Frederickson CJ, Koh JY, Bush AI. 2005. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6:449–62
    [Google Scholar]
  82. 82.
    Anirudhan A, Prabu P, Sanyal J, Banerjee TK, Guha G et al. 2021. Interdependence of metals and its binding proteins in Parkinson's disease for diagnosis. NPJ Parkinsons Dis 7:3
    [Google Scholar]
  83. 83.
    Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M et al. 2004. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. PNAS 101:9843–48
    [Google Scholar]
  84. 84.
    Aron AT, Heffern MC, Lonergan ZR, Vander Wal MN, Blank BR et al. 2017. In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. PNAS 114:12669–74
    [Google Scholar]
  85. 85.
    Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG et al. 2010. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science 327:331–34
    [Google Scholar]
  86. 86.
    Kim BE, Nevitt T, Thiele DJ. 2008. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4:176–85
    [Google Scholar]
  87. 87.
    Li Y, Zamble DB. 2009. Nickel homeostasis and nickel regulation: an overview. Chem. Rev. 109:4617–43
    [Google Scholar]
  88. 88.
    Nies DH. 2007. How cells control zinc homeostasis. Science 317:1695–96
    [Google Scholar]
  89. 89.
    Santiago AG, Chen TY, Genova LA, Jung W, Thompson AMG et al. 2017. Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. PNAS 114:6694–99
    [Google Scholar]
  90. 90.
    Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. 2010. Affinity gradients drive copper to cellular destinations. Nature 465:645–48
    [Google Scholar]
  91. 91.
    Chacón KN, Mealman TD, McEvoy MM, Blackburn NJ. 2014. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. PNAS 111:15373–78
    [Google Scholar]
  92. 92.
    Gold B, Deng H, Bryk R, Vargas D, Eliezer D et al. 2008. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat. Chem. Biol. 4:609–16
    [Google Scholar]
  93. 93.
    Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. 2017. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat. Chem. Biol. 13:1016–21
    [Google Scholar]
  94. 94.
    Cheng T, Li HY, Xia W, Jin L, Sun HZ 2016. Exploration into the nickel “microcosmos” in prokaryotes. Coord. Chem. Rev. 311:24–37
    [Google Scholar]
  95. 95.
    Sydor AM, Zamble DB. 2013. Nickel metallomics: general themes guiding nickel homeostasis. Metal Ions Life Sci. 12:375–416
    [Google Scholar]
  96. 96.
    Jiménez-Lamana J, Szpunar J. 2017. Analytical approaches for the characterization of nickel proteome. Metallomics 9:1014–27
    [Google Scholar]
  97. 97.
    Sun X, Ge R, Chiu JF, Sun HZ, He QY. 2008. Identification of proteins related to nickel homeostasis in Helicobacter pylori by immobilized metal affinity chromatography and two-dimensional gel electrophoresis. Metal Based Drugs 2008:289490
    [Google Scholar]
  98. 98.
    Barnett JP, Scanlan DJ, Blindauer CA. 2012. Fractionation and identification of metalloproteins from a marine cyanobacterium. Anal. Bioanal. Chem. 402:3371–77
    [Google Scholar]
  99. 99.
    Ge R, Sun X, Gu Q, Watt RM, Tanner JA et al. 2007. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J. Biol. Inorg. Chem. 12:831–42
    [Google Scholar]
  100. 100.
    Ha NC, Oh ST, Sung JY, Cha KA, Lee MH, Oh BH. 2001. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Mol. Biol. 8:505–9
    [Google Scholar]
  101. 101.
    Cun S, Li HY, Ge R, Lin MC, Sun HZ. 2008. A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: implication for nickel homeostasis and bismuth susceptibility. J. Biol. Chem. 283:15142–51
    [Google Scholar]
  102. 102.
    Cun S, Sun HZ. 2010. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin. PNAS 107:4943–48
    [Google Scholar]
  103. 103.
    Yang X, Li HY, Lai TP, Sun HZ. 2015. UreE-UreG complex facilitates nickel transfer and preactivates GTPase of UreG in Helicobacter pylori. J. Biol. Chem. 290:12474–85
    [Google Scholar]
  104. 104.
    Yang X, Li H, Cheng T, Xia W, Lai YT, Sun HZ. 2014. Nickel translocation between metallochaperones HypA and UreE in Helicobacter pylori. Metallomics 6:1731–36
    [Google Scholar]
  105. 105.
