1932

Abstract

Thiolases are CoA-dependent enzymes that catalyze the thiolytic cleavage of 3-ketoacyl-CoA, as well as its reverse reaction, which is the thioester-dependent Claisen condensation reaction. Thiolases are dimers or tetramers (dimers of dimers). All thiolases have two reactive cysteines: () a nucleophilic cysteine, which forms a covalent intermediate, and () an acid/base cysteine. The best characterized thiolase is the thiolase, which is a bacterial biosynthetic thiolase belonging to the CT-thiolase subfamily. The thiolase active site is also characterized by two oxyanion holes, two active site waters, and four catalytic loops with characteristic amino acid sequence fingerprints. Three thiolase subfamilies can be identified, each characterized by a unique sequence fingerprint for one of their catalytic loops, which causes unique active site properties. Recent insights concerning the thiolase reaction mechanism, as obtained from recent structural studies, as well as from classical and recent enzymological studies, are addressed, and open questions are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-033746
2023-06-20
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-052521-033746.html?itemId=/content/journals/10.1146/annurev-biochem-052521-033746&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lynen F, Reichert E. 1951. Zur chemischen Struktur der “aktivierten Essigsäure. .” Angew. Chem. 63:47–48
    [Google Scholar]
  2. 2.
    Lynen F, Wessely L, Wieland O, Rueff L. 1952. Zur β-oxydation der Fettsäuren. Angew. Chem. 64:687
    [Google Scholar]
  3. 3.
    Gilbert HF. 1981. Proton transfer from acetyl-coenzyme A catalyzed by thiolase I from porcine heart. Biochemistry 20:5643–49
    [Google Scholar]
  4. 4.
    Davis JT, Moore RN, Imperiali B, Pratt AJ, Kobayashi K et al. 1987. Biosynthetic thiolase from Zoogloea ramigera. I. Preliminary characterization and analysis of proton transfer reaction. J. Biol. Chem. 262:82–89
    [Google Scholar]
  5. 5.
    Mathieu M, Zeelen JP, Pauptit RA, Erdmann R, Kunau WH, Wierenga RK. 1994. The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2:797–808
    [Google Scholar]
  6. 6.
    Modis Y, Wierenga RK. 1999. A biosynthetic thiolase in complex with a reaction intermediate: The crystal structure provides new insights into the catalytic mechanism. Structure 7:1279–90
    [Google Scholar]
  7. 7.
    Marshall AC, Bond CS, Bruning JB. 2018. Structure of Aspergillus fumigatus cytosolic thiolase: trapped tetrahedral reaction intermediates and activation by monovalent cations. ACS Catal. 8:1973–89
    [Google Scholar]
  8. 8.
    Merilainen G, Poikela V, Kursula P, Wierenga RK. 2009. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Biochemistry 48:11011–25
    [Google Scholar]
  9. 9.
    Bhaskar S, Steer DL, Anand R, Panjikar S. 2020. Structural basis for differentiation between two classes of thiolase: degradative versus biosynthetic thiolase. J. Struct. Biol. X 4:100018
    [Google Scholar]
  10. 10.
    Kursula P, Ojala J, Lambeir AM, Wierenga RK. 2002. The catalytic cycle of biosynthetic thiolase: a conformational journey of an acetyl group through four binding modes and two oxyanion holes. Biochemistry 41:15543–56
    [Google Scholar]
  11. 11.
    Kiema TR, Harijan RK, Strozyk M, Fukao T, Alexson SE, Wierenga RK. 2014. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. Acta Crystallogr. D Biol. Crystallogr. 70:3212–25
    [Google Scholar]
  12. 12.
    Gehring U, Harris JI. 1970. The active site cysteines of thiolase. Eur. J. Biochem. 16:492–98
    [Google Scholar]
  13. 13.
    Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy MR et al. 2014. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis 94:405–12
    [Google Scholar]
  14. 14.
    Kiema T-R, Thapa CJ, Laitaoja M, Schmitz W, Maksimainen MM et al. 2019. The peroxisomal zebrafish SCP2-thiolase (type-1) is a weak transient dimer as revealed by crystal structures and native mass spectrometry. Biochem. J. 476:307–32
    [Google Scholar]
  15. 15.
