1932

Abstract

Cellular quality control systems sense and mediate homeostatic responses to prevent the buildup of aberrant macromolecules, which arise from errors during biosynthesis, damage by environmental insults, or imbalances in enzymatic and metabolic activity. Lipids are structurally diverse macromolecules that have many important cellular functions, ranging from structural roles in membranes to functions as signaling and energy-storage molecules. As with other macromolecules, lipids can be damaged (e.g., oxidized), and cells require quality control systems to ensure that nonfunctional and potentially toxic lipids do not accumulate. Ferroptosis is a form of cell death that results from the failure of lipid quality control and the consequent accumulation of oxidatively damaged phospholipids. In this review, we describe a framework for lipid quality control, using ferroptosis as an illustrative example to highlight concepts related to lipid damage, membrane remodeling, and suppression or detoxification of lipid damage via preemptive and damage-repair lipid quality control pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-033527
2024-08-02
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-052521-033527.html?itemId=/content/journals/10.1146/annurev-biochem-052521-033527&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S. 2004.. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. . Annu. Rev. Biochem. 73::3985
    [Crossref] [Google Scholar]
  2. 2.
    Sontag EM, Samant RS, Frydman J. 2017.. Mechanisms and functions of spatial protein quality control. . Annu. Rev. Biochem. 86::97122
    [Crossref] [Google Scholar]
  3. 3.
    Linster CL, Van Schaftingen E, Hanson AD. 2013.. Metabolite damage and its repair or pre-emption. . Nat. Chem. Biol. 9:(2):7280
    [Crossref] [Google Scholar]
  4. 4.
    Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, et al. 2022.. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. . Nat. Rev. Mol. Cell Biol. 23:(7):499515
    [Crossref] [Google Scholar]
  5. 5.
    van Meer G, Voelker DR, Feigenson GW. 2008.. Membrane lipids: where they are and how they behave. . Nat. Rev. Mol. Cell Biol. 9:(2):11224
    [Crossref] [Google Scholar]
  6. 6.
    Harayama T, Riezman H. 2018.. Understanding the diversity of membrane lipid composition. . Nat. Rev. Mol. Cell Biol. 19:(5):28196
    [Crossref] [Google Scholar]
  7. 7.
    Dowhan W. 2017.. Understanding phospholipid function: Why are there so many lipids?. J. Biol. Chem. 292:(26):1075566
    [Crossref] [Google Scholar]
  8. 8.
    Klose C, Surma MA, Simons K. 2013.. Organellar lipidomics—background and perspectives. . Curr. Opin. Cell Biol. 25:(4):40613
    [Crossref] [Google Scholar]
  9. 9.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, et al. 2005.. A comprehensive classification system for lipids. . J. Lipid Res. 46:(5):83961
    [Crossref] [Google Scholar]
  10. 10.
    Yin H, Xu L, Porter NA. 2011.. Free radical lipid peroxidation: mechanisms and analysis. . Chem. Rev. 111:(10):594472
    [Crossref] [Google Scholar]
  11. 11.
    Jiang X, Stockwell BR, Conrad M. 2021.. Ferroptosis: mechanisms, biology and role in disease. . Nat. Rev. Mol. Cell Biol. 22:(4):26682
    [Crossref] [Google Scholar]
  12. 12.
    Stockwell BR. 2022.. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. . Cell 185:(14):240121
    [Crossref] [Google Scholar]
  13. 13.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, et al. 2012.. Ferroptosis: an iron-dependent form of nonapoptotic cell death. . Cell 149:(5):106072
    [Crossref] [Google Scholar]
  14. 14.
    Christie WW, Harwood JL. 2020.. Oxidation of polyunsaturated fatty acids to produce lipid mediators. . Essays Biochem. 64:(3):40121
    [Crossref] [Google Scholar]
  15. 15.
    Cao W, Ramakrishnan R, Tuyrin VA, Veglia F, Condamine T, et al. 2014.. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. . J. Immunol. 192:(6):292031
    [Crossref] [Google Scholar]
  16. 16.
    Mohammadyani D, Tyurin VA, O'Brien M, Sadovsky Y, Gabrilovich DI, et al. 2014.. Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: mass spectrometry and coarse-grained simulations. . Free Radic. Biol. Med. 76::5360
    [Crossref] [Google Scholar]
  17. 17.
    Luu W, Sharpe LJ, Capell-Hattam I, Gelissen IC, Brown AJ. 2016.. Oxysterols: old tale, new twists. . Annu. Rev. Pharmacol. Toxicol. 56::44767
    [Crossref] [Google Scholar]
  18. 18.
    Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. 2020.. Connecting the “dots”: from free radical lipid autoxidation to cell pathology and disease. . Chem. Rev. 120:(23):1275787
    [Crossref] [Google Scholar]
  19. 19.
    Rubbo H, Radi R. 2008.. Protein and lipid nitration: role in redox signaling and injury. . Biochim. Biophys. Acta Gen. Subj. 1780:(11):131824
    [Crossref] [Google Scholar]
  20. 20.
    Schröter J, Schiller J. 2016.. Chlorinated phospholipids and fatty acids: (patho)physiological relevance, potential toxicity, and analysis of lipid chlorohydrins. . Oxidative Med. Cell. Longevity 2016::8386362
    [Crossref] [Google Scholar]
  21. 21.
    Minotti G, Aust SD. 1992.. Redox cycling of iron and lipid peroxidation. . Lipids 27:(3):21926
    [Crossref] [Google Scholar]
  22. 22.
    Braughler JM, Duncan LA, Chase RL. 1986.. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. . J. Biol. Chem. 261:(22):1028289
    [Crossref] [Google Scholar]
  23. 23.
    Wardman P, Candeias LP. 1996.. Fenton chemistry: an introduction. . Radiat. Res. 145:(5):52331
    [Crossref] [Google Scholar]
  24. 24.
    Tang Z, Zhao P, Wang H, Liu Y, Bu W. 2021.. Biomedicine meets Fenton chemistry. . Chem. Rev. 121:(4):19812019
    [Crossref] [Google Scholar]
  25. 25.