    Li HY, Sun HZ. 2012. Recent advances in bioinorganic chemistry of bismuth. Curr. Opin. Chem. Biol. 16:74–83
    [Google Scholar]
  106. 106.
    Seshadri S, Benoit SL, Maier RJ. 2007. Roles of His-rich Hpn and Hpn-like proteins in Helicobacter pylori nickel physiology. J. Bacteriol. 189:4120–26
    [Google Scholar]
  107. 107.
    Ge R, Watt RM, Sun X, Tanner JA, He QY et al. 2006. Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem. J. 393:285–93
    [Google Scholar]
  108. 108.
    Zeng YB, Zhang DM, Li HY, Sun HZ. 2008. Binding of Ni2+ to a histidine- and glutamine-rich protein, Hpn-like. J. Biol. Inorg. Chem. 13:1121–31
    [Google Scholar]
  109. 109.
    Ernst FD, Kuipers EJ, Heijens A, Sarwari R, Stoof J et al. 2005. The nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori. Infect. Immun. 73:7252–58
    [Google Scholar]
  110. 110.
    Zhou Y, Li HY, Sun HZ. 2017. Cytotoxicity of arsenic trioxide in single leukemia cells by time-resolved ICP-MS together with lanthanide tags. Chem. Commun. 53:2970–73
    [Google Scholar]
  111. 111.
    Zhou Y, Wang HB, Tse E, Li HY, Sun HZ. 2018. Cell cycle–dependent uptake and cytotoxicity of arsenic-based drugs in single leukemia cells. Anal. Chem. 90:10465–71
    [Google Scholar]
  112. 112.
    Corte Rodríguez M, Álvarez-Fernández García R, Blanco E, Bettmer J, Montes-Bayón M 2017. Quantitative evaluation of cisplatin uptake in sensitive and resistant individual cells by single-cell ICP-MS (SC-ICP-MS). Anal. Chem. 89:11491–97
    [Google Scholar]
  113. 113.
    Tsang CN, Ho KS, Sun HZ, Chan WT. 2011. Tracking bismuth antiulcer drug uptake in single Helicobacter pylori cells. J. Am. Chem. Soc. 133:7355–57
    [Google Scholar]
  114. 114.
    Yang N, Sun HZ 2007. Biocoordination chemistry of bismuth: recent advances. Coord. Chem. Rev. 251:2354–66
    [Google Scholar]
  115. 115.
    Bendall SC, Simonds EF, Qiu P, El-ad DA, Krutzik PO et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–96
    [Google Scholar]
  116. 116.
    Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC. 2013. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immun. 62:5955–65
    [Google Scholar]
  117. 117.
    Comsa E, Nguyen KA, Loghin F, Boumendjel A, Peuchmaur M et al. 2018. Ovarian cancer cells cisplatin sensitization agents selected by mass cytometry target ABCC2 inhibition. Future Med. Chem. 10:1349–60
    [Google Scholar]
  118. 118.
    Chang Q, Ornatsky OI, Koch CJ, Chaudary N, Marie-Egyptienne DT et al. 2015. Single-cell measurement of the uptake, intratumoral distribution and cell cycle effects of cisplatin using mass cytometry. Int. J. Cancer 136:1202–9
    [Google Scholar]
  119. 119.
    Guo Y, Baumgart S, Stärk HJ, Harms H, Müller S. 2017. Mass cytometry for detection of silver at the bacterial single cell level. Front. Microbiol. 8:1326
    [Google Scholar]
  120. 120.
    López-Serrano Oliver A, Haase A, Peddinghaus A, Wittke D, Jakubowski N et al. 2019. Mass cytometry enabling absolute and fast quantification of silver nanoparticle uptake at the single cell level. Anal. Chem. 91:11514–19
    [Google Scholar]
  121. 121.
    Yang YSS, Atukorale PU, Moynihan KD, Bekdemir A, Rakhra K et al. 2017. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun. 8:14069
    [Google Scholar]
  122. 122.
    Ha MK, Kwon SJ, Choi JS, Nguyen NT, Song J et al. 2020. Mass cytometry and single-cell RNA-seq profiling of the heterogeneity in human peripheral blood mononuclear cells interacting with silver nanoparticles. Small 16:1907674
    [Google Scholar]
  123. 123.