    Kursula P, Sikkila H, Fukao T, Kondo N, Wierenga RK. 2005. High resolution crystal structures of human cytosolic thiolase (CT): a comparison of the active sites of human CT, bacterial thiolase, and bacterial KAS I. J. Mol. Biol. 347:189–201
    [Google Scholar]
  16. 16.
    Haapalainen AM, Merilainen G, Pirila PL, Kondo N, Fukao T, Wierenga RK. 2007. Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: the importance of potassium and chloride ions for its structure and function. Biochemistry 46:4305–21
    [Google Scholar]
  17. 17.
    Liang K, Li N, Wang X, Dai J, Liu P et al. 2018. Cryo-EM structure of human mitochondrial trifunctional protein. PNAS 115:7039–44
    [Google Scholar]
  18. 18.
    Xia C, Fu Z, Battaile KP, Kim J-JP. 2019. Crystal structure of human mitochondrial trifunctional protein, a fatty acid β-oxidation metabolon. PNAS 116:136069–74
    [Google Scholar]
  19. 19.
    Modis Y, Wierenga RK. 2000. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J. Mol. Biol. 297:1171–82
    [Google Scholar]
  20. 20.
    Mathieu M, Modis Y, Zeelen JP, Engel CK, Abagyan RA et al. 1997. The 1.8 Å crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J. Mol. Biol. 273:714–28
    [Google Scholar]
  21. 21.
    Pye VE, Christensen CE, Dyer JH, Arent S, Henriksen A. 2010. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. J. Biol. Chem. 285:24078–88
    [Google Scholar]
  22. 22.
    Sundaramoorthy R, Micossi E, Alphey MS, Germain V, Bryce JH et al. 2006. The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid β-oxidation. J. Mol. Biol. 359:347–57
    [Google Scholar]
  23. 23.
    Harijan RK, Kiema T-R, Syed SM, Qadir I, Mazet M et al. 2017. Crystallographic substrate binding studies of Leishmania mexicana SCP2-thiolase (type-2): unique features of oxyanion hole-1. Protein Eng. Des. Sel. 30:225–33
    [Google Scholar]
  24. 24.
    Fage CD, Meinke JL, Keatinge-Clay AT. 2015. Coenzyme A-free activity, crystal structure, and rational engineering of a promiscuous β-ketoacyl thiolase from Ralstonia eutropha. J. Mol. Catal. B: Enzymatic 121:113–21
    [Google Scholar]
  25. 25.
    Franke J, Hertweck C. 2016. Biomimetic thioesters as probes for enzymatic assembly lines: synthesis, applications, and challenges. Cell Chem. Biol. 23:1179–92
    [Google Scholar]
  26. 26.
    Lynen F. 1953. Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Fed. Proc. 12:683–91
    [Google Scholar]
  27. 27.
    Bhaumik P, Koski MK, Glumoff T, Hiltunen JK, Wierenga RK. 2005. Structural biology of the thioester-dependent degradation and synthesis of fatty acids. Curr. Opin. Struct. Biol. 15:621–28
    [Google Scholar]
  28. 28.
    Martin CH, Dhamankar H, Tseng H-C, Sheppard MJ, Reisch CR, Prather KLJ. 2013. A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone. Nat. Commun. 4:1414
    [Google Scholar]
  29. 29.
    Masamune S, Walsh CT, Sinskey AJ, Peoples OP. 1989. Poly-(R)-3-hydroxybutyrate (PHB) biosynthesis: mechanistic studies on the biological Claisen condensation catalyzed by β-ketoacyl thiolase. Pure Appl. Chem. 61:303–12
    [Google Scholar]
  30. 30.
    Blaisse MR, Fu B, Chang MCY. 2018. Structural and biochemical studies of substrate selectivity in Ascaris suum thiolases. Biochemistry 57:3155–66
    [Google Scholar]
  31. 31.
    Gilbert HF, Lennox BJ, Mossman CD, Carle WC. 1981. The relation of acyl transfer to the overall reaction of thiolase I from porcine heart. J. Biol. Chem. 256:7371–77
    [Google Scholar]
  32. 32.