    Yang W-H, Ding C-KC, Sun T, Rupprecht G, Lin C-C, et al. 2019.. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. . Cell Rep. 28:(10):25018.e4
    [Crossref] [Google Scholar]
  26. 26.
    Subburayan K, Thayyullathil F, Pallichankandy S, Cheratta AR, Galadari S. 2020.. Superoxide-mediated ferroptosis in human cancer cells induced by sodium selenite. . Transl. Oncol. 13:(11):100843
    [Crossref] [Google Scholar]
  27. 27.
    Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, et al. 2018.. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. . Free Radic. Biol. Med. 117::4557
    [Crossref] [Google Scholar]
  28. 28.
    Oh S-J, Ikeda M, Ide T, Hur KY, Lee M-S. 2022.. Mitochondrial event as an ultimate step in ferroptosis. . Cell Death Discov. 8:(1):414
    [Crossref] [Google Scholar]
  29. 29.
    Baschieri A, Jin Z, Amorati R. 2023.. Hydroperoxyl radical (HOO•) as a reducing agent: unexpected synergy with antioxidants. A review. . Free Radic. Res. 57:(2):11529
    [Crossref] [Google Scholar]
  30. 30.
    Sawyer DT, Valentine JS. 1981.. How super is superoxide?. Acc. Chem. Res. 14:(12):393400
    [Crossref] [Google Scholar]
  31. 31.
    Bielski BHJ, Cabelli DE. 1995.. Superoxide and hydroxyl radical chemistry in aqueous solution. . In Active Oxygen in Chemistry, ed. CS Foote, JS Valentine, A Greenberg, JF Liebman , pp. 66104. Dordrecht:: Springer Netherlands
    [Google Scholar]
  32. 32.
    Zeng L, Xia T, Hu W, Chen S, Chi S, et al. 2018.. Visualizing the regulation of hydroxyl radical level by superoxide dismutase via a specific molecular probe. . Anal. Chem. 90:(2):131724
    [Crossref] [Google Scholar]
  33. 33.
    Marnett LJ, Wilcox AL. 1995.. The chemistry of lipid alkoxyl radicals and their role in metal-amplified lipid peroxidation. . Biochem. Soc. Symp. 61::6572
    [Crossref] [Google Scholar]
  34. 34.
    Wilcox AL, Marnett LJ. 1993.. Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: a key step in hydroperoxide-amplified lipid peroxidation. . Chem. Res. Toxicol. 6:(4):41316
    [Crossref] [Google Scholar]
  35. 35.
    Saraev DD, Wu Z, Kim H-YH, Porter NA, Pratt DA. 2023.. Intramolecular H-atom transfers in alkoxyl radical intermediates underlie the apparent oxidation of lipid hydroperoxides by Fe(II). . ACS Chem. Biol. 18:(9):207381
    [Crossref] [Google Scholar]
  36. 36.
    Esterbauer H, Jürgens G, Quehenberger O, Koller E. 1987.. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. . J. Lipid Res. 28:(5):495509
    [Crossref] [Google Scholar]
  37. 37.
    Schneider C, Porter NA, Brash AR. 2008.. Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. . J. Biol. Chem. 283:(23):1553943
    [Crossref] [Google Scholar]
  38. 38.
    Bochkov VN, Oskolkova OV, Birukov KG, Levonen A-L, Binder CJ, Stöckl J. 2010.. Generation and biological activities of oxidized phospholipids. . Antioxid. Redox Signal. 12:(8):100959
    [Crossref] [Google Scholar]
  39. 39.
    Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. 2003.. Singlet molecular oxygen generated from lipid hydroperoxides by the Russell mechanism: studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements. . J. Am. Chem. Soc. 125:(20):617279
    [Crossref] [Google Scholar]
  40. 40.
    Viedma-Poyatos Á, González-Jiménez P, Langlois O, Company-Marín I, Spickett CM, Pérez-Sala D. 2021.. Protein lipoxidation: basic concepts and emerging roles. . Antioxidants 10:(2):295
    [Crossref] [Google Scholar]
  41. 41.
    Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. 2013.. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. . Free Radic. Res. 47:(Suppl. 1):327
    [Crossref] [Google Scholar]
  42. 42.
    Feng Z, Hu W, Tang M-S. 2004.. Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. . PNAS 101:(23):8598602
    [Crossref] [Google Scholar]
  43. 43.
    Angeli JPF, Freitas FP, Nepachalovich P, Puentes L, Zilka O, et al. 2021.. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. . Preprint. Res. Sq. https://doi.org/10.21203/rs.3.rs-943221/v1
    [Google Scholar]
  44. 44.
    Yamada N, Karasawa T, Komada T, Matsumura T, Baatarjav C, et al. 2022.. DHCR7 as a novel regulator of ferroptosis in hepatocytes. . bioRxiv 2022.06.15.496212. https://doi.org/10.1101/2022.06.15.496212
    [Crossref]
  45. 45.
    Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, et al. 2019.. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. . Nature 575:(7784):68892
    [Crossref] [Google Scholar]
  46. 46.
    Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, et al. 2019.. FSP1 is a glutathione-independent ferroptosis suppressor. . Nature 575:(7784):69398
    [Crossref] [Google Scholar]
  47. 47.
    Ayala A, Muñoz MF, Argüelles S. 2014.. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. . Oxidative Med. Cell. Longevity 2014::360438
    [Crossref] [Google Scholar]
  48. 48.
    Gaschler MM, Stockwell BR. 2017.. Lipid peroxidation in cell death. . Biochem. Biophys. Res. Commun. 482:(3):41925
    [Crossref] [Google Scholar]
  49. 49.
    Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O'Donnell VB. 2020.. The biosynthesis of enzymatically oxidized lipids. . Front. Endocrinol. 11::591819
    [Crossref] [Google Scholar]
  50. 50.
    Kuhn H, Banthiya S, van Leyen K. 2015.. Mammalian lipoxygenases and their biological relevance. . Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1851:(4):30830
    [Crossref] [Google Scholar]
  51. 51.