    Malysheva A, Ivask A, Doolette CL, Voelcker NH, Lombi E. 2021. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. 13:926–32
    [Google Scholar]
  124. 124.
    Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A et al. 2014. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11:417–22
    [Google Scholar]
  125. 125.
    Chang Q, Ornatsky OI, Siddiqui I, Straus R, Baranov VI, Hedley DW. 2016. Biodistribution of cisplatin revealed by imaging mass cytometry identifies extensive collagen binding in tumor and normal tissues. Sci. Rep. 6:36641
    [Google Scholar]
  126. 126.
    Cao Y, Chang Q, Cabanero M, Zhang W, Hafezi-Bakhtiari S et al. 2019. Tumor platinum concentrations and pathological responses following cisplatin-containing chemotherapy in gastric cancer patients. J. Gastrointest. Cancer 50:801–7
    [Google Scholar]
  127. 127.
    Legin AA, Schintlmeister A, Jakupec MA, Galanski M, Lichtscheidl I et al. 2014. NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem. Sci. 5:3135–43
    [Google Scholar]
  128. 128.
    Lee RF, Escrig S, Croisier M, Clerc-Rosset S, Knott GW et al. 2015. NanoSIMS analysis of an isotopically labelled organometallic ruthenium(II) drug to probe its distribution and state in vitro. Chem. Commun. 51:16486–89
    [Google Scholar]
  129. 129.
    Theiner S, Schoeberl A, Schweikert A, Keppler BK, Koellensperger G. 2021. Mass spectrometry techniques for imaging and detection of metallodrugs. Curr. Opin. Chem. Biol. 61:123–34
    [Google Scholar]
  130. 130.
    Legin A, Theiner S, Schintlmeister A, Reipert S, Heffeter P et al. 2016. Multi-scale imaging of anticancer platinum(IV) compounds in murine tumor and kidney. Chem. Sci. 7:3052–61
    [Google Scholar]
  131. 131.
    Legin AA, Schintlmeister A, Sommerfeld NS, Eckhard M, Theiner S et al. 2020. Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. Nanoscale Adv 3:249–62
    [Google Scholar]
  132. 132.
    Hu D, Yang C, Lok CN, Xing F, Lee PY et al. 2019. An antitumor bis(N-heterocyclic carbene)platinum(II) complex that engages asparagine synthetase as an anticancer target. Angew. Chem. Int. Ed. 131:11030–34
    [Google Scholar]
  133. 133.
    Tong KC, Lok CN, Wan PK, Hu D, Fung YME et al. 2020. An anticancer gold(III)-activated porphyrin scaffold that covalently modifies protein cysteine thiols. PNAS 117:1321–29
    [Google Scholar]
  134. 134.
    Koohi-Moghadam M, Wang HB, Wang YC, Yang XM, Li HY et al. 2019. Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach. Nat. Mach. Intell. 1:561–67
    [Google Scholar]
  135. 135.
    Cheung TK, Lee CY, Bayer FP, McCoy A, Kuster B, Rose CM. 2021. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 18:76–83
    [Google Scholar]
  136. 136.
    Ke M, Yuan X, He A, Yu P, Chen W et al. 2021. Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nat. Commun. 12:71
    [Google Scholar]
  137. 137.
    Labib M, Kelley SO. 2020. Single-cell analysis targeting the proteome. Nat. Rev. Chem. 4:143–58
    [Google Scholar]
  138. 138.
    Slavov N. 2020. Unpicking the proteome in single cells. Science 367:512–13
    [Google Scholar]
  139. 139.
    da Veiga Leprevost F, Haynes SE, Avtonomov DM, Chang HY, Shanmugam AK et al. 2020. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17:869–70
    [Google Scholar]
  140. 140.
    Fang R, Preissl S, Li Y, Hou X, Lucero J et al. 2021. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat. Commun. 12:1337
    [Google Scholar]
  141. 141.
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C et al. 2014. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20:436–42
    [Google Scholar]
  142. 142.
    Keren L, Bosse M, Thompson S, Risom T, Vijayaragavan K et al. 2019. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5:eaax5851
    [Google Scholar]
  143. 143.
    Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020. Atomic-resolution protein structure determination by cryo-EM. Nature 587:157–61
    [Google Scholar]
  144. 144.
    Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ et al. 2020. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38:747–55
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-040320-104628
Loading
/content/journals/10.1146/annurev-biochem-040320-104628
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error