    Williams SF, Palmer MA, Peoples OP, Walsh CT, Sinskey AJ, Masamune S. 1992. Biosynthetic thiolase from Zoogloea ramigera. Mutagenesis of the putative active-site base Cys-378 to Ser-378 changes the partitioning of the acetyl S-enzyme intermediate. J. Biol. Chem. 267:16041–43
    [Google Scholar]
  33. 33.
    Thompson S, Mayerl F, Peoples OP, Masamune S, Sinskey AJ, Walsh CT. 1989. Mechanistic studies on β-ketoacyl thiolase from Zoogloea ramigera: identification of the active-site nucleophile as Cys89, its mutation to Ser89, and kinetic and thermodynamic characterization of wild-type and mutant enzymes. Biochemistry 28:5735–42
    [Google Scholar]
  34. 34.
    Masamune S, Palmer MAJ, Gamboni R, Thompson S, Davis JT et al. 1989. Bio-Claisen condensation catalyzed by thiolase from Zoogloea ramigera. Active site cysteine residues. J. Am. Chem. Soc. 111:1879–81
    [Google Scholar]
  35. 35.
    Palmer MA, Differding E, Gamboni R, Williams SF, Peoples OP et al. 1991. Biosynthetic thiolase from Zoogloea ramigera. Evidence for a mechanism involving Cys-378 as the active site base. J. Biol. Chem. 266:8369–75
    [Google Scholar]
  36. 36.
    Harijan RK, Kiema TR, Karjalainen MP, Janardan N, Murthy MRN et al. 2013. Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Biochem. J. 455:119–30
    [Google Scholar]
  37. 37.
    Jakubowski H. 2016. Aminoacyl-tRNA synthetases and the evolution of coded peptide synthesis: the Thioester World. FEBS Lett. 590:469–81
    [Google Scholar]
  38. 38.
    De Duve C. 1994. Vital Dust: The Origin and Evolution of Life on Earth New York: Basic Books
    [Google Scholar]
  39. 39.
    Mishra PK, Drueckhammer DG. 2000. Coenzyme A analogues and derivatives: synthesis and applications as mechanistic probes of coenzyme A ester-utilizing enzymes. Chem. Rev. 100:3283–310
    [Google Scholar]
  40. 40.
    Baddiley J, Thain EM, Novelli GD, Lipmann F. 1953. Structure of coenzyme A. Nature 171:76
    [Google Scholar]
  41. 41.
    Shi L, Tu BP. 2015. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33:125–31
    [Google Scholar]
  42. 42.
    Walsh CT, Tu BP, Tang Y. 2018. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118:1460–94
    [Google Scholar]
  43. 43.
    Yang W, Drueckhammer DG. 2001. Understanding the relative acyl-transfer reactivity of oxoesters and thioesters: computational analysis of transition state delocalization effects. J. Am. Chem. Soc. 123:11004–9
    [Google Scholar]
  44. 44.
    Amyes TL, Richard JP. 2017. Substituent effects on carbon acidity in aqueous solution and at enzyme active sites. Synlett 28:2407–21
    [Google Scholar]
  45. 45.
    Amyes TL, Richard JP. 1992. Generation and stability of a simple thiol ester enolate in aqueous solution. J. Am. Chem. Soc. 114:10297–302
    [Google Scholar]
  46. 46.
    Walsh CT. 1979. Enzymatic Reaction Mechanisms San Francisco: Freeman and Co.
    [Google Scholar]
  47. 47.
    Dewick PM. 2009. Medicinal Natural Products. A Biosynthetic Approach. Chichester, UK: John Wiley & Sons, Inc. , 3rd ed..
    [Google Scholar]
  48. 48.
    von Horsten S, Lippert M-L, Geisselbrecht Y, Schühle K, Schall I et al. 2022. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J. 289:1023–42
    [Google Scholar]
  49. 49.
    Dai M, Feng Y, Tonge PJ. 2001. Synthesis of crotonyl-OxyCoA: a mechanistic probe of the reaction catalyzed by enoyl-CoA hydratase. J. Am. Chem. Soc. 123:506–7
    [Google Scholar]
  50. 50.