    Chamulitrat W, Mason RP. 1990.. Alkyl free radicals from the β-scission of fatty acid alkoxyl radicals as detected by spin trapping in a lipoxygenase system. . Arch. Biochem. Biophys. 282:(1):6569
    [Crossref] [Google Scholar]
  52. 52.
    Takigawa Y, Koshiishi I. 2020.. Catalytic production of oxo-fatty acids by lipoxygenases is mediated by the radical-radical dismutation between fatty acid alkoxyl radicals and fatty acid peroxyl radicals in fatty acid assembly. . Chem. Pharm. Bull. 68:(3):25864
    [Crossref] [Google Scholar]
  53. 53.
    Mashima R, Okuyama T. 2015.. The role of lipoxygenases in pathophysiology; new insights and future perspectives. . Redox Biol. 6::297310
    [Crossref] [Google Scholar]
  54. 54.
    Rouzer CA, Marnett LJ. 2009.. Cyclooxygenases: structural and functional insights. . J. Lipid Res. 50::S2934
    [Crossref] [Google Scholar]
  55. 55.
    Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, et al. 2017.. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. . Nat. Chem. Biol. 13:(1):8190
    [Crossref] [Google Scholar]
  56. 56.
    Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. 2016.. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. . PNAS 113:(34):E496675
    [Crossref] [Google Scholar]
  57. 57.
    Chu B, Kon N, Chen D, Li T, Liu T, et al. 2019.. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. . Nat. Cell Biol. 21:(5):57991
    [Crossref] [Google Scholar]
  58. 58.
    Song S, Su Z, Kon N, Chu B, Li H, et al. 2023.. ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington's disease. . Genes Dev. 37:(5–6):20417
    [Crossref] [Google Scholar]
  59. 59.
    Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, et al. 2017.. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. . Cell 171:(3):62841.e26
    [Crossref] [Google Scholar]
  60. 60.
    Bedard K, Krause K-H. 2007.. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. . Physiol. Rev. 87:(1):245313
    [Crossref] [Google Scholar]
  61. 61.
    Zou Y, Li H, Graham ET, Deik AA, Eaton JK, et al. 2020.. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. . Nat. Chem. Biol. 16:(3):3029
    [Crossref] [Google Scholar]
  62. 62.
    Yan B, Ai Y, Sun Q, Ma Y, Cao Y, et al. 2021.. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. . Mol. Cell 81:(2):35569.e10
    [Crossref] [Google Scholar]
  63. 63.
    Shah R, Shchepinov MS, Pratt DA. 2018.. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. . ACS Cent. Sci. 4:(3):38796
    [Crossref] [Google Scholar]
  64. 64.
    Chen P-H, Wu J, Ding C-KC, Lin C-C, Pan S, et al. 2020.. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. . Cell Death Differ. 27:(3):100822
    [Crossref] [Google Scholar]
  65. 65.
    Damiani T, Bonciarelli S, Thallinger GG, Koehler N, Krettler CA, et al. 2023.. Software and computational tools for LC-MS-based epilipidomics: challenges and solutions. . Anal. Chem. 95:(1):287303
    [Crossref] [Google Scholar]
  66. 66.
    Criscuolo A, Nepachalovich P, Garcia-Del Rio DF, Lange M, Ni Z, et al. 2022.. Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma. . Nat. Commun. 13:(1):6547
    [Crossref] [Google Scholar]
  67. 67.
    Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, et al. 2022.. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. . Nature 608:(7924):77883
    [Crossref] [Google Scholar]
  68. 68.
    Ricciotti E, FitzGerald GA. 2011.. Prostaglandins and inflammation. . Arterioscler. Thromb. Vasc. Biol. 31:(5):9861000
    [Crossref] [Google Scholar]
  69. 69.
    Harayama T, Shimizu T. 2020.. Roles of polyunsaturated fatty acids, from mediators to membranes. . J. Lipid Res. 61:(8):115060
    [Crossref] [Google Scholar]
  70. 70.
    Lipowsky R. 2014.. Remodeling of membrane compartments: some consequences of membrane fluidity. . Biol. Chem. 395:(3):25374
    [Crossref] [Google Scholar]
  71. 71.
    Pope LE, Dixon SJ. 2023.. Regulation of ferroptosis by lipid metabolism. . Trends Cell Biol. https://doi.org/10.1016/j.tcb.2023.05.003
    [Crossref] [Google Scholar]
  72. 72.
    Lee J-Y, Nam M, Son HY, Hyun K, Jang SY, et al. 2020.. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. . PNAS 117:(51):3243342
    [Crossref] [Google Scholar]
  73. 73.
    Yamane D, Hayashi Y, Matsumoto M, Nakanishi H, Imagawa H, et al. 2022.. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. . Cell Chem. Biol. 29:(5):799810.e4
    [Crossref] [Google Scholar]
  74. 74.
    Farese RV, Walther TC. 2023.. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. . Cold Spring Harb. Perspect. Biol. 15:(5):a041246
    [Crossref] [Google Scholar]
  75. 75.
    Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, et al. 2017.. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. . Nat. Chem. Biol. 13:(1):9198
    [Crossref] [Google Scholar]
  76. 76.
    Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, et al. 2015.. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. . ACS Chem. Biol. 10:(7):16049
    [Crossref] [Google Scholar]
  77. 77.
    Reed A, Ichu T-A, Milosevich N, Melillo B, Schafroth MA, et al. 2022.. LPCAT3 inhibitors remodel the polyunsaturated phospholipid content of human cells and protect from ferroptosis. . ACS Chem. Biol. 17:(6):160718
    [Crossref] [Google Scholar]
  78. 78.
    Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, et al. 2020.. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. . Nature 585:(7826):6038
    [Crossref] [Google Scholar]
  79. 79.
    Yuki K, Shindou H, Hishikawa D, Shimizu T. 2009.. Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis. . J. Lipid Res. 50:(5):86069
    [Crossref] [Google Scholar]
  80. 80.
    Magtanong L, Ko P-J, To M, Cao JY, Forcina GC, et al. 2019.. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. . Cell Chem. Biol. 26:(3):42032.e9
    [Crossref] [Google Scholar]
  81. 81.
    Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, et al. 2023.. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. . Cell 186:(13):274864.e22
    [Crossref] [Google Scholar]
  82. 82.
    Rodencal J, Kim N, Li VL, He A, Lange M, et al. 2023.. A cell cycle-dependent ferroptosis sensitivity switch governed by EMP2. . bioRxiv 2023.07.19.549715. https://doi.org/10.1101/2023.07.19.549715
  83. 83.
    Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, et al. 2020.. Energy-stress-mediated AMPK activation inhibits ferroptosis. . Nat. Cell Biol. 22:(2):22534
    [Crossref] [Google Scholar]
  84. 84.
    Li C, Dong X, Du W, Shi X, Chen K, et al. 2020.. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. . Sig. Transduct. Target. Ther. 5:(1):187
    [Crossref] [Google Scholar]
  85. 85.
    Song X, Liu J, Kuang F, Chen X, Zeh HJ, et al. 2021.. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. . Cell Rep. 34:(8):108767
    [Crossref] [Google Scholar]
  86. 86.
    Bartolacci C, Andreani C, Vale G, Berto S, Melegari M, et al. 2022.. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. . Nat. Commun. 13:(1):4327
    [Crossref] [Google Scholar]
  87. 87.
    Cui W, Liu D, Gu W, Chu B. 2021.. Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis. . Cell Death Differ. 28:(8):253651
    [Crossref] [Google Scholar]
  88. 88.
    Rodencal J, Dixon SJ. 2023.. A tale of two lipids: Lipid unsaturation commands ferroptosis sensitivity. . Proteomics 23:(6):2100308
    [Crossref] [Google Scholar]
  89. 89.
    Perez MA, Magtanong L, Dixon SJ, Watts JL. 2020.. Dietary lipids induce ferroptosis in Caenorhabditis elegans and human cancer cells. . Dev. Cell 54:(4):44754.e4
    [Crossref] [Google Scholar]
  90. 90.
    Magtanong L, Mueller GD, Williams KJ, Billmann M, Chan K, et al. 2022.. Context-dependent regulation of ferroptosis sensitivity. . Cell Chem. Biol. 29:(9):140918.e6
    [Crossref] [Google Scholar]
  91. 91.
    Olzmann JA, Carvalho P. 2019.. Dynamics and functions of lipid droplets. . Nat. Rev. Mol. Cell Biol. 20:(3):13755
    [Crossref] [Google Scholar]
  92. 92.
    Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, et al. 2021.. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. . Cell Metab. 33:(8):170115.e5
    [Crossref] [Google Scholar]
  93. 93.
    Minami JK, Morrow D, Bayley NA, Fernandez EG, Salinas JJ, et al. 2023.. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. . Cancer Cell 41:(6):104860.e9
    [Crossref] [Google Scholar]
  94. 94.
    Jarc E, Kump A, Malavašič P, Eichmann TO, Zimmermann R, Petan T. 2018.. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863:(3):24765
    [Crossref] [Google Scholar]
  95. 95.
    Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, et al. 2015.. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. . Cell 163:(2):34053
    [Crossref] [Google Scholar]
  96. 96.
    Ioannou MS, Jackson J, Sheu S-H, Chang C-L, Weigel AV, et al. 2019.. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. . Cell 177:(6):152235.e14
    [Crossref] [Google Scholar]
  97. 97.
    Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, et al. 2015.. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. . Cell 160:(1–2):17790
    [Crossref] [Google Scholar]
  98. 98.
    Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, et al. 2017.. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. . Nat. Commun. 8:(1):2122
    [Crossref] [Google Scholar]
  99. 99.
    Porter NA, Xu L, Pratt DA. 2020.. Reactive sterol electrophiles: mechanisms of formation and reactions with proteins and amino acid nucleophiles. . Chemistry 2:(2):390417
    [Crossref] [Google Scholar]
  100. 100.
    Lamberson CR, Muchalski H, McDuffee KB, Tallman KA, Xu L, Porter NA. 2017.. Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol. . Chem. Phys. Lipids 207::5158
    [Crossref] [Google Scholar]
  101. 101.
    Xu L, Davis TA, Porter NA. 2009.. Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. . J. Am. Chem. Soc. 131:(36):1303744
    [Crossref] [Google Scholar]
  102. 102.
    Engelmann B, Brautigam C, Thiery J. 1994.. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low-density lipoproteins. . Biochem. Biophys. Res. Commun. 204:(3):123542
    [Crossref] [Google Scholar]
  103. 103.
    Zommara M, Tachibana N, Mitsui K, Nakatani N, Sakono M, et al. 1995.. Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. . Free Radic. Biol. Med. 18:(3):599602
    [Crossref] [Google Scholar]
  104. 104.
    Sindelar PJ, Guan Z, Dallner G, Ernster L. 1999.. The protective role of plasmalogens in iron-induced lipid peroxidation. . Free Radic. Biol. Med. 26:(3–4):31824
    [Crossref] [Google Scholar]
  105. 105.
    Zoeller RA, Grazia TJ, LaCamera P, Park J, Gaposchkin DP, Farber HW. 2002.. Increasing plasmalogen levels protects human endothelial cells during hypoxia. . Am. J. Physiol. Heart Circ. Physiol. 283:(2):H67179
    [Crossref] [Google Scholar]
  106. 106.
    Khan M, Singh J, Singh I. 2008.. Plasmalogen deficiency in cerebral adrenoleukodystrophy and its modulation by lovastatin. . J. Neurochem. 106:(4):176679
    [Crossref] [Google Scholar]
  107. 107.
    Perez MA, Clostio AJ, Houston IR, Ruiz J, Magtanong L, et al. 2022.. Ether lipid deficiency disrupts lipid homeostasis leading to ferroptosis sensitivity. . PLOS Genet. 18:(9):e1010436
    [Crossref] [Google Scholar]
  108. 108.
    Oborina EM, Yappert MC. 2003.. Effect of sphingomyelin versus dipalmitoylphosphatidylcholine on the extent of lipid oxidation. . Chem. Phys. Lipids 123:(2):22332
    [Crossref] [Google Scholar]
  109. 109.
    Slotte JP. 2016.. The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. . Biochim. Biophys. Acta Biomembr. 1858:(2):30410
    [Crossref] [Google Scholar]
  110. 110.
    Coliva G, Lange M, Colombo S, Chervet J-P, Domingues MR, Fedorova M. 2020.. Sphingomyelins prevent propagation of lipid peroxidation—LC-MS/MS evaluation of inhibition mechanisms. . Molecules 25:(8):1925
    [Crossref] [Google Scholar]
  111. 111.
    Lupanova T, Stefanova N, Petkova D, Staneva G, Jordanova A, et al. 2010.. Alterations in the content and physiological role of sphingomyelin in plasma membranes of cells cultured in three-dimensional matrix. . Mol. Cell Biochem. 340:(1–2):21522
    [Crossref] [Google Scholar]
  112. 112.
    Subbaiah PV, Subramanian VS, Wang K. 1999.. Novel physiological function of sphingomyelin in plasma. . J. Biol. Chem. 274:(51):3640914
    [Crossref] [Google Scholar]
  113. 113.
    Zhang X, Barraza KM, Beauchamp JL. 2018.. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. . PNAS 115:(13):325560
    [Crossref] [Google Scholar]
  114. 114.
    Liu C, Liao W, Chen J, Yu K, Wu Y, et al. 2023.. Cholesterol confers ferroptosis resistance onto myeloid-biased hematopoietic stem cells and prevents irradiation-induced myelosuppression. . Redox Biol. 62::102661
    [Crossref] [Google Scholar]
  115. 115.
    Traber MG, Atkinson J. 2007.. Vitamin E, antioxidant and nothing more. . Free Radic. Biol. Med. 43:(1):415
    [Crossref] [Google Scholar]
  116. 116.
    Brigelius-Flohé R, Traber MG. 1999.. Vitamin E: function and metabolism. . FASEB J. 13:(10):114555
    [Crossref] [Google Scholar]
  117. 117.
    Burton GW, Traber MG. 1990.. Vitamin E: antioxidant activity, biokinetics, and bioavailability. . Annu. Rev. Nutr. 10::35782
    [Crossref] [Google Scholar]
  118. 118.
    Upston JM, Terentis AC, Stocker R. 1999.. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. . FASEB J. 13:(9):97794
    [Crossref] [Google Scholar]
  119. 119.
    Packer JE, Slater TF, Willson RL. 1979.. Direct observation of a free radical interaction between vitamin E and vitamin C. . Nature 278:(5706):73738
    [Crossref] [Google Scholar]
  120. 120.
    Ognjanović BI, Marković SD, Ðorđević NZ, Trbojević IS, Štajn , Saičić ZS. 2010.. Cadmium-induced lipid peroxidation and changes in antioxidant defense system in the rat testes: protective role of coenzyme Q10 and Vitamin E. . Reprod. Toxicol. 29:(2):19197
    [Crossref] [Google Scholar]
  121. 121.
    Hendricks JM, Doubravsky CE, Wehri E, Li Z, Roberts MA, et al. 2023.. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. . Cell Chem. Biol. 30:(9):1090103.e7
    [Crossref] [Google Scholar]
  122. 122.
    Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, et al. 2023.. Phase separation of FSP1 promotes ferroptosis. . Nature 619:(7969):37177
    [Crossref] [Google Scholar]
  123. 123.
    Deshwal S, Onishi M, Tatsuta T, Bartsch T, Cors E, et al. 2023.. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. . Nat. Cell Biol. 25::24657
    [Google Scholar]
  124. 124.
    Kemmerer ZA, Robinson KP, Schmitz JM, Manicki M, Paulson BR, et al. 2021.. UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae. . Nat. Commun. 12:(1):4769
    [Crossref] [Google Scholar]
  125. 125.
    Horibata Y, Ando H, Satou M, Shimizu H, Mitsuhashi S, et al. 2017.. Identification of the N-terminal transmembrane domain of StarD7 and its importance for mitochondrial outer membrane localization and phosphatidylcholine transfer. . Sci. Rep. 7:(1):8793
    [Crossref] [Google Scholar]
  126. 126.
    Vervoort LMT, Ronden JE, Thijssen HHW. 1997.. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. . Biochem. Pharmacol. 54:(8):87176
    [Crossref] [Google Scholar]
  127. 127.
    Jin D-Y, Chen X, Liu Y, Williams CM, Pedersen LC, et al. 2023.. A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase. . Nat. Commun. 14:(1):828
    [Crossref] [Google Scholar]
  128. 128.
    Yang X, Wang Z, Zandkarimi F, Liu Y, Duan S, et al. 2023.. Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism. . Cell Metab. 35:(8):147490.e8
    [Crossref] [Google Scholar]
  129. 129.
    Mao C, Liu X, Zhang Y, Lei G, Yan Y, et al. 2021.. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. . Nature 593:(7860):58690
    [Crossref] [Google Scholar]
  130. 130.
    Mishima E, Nakamura T, Zheng J, Zhang W, Mourão ASD, et al. 2023.. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. . Nature 619:(7968):E918
    [Crossref] [Google Scholar]
  131. 131.
    Mao C, Liu X, Yan Y, Olszewski K, Gan B. 2023.. Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. . Nature 619:(7968):E1923
    [Crossref] [Google Scholar]
  132. 132.
    Soula M, Weber RA, Zilka O, Alwaseem H, La K, et al. 2020.. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. . Nat. Chem. Biol. 16:(12):135160
    [Crossref] [Google Scholar]
  133. 133.
    Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, et al. 2020.. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. . ACS Cent. Sci. 6:(1):4153
    [Crossref] [Google Scholar]
  134. 134.
    Gantner BN, LaFond KM, Bonini MG. 2020.. Nitric oxide in cellular adaptation and disease. . Redox Biol. 34::101550
    [Crossref] [Google Scholar]
  135. 135.