    Meriläinen G, Schmitz W, Wierenga RK, Kursula P. 2008. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme: sulfur interactions at the thiolase active site. FEBS J. 275:6136–48
    [Google Scholar]
  51. 51.
    Jencks WP. 1987. Economics of enzyme catalysis. Cold Spring Harb. Symp. Quant. Biol. 52:65–73
    [Google Scholar]
  52. 52.
    Lee AC, Xu X, Colombini M. 1996. The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane. J. Biol. Chem. 271:26724–31
    [Google Scholar]
  53. 53.
    Amyes TL, Richard JP. 2013. Specificity in transition state binding: the Pauling model revisited. Biochemistry 52:2021–35
    [Google Scholar]
  54. 54.
    Whitty A, Fierke CA, Jencks WP. 1995. Role of binding energy with coenzyme A in catalysis by 3-oxoacid coenzyme A transferase. Biochemistry 34:11678–89
    [Google Scholar]
  55. 55.
    Dalwani S, Lampela O, Leprovost P, Schmitz W, Juffer AH et al. 2021. Substrate specificity and conformational flexibility properties of the Mycobacterium tuberculosis β-oxidation trifunctional enzyme. J. Struct. Biol. 213:107776
    [Google Scholar]
  56. 56.
    Bahnson BJ, Anderson VE. 1991. Crotonase-catalyzed β-elimination is concerted: a double isotope effect study. Biochemistry 30:5894–906
    [Google Scholar]
  57. 57.
    Hartmann G, Lynen F. 1961. Thiolase. The Enzymes, Vol. 5 PD Boyer, H Lardy, K Myrbäck 381–86. New York: Academic. , 2nd ed..
    [Google Scholar]
  58. 58.
    Gehring U, Lynen F. 1972. Thiolase. The Enzymes, Vol. 7 PD Boyer 391–405. New York: Academic. , 3rd ed..
    [Google Scholar]
  59. 59.
    Gehring U, Riepertinger C, Lynen F. 1968. Reinigung und Kristallisation der Thiolase, Untersuchungen zum Wirkungsmechanismus. Eur. J. Biochem. 6:264–80
    [Google Scholar]
  60. 60.
    Middleton B. 1973. The oxoacyl-coenzyme A thiolases of animal tissues. Biochem. J. 132:717–30
    [Google Scholar]
  61. 61.
    Miyazawa S, Furuta S, Osumi T, Hashimoto T, Ui N. 1981. Properties of peroxisomal 3-ketoacyl-CoA thiolase from rat liver. J. Biochem. 90:511–19
    [Google Scholar]
  62. 62.
    Haapalainen AM, Merilainen G, Wierenga RK. 2006. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31:64–71
    [Google Scholar]
  63. 63.
    Engel C, Wierenga R. 1996. The diverse world of coenzyme A binding proteins. Curr. Opin. Struct. Biol. 6:790–97
    [Google Scholar]
  64. 64.
    Modis Y, Wierenga R. 1998. Two crystal structures of N-acetyltransferases reveal a new fold for CoA-dependent enzymes. Structure 6:1345–50
    [Google Scholar]
  65. 65.
    Onwukwe GU, Koski MK, Pihko P, Schmitz W, Wierenga RK. 2015. Structures of yeast peroxisomal Δ32-enoyl-CoA isomerase complexed with acyl-CoA substrate analogues: the importance of hydrogen-bond networks for the reactivity of the catalytic base and the oxyanion hole. Acta Crystallogr. D Biol. Crystallogr. 71:2178–91
    [Google Scholar]
  66. 66.
    Abdelkreem E, Harijan RK, Yamaguchi S, Wierenga RK, Fukao T. 2019. Mutation update on ACAT1 variants associated with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. Hum. Mutat. 40:1641–63
    [Google Scholar]
  67. 67.
    Ishikawa M, Tsuchiya D, Oyama T, Tsunaka Y, Morikawa K. 2004. Structural basis for channelling mechanism of a fatty acid β-oxidation multienzyme complex. EMBO J. 23:2745–54
    [Google Scholar]
  68. 68.