    Goss SPA, Singh RJ, Hogg N, Kalyanaraman B. 1999.. Reactions of NO, NO2 and peroxynitrite in membranes: physiological implications. . Free Radic. Res. 31:(6):597606
    [Crossref] [Google Scholar]
  136. 136.
    O'Donnell VB, Freeman BA. 2001.. Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. . Circ. Res. 88:(1):1221
    [Crossref] [Google Scholar]
  137. 137.
    Radi R. 2018.. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. . PNAS 115:(23):583948
    [Crossref] [Google Scholar]
  138. 138.
    Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. . Curr. Pharm. Des. 20:(22):354853
    [Crossref] [Google Scholar]
  139. 139.
    Hogg N, Kalyanaraman B. 1999.. Nitric oxide and lipid peroxidation. . Biochim. Biophys. Acta Bioenerget. 1411:(2):37884
    [Crossref] [Google Scholar]
  140. 140.
    Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, et al. 2020.. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. . Nat. Chem. Biol. 16:(3):27890
    [Crossref] [Google Scholar]
  141. 141.
    Homma T, Kobayashi S, Conrad M, Konno H, Yokoyama C, Fujii J. 2021.. Nitric oxide protects against ferroptosis by aborting the lipid peroxidation chain reaction. . Nitric Oxide 115::3443
    [Crossref] [Google Scholar]
  142. 142.
    He Q, Qu M, Xu C, Shi W, Hussain M, et al. 2022.. The emerging roles of nitric oxide in ferroptosis and pyroptosis of tumor cells. . Life Sci. 290::120257
    [Crossref] [Google Scholar]
  143. 143.
    Wu Z, Barayeu U, Schilling D, Dick TP, Pratt DA. 2023.. Emergence of (hydro)persulfides as suppressors of lipid peroxidation and ferroptotic cell death. . Curr. Opin. Chem. Biol. 76::102353
    [Crossref] [Google Scholar]
  144. 144.
    Wu Z, Khodade VS, Chauvin J-PR, Rodriguez D, Toscano JP, Pratt DA. 2022.. Hydropersulfides inhibit lipid peroxidation and protect cells from ferroptosis. . J. Am. Chem. Soc. 144:(34):1582537
    [Crossref] [Google Scholar]
  145. 145.
    Barayeu U, Schilling D, Eid M, Xavier da Silva TN, Schlicker L, et al. 2023.. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. . Nat. Chem. Biol. 19::2837
    [Crossref] [Google Scholar]
  146. 146.
    Lange M, Olzmann JA. 2022.. Hydropersulfides are endogenous antioxidants that inhibit ferroptosis. . Cell Chem. Biol. 29:(12):166163
    [Crossref] [Google Scholar]
  147. 147.
    Erdélyi K, Ditrói T, Johansson HJ, Czikora Á, Balog N, et al. 2021.. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation. . PNAS 118:(45):e2100050118
    [Crossref] [Google Scholar]
  148. 148.
    Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, et al. 2014.. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. . Nat. Cell Biol. 16:(12):118091
    [Crossref] [Google Scholar]
  149. 149.
    Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. 1982.. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. . Biochim. Biophys. Acta Lipids Lipid Metab. 710:(2):197211
    [Crossref] [Google Scholar]
  150. 150.
    Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, et al. 2014.. Regulation of ferroptotic cancer cell death by GPX4. . Cell 156:(1–2):31731
    [Crossref] [Google Scholar]
  151. 151.
    Brigelius-Flohé R, Maiorino M. 2013.. Glutathione peroxidases. . Biochim. Biophys. Acta Gen. Subj. 1830:(5):3289303
    [Crossref] [Google Scholar]
  152. 152.
    Maiorino M, Conrad M, Ursini F. 2018.. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. . Antioxidants Redox Signal. 29:(1):6174
    [Crossref] [Google Scholar]
  153. 153.
    Xavier da Silva TN, Friedmann Angeli JP, Ingold I. 2022.. GPX4: old lessons, new features. . Biochem. Soc. Trans. 50:(3):120513
    [Crossref] [Google Scholar]
  154. 154.
    Roveri A, Maiorino M, Nisii C, Ursini F. 1994.. Purification and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes. . Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1208:(2):21121
    [Crossref] [Google Scholar]
  155. 155.
    Maiorino M, Roveri A, Benazzi L, Bosello V, Mauri P, et al. 2005.. Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase. . J. Biol. Chem. 280:(46):38395402
    [Crossref] [Google Scholar]
  156. 156.
    Maiorino FM, Brigelius-Flohé R, Aumann KD, Roveri A, Schomburg D, Flohé L. 1995.. Diversity of glutathione peroxidases. . Methods Enzym. 252::3853
    [Crossref] [Google Scholar]
  157. 157.
    Cozza G, Rossetto M, Bosello-Travain V, Maiorino M, Roveri A, et al. 2017.. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. . Free Radic. Biol. Med. 112::111
    [Crossref] [Google Scholar]
  158. 158.
    Labrecque CL, Fuglestad B. 2021.. Electrostatic drivers of GPx4 interactions with membrane, lipids, and DNA. . Biochemistry 60:(37):276172
    [Crossref] [Google Scholar]
  159. 159.
    Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, et al. 2018.. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. . Cell 172:(3):40922.e21
    [Crossref] [Google Scholar]
  160. 160.
    Li Z, Ferguson L, Deol KK, Roberts MA, Magtanong L, et al. 2022.. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. . Nat. Chem. Biol. 18:(7):75161
    [Crossref] [Google Scholar]
  161. 161.
    Maiorino M, Aumann K-D, Brigelius-Flohé R, Doria D, van den Heuvel J, et al. 1995.. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). . Biol. Chem. 376:(11):65160
    [Google Scholar]
  162. 162.
    Orian L, Mauri P, Roveri A, Toppo S, Benazzi L, et al. 2015.. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study. . Free Radic. Biol. Med. 87::114
    [Crossref] [Google Scholar]
  163. 163.
    Kim H-Y, Fomenko DE, Yoon Y-E, Gladyshev VN. 2006.. Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. . Biochemistry 45:(46):13697704
    [Crossref] [Google Scholar]
  164. 164.
    Hazebrouck S, Camoin L, Faltin Z, Strosberg AD, Eshdat Y. 2000.. Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli. . J. Biol. Chem. 275:(37):2871521
    [Crossref] [Google Scholar]
  165. 165.
    Metanis N, Keinan E, Dawson PE. 2006.. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. . J. Am. Chem. Soc. 128:(51):1668491
    [Crossref] [Google Scholar]
  166. 166.
    Reich HJ, Hondal RJ. 2016.. Why nature chose selenium. . ACS Chem. Biol. 11:(4):82141
    [Crossref] [Google Scholar]
  167. 167.
    Chen D, Chu B, Yang X, Liu Z, Jin Y, et al. 2021.. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. . Nat. Commun. 12:(1):3644
    [Crossref] [Google Scholar]
  168. 168.
    Beharier O, Tyurin VA, Goff JP, Guerrero-Santoro J, Kajiwara K, et al. 2020.. PLA2G6 guards placental trophoblasts against ferroptotic injury. . PNAS 117:(44):2731928
    [Crossref] [Google Scholar]
  169. 169.
    Sun W-Y, Tyurin VA, Mikulska-Ruminska K, Shrivastava IH, Anthonymuthu TS, et al. 2021.. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. . Nat. Chem. Biol. 17:(4):46576
    [Crossref] [Google Scholar]
  170. 170.
    Oh M, Jang SY, Lee J-Y, Kim JW, Jung Y, et al. 2023.. Darapladib, an inhibitor of Lp-PLA2, sensitizes cancer cells to ferroptosis by remodeling lipid metabolism. . bioRxiv 2023.04.08.536136. https://doi.org/10.1101/2023.04.08.536136
  171. 171.
    Fisher AB, Vasquez-Medina JP, Dodia C, Sorokina EM, Tao J-Q, Feinstein SI. 2018.. Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. . Redox Biol. 14::4146
    [Crossref] [Google Scholar]
  172. 172.
    Fisher AB. 2018.. The phospholipase A2 activity of peroxiredoxin 6. . J. Lipid Res. 59:(7):113247
    [Crossref] [Google Scholar]
  173. 173.
    Fisher AB, Dodia C, Sorokina EM, Li H, Zhou S, et al. 2016.. A novel lysophosphatidylcholine acyl transferase activity is expressed by peroxiredoxin 6. . J. Lipid Res. 57:(4):58796
    [Crossref] [Google Scholar]
  174. 174.
    Li H, Benipal B, Zhou S, Dodia C, Chatterjee S, et al. 2015.. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. . Free Radic. Biol. Med. 87::35665
    [Crossref] [Google Scholar]
  175. 175.
    Chen J-W, Dodia C, Feinstein SI, Jain MK, Fisher AB. 2000.. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. . J. Biol. Chem. 275:(37):2842127
    [Crossref] [Google Scholar]
  176. 176.
    Rhee SG, Chae HZ, Kim K. 2005.. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. . Free Radic. Biol. Med. 38:(12):154352
    [Crossref] [Google Scholar]
  177. 177.
    Lu B, Chen X, Hong Y, Zhu H, He Q, et al. 2019.. Identification of PRDX6 as a regulator of ferroptosis. . Acta Pharmacol. Sin. 40:(10):133442
    [Crossref] [Google Scholar]
  178. 178.
    Fiskerstrand T, H'mida-Ben Brahim D, Johansson S, M'zahem A, Haukanes BI, et al. 2010.. Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. . Am. J. Hum. Genet. 87:(3):41017
    [Crossref] [Google Scholar]
  179. 179.
    Kelkar DS, Ravikumar G, Mehendale N, Singh S, Joshi A, et al. 2019.. A chemical-genetic screen identifies ABHD12 as an oxidized-phosphatidylserine lipase. . Nat. Chem. Biol. 15:(2):16978
    [Crossref] [Google Scholar]
  180. 180.
    Blankman JL, Long JZ, Trauger SA, Siuzdak G, Cravatt BF. 2013.. ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. . PNAS 110:(4):15005
    [Crossref] [Google Scholar]
  181. 181.
    Kathman SG, Boshart J, Jing H, Cravatt BF. 2020.. Blockade of the lysophosphatidylserine lipase ABHD12 potentiates ferroptosis in cancer cells. . ACS Chem. Biol. 15:(4):87177
    [Crossref] [Google Scholar]
  182. 182.
    Ichu T-A, Reed A, Ogasawara D, Ulanovskaya O, Roberts A, et al. 2020.. ABHD12 and LPCAT3 interplay regulates a lyso-phosphatidylserine-C20:4 phosphatidylserine lipid network implicated in neurological disease. . Biochemistry 59:(19):179399
    [Crossref] [Google Scholar]
  183. 183.
    Coste B, Xiao B, Santos JS, Syeda R, Grandl J, et al. 2012.. Piezo proteins are pore-forming subunits of mechanically activated channels. . Nature 483:(7388):17681
    [Crossref] [Google Scholar]
  184. 184.
    Lin Y-C, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. 2019.. Force-induced conformational changes in PIEZO1. . Nature 573:(7773):23034
    [Crossref] [Google Scholar]
  185. 185.
    Yang X, Lin C, Chen X, Li S, Li X, Xiao B. 2022.. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. . Nature 604:(7905):37783
    [Crossref] [Google Scholar]
  186. 186.
    Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, et al. 2023.. Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. . Curr. Biol. 33:(7):128294.e5
    [Crossref] [Google Scholar]
  187. 187.
    Guo X-W, Zhang H, Huang J-Q, Wang S-N, Lu Y, et al. 2021.. PIEZO1 ion channel mediates ionizing radiation-induced pulmonary endothelial cell ferroptosis via Ca2+/calpain/VE-cadherin signaling. . Front. Mol. Biosci. 8::725274
    [Crossref] [Google Scholar]
  188. 188.
    Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, et al. 2019.. Mammalian TRP ion channels are insensitive to membrane stretch. . J. Cell Sci. 132:(23):jcs238360
    [Crossref] [Google Scholar]
  189. 189.
    Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, et al. 2021.. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. . Cell Death Differ. 28:(5):164457
    [Crossref] [Google Scholar]
  190. 190.
    Riegman M, Sagie L, Galed C, Levin T, Steinberg N, et al. 2020.. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. . Nat. Cell Biol. 22:(9):104248
    [Crossref] [Google Scholar]
  191. 191.
    Wu Y, Lim Y-W, Stroud DA, Martel N, Hall TE, et al. 2023.. Caveolae sense oxidative stress through membrane lipid peroxidation and cytosolic release of CAVIN1 to regulate NRF2. . Dev. Cell 58:(5):37697.e4
    [Crossref] [Google Scholar]
  192. 192.
    Levonen A-L, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, et al. 2004.. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. . Biochem. J. 378:(2):37382
    [Crossref] [Google Scholar]
  193. 193.
    Dolinsky VW, Chan AYM, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JRB. 2009.. Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. . Circulation 119:(12):164352
    [Crossref] [Google Scholar]
  194. 194.
    Backos DS, Fritz KS, Roede JR, Petersen DR, Franklin CC. 2011.. Posttranslational modification and regulation of glutamate-cysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal. . Free Radic. Biol. Med. 50:(1):1426
    [Crossref] [Google Scholar]
  195. 195.
    Roede JR, Carbone DL, Doorn JA, Kirichenko OV, Reigan P, Petersen DR. 2008.. In vitro and in silico characterization of peroxiredoxin 6 modified by 4-hydroxynonenal and 4-oxononenal. . Chem. Res. Toxicol. 21:(12):228999
    [Crossref] [Google Scholar]
  196. 196.
    Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, et al. 2009.. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer's disease: role of lipid peroxidation in Alzheimer's disease pathogenesis. . Proteom. Clin. Appl. 3:(6):68293
    [Crossref] [Google Scholar]
  197. 197.
    Go Y-M, Halvey PJ, Hansen JM, Reed M, Pohl J, Jones DP. 2007.. Reactive aldehyde modification of thioredoxin-1 activates early steps of inflammation and cell adhesion. . Am. J. Pathol. 171:(5):167081
    [Crossref] [Google Scholar]
  198. 198.
    Moos PJ, Edes K, Cassidy P, Massuda E, Fitzpatrick FA. 2003.. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxia-inducible factor by impairing the selenoprotein thioredoxin reductase. . J. Biol. Chem. 278:(2):74550
    [Crossref] [Google Scholar]
  199. 199.
    Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N, et al. 2021.. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. . Cell Metab. 33:(1):17489.e7
    [Crossref] [Google Scholar]
  200. 200.
    Amos A, Jiang N, Zong D, Gu J, Zhou J, et al. 2023.. Depletion of SOD2 enhances nasopharyngeal carcinoma cell radiosensitivity via ferroptosis induction modulated by DHODH inhibition. . BMC Cancer 23:(1):117
    [Crossref] [Google Scholar]
  201. 201.
    Liu S, Wu W, Chen Q, Zheng Z, Jiang X, et al. 2021.. TXNRD1: a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro. . Oxidative Med. Cell. Longevity 2021::7674565
    [Google Scholar]
  202. 202.
    Cao JY, Poddar A, Magtanong L, Lumb JH, Mileur TR, et al. 2019.. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. . Cell Rep. 26:(6):154456.e8
    [Crossref] [Google Scholar]
  203. 203.
    Koppula P, Lei G, Zhang Y, Yan Y, Mao C, et al. 2022.. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. . Nat. Commun. 13:(1):2206
    [Crossref] [Google Scholar]
  204. 204.
    Dirac-Svejstrup AB, Walker J, Faull P, Encheva V, Akimov V, et al. 2020.. DDI2 is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. . Mol. Cell 79:(2):33241.e7
    [Crossref] [Google Scholar]
  205. 205.
    Forcina GC, Pope L, Murray M, Dong W, Abu-Remaileh M, et al. 2022.. Ferroptosis regulation by the NGLY1/NFE2L1 pathway. . PNAS 119:(11):e2118646119
    [Crossref] [Google Scholar]
  206. 206.
    Kotschi S, Jung A, Willemsen N, Ofoghi A, Proneth B, et al. 2022.. NFE2L1-mediated proteasome function protects from ferroptosis. . Mol. Metab. 57::101436
    [Crossref] [Google Scholar]
  207. 207.
    Jiang L, Kon N, Li T, Wang S-J, Su T, et al. 2015.. Ferroptosis as a p53-mediated activity during tumour suppression. . Nature 520:(7545):5762
    [Crossref] [Google Scholar]
  208. 208.
    Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, et al. 2018.. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. . Cell Rep. 22:(3):56975
    [Crossref] [Google Scholar]
  209. 209.
    Yang M, Chen P, Liu J, Zhu S, Kroemer G, et al. 2019.. Clockophagy is a novel selective autophagy process favoring ferroptosis. . Sci. Adv. 5:(7):eaaw2238
    [Crossref] [Google Scholar]
  210. 210.
    Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, et al. 2019.. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. . Nat. Commun. 10:(1):1617
    [Crossref] [Google Scholar]
  211. 211.
    Dixon SJ, Pratt DA. 2023.. Ferroptosis: a flexible constellation of related biochemical mechanisms. . Mol. Cell 83:(7):103042
    [Crossref] [Google Scholar]
  212. 212.
    Kagan VE, Bayır HA, Belikova NA, Kapralov O, Tyurina YY, et al. 2009.. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. . Free Radic. Biol. Med. 46:(11):143953
    [Crossref] [Google Scholar]
  213. 213.
    Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL. 2006.. Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. . J. Exp. Med. 203:(12):261325
    [Crossref] [Google Scholar]
  214. 214.
    Tyurin VA, Balasubramanian K, Winnica D, Tyurina YY, Vikulina AS, et al. 2014.. Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic ‘eat-me’ signals: cleavage and inhibition of phagocytosis by Lp-PLA2. . Cell Death Differ. 21:(5):82535
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-033527
Loading
/content/journals/10.1146/annurev-biochem-052521-033527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error