    Pápai I, Hamza A, Pihko PM, Wierenga RK. 2011. Stereoelectronic requirements for optimal hydrogen-bond-catalyzed enolization. Chem. Eur. J. 17:2859–66
    [Google Scholar]
  69. 69.
    Kamerlin SCL, Chu ZT, Warshel A. 2010. On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. J. Org. Chem. 75:6391–401
    [Google Scholar]
  70. 70.
    Simón L, Goodman JM. 2012. Hydrogen-bond stabilization in oxyanion holes: grand jeté to three dimensions. Org. Biomol. Chem. 10:1905–13
    [Google Scholar]
  71. 71.
    Frey PR, Hegeman AD. 2007. Enzymatic Reaction Mechanisms Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  72. 72.
    Segel IH. 1975. Enzyme Kinetics New York: John Wiley & Sons, Inc.
    [Google Scholar]
  73. 73.
    Hol WGJ. 1985. The role of the α-helix dipole in protein function and structure. Progress Biophys. Mol. Biol. 45:149–95
    [Google Scholar]
  74. 74.
    Guo H, Salahub DR. 1998. Cooperative hydrogen bonding and enzyme catalysis. Angew. Chem. Int. Ed. Engl. 37:2985–90
    [Google Scholar]
  75. 75.
    Anderson VE, Bahnson BJ, Wlassics ID, Walsh CT. 1990. The reaction of acetyldithio-CoA, a readily enolized analog of acetyl-CoA with thiolase from Zoogloea ramigera. J. Biol. Chem. 265:6255–61
    [Google Scholar]
  76. 76.
    Eggerer H. 1965. On the mechanism of the biological transformation of citric acid. VI. Citrate synthetase is an acetyl CoA-enolase. Biochem. Z. 343:111–38
    [Google Scholar]
  77. 77.
    Eggerer H, Klette A. 1967. On the catalysis principle of malate synthase. Eur. J. Biochem. 1:447–75
    [Google Scholar]
  78. 78.
    Stern JR. 1956. Optical properties of aceto-acetyl-S-coenzyme A and its metal chelates. J. Biol. Chem. 221:33–44
    [Google Scholar]
  79. 79.
    Barycki JJ, O'Brien LK, Strauss AW, Banaszak LJ. 2000. Sequestration of the active site by interdomain shifting. Crystallographic and spectroscopic evidence for distinct conformations of L-3-hydroxyacyl-CoA dehydrogenase. J. Biol. Chem. 275:27186–96
    [Google Scholar]
  80. 80.
    Fersht AR. 1999. Structure and Mechanism in Protein Science San Francisco: Freeman and Co.
    [Google Scholar]
  81. 81.
    Koshland DE, Carraway KW, Dafforn GA, Gass JD, Storm DR. 1972. The importance of orientation factors in enzymatic reactions. Cold Spring Harb. Symp. Quant. Biol. 36:13–20
    [Google Scholar]
  82. 82.
    Willadsen P, Eggerer H. 1975. Substrate stereochemistry of the acetyl-CoA acetyltransferase reaction. Eur. J. Biochem. 54:253–58
    [Google Scholar]
  83. 83.
    Mikulski R, West D, Sippel KH, Avvaru BS, Aggarwal Met al 2013. Water networks in fast proton transfer during catalysis by human carbonic anhydrase II. Biochemistry 52:125–31
    [Google Scholar]
  84. 84.
    Jensen MR, Goblirsch BR, Esler MA, Christenson JK, Mohamed FA et al. 2018. The role of OleA His285 in orchestration of long-chain acyl-coenzyme A substrates. FEBS Lett 592:987–98
    [Google Scholar]
  85. 85.
    Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20:79–110
    [Google Scholar]
  86. 86.
    White SW, Zheng J, Zhang YM, Rock. 2005. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74:791–831
    [Google Scholar]
  87. 87.
    Heath RJ, Rock CO. 2002. The Claisen condensation in biology. Nat. Prod. Rep. 19:581–96
    [Google Scholar]
  88. 88.
    Jiang C, Kim SY, Suh DY. 2008. Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol. Phylogenet. Evol. 49:691–701
    [Google Scholar]
  89. 89.
    Igual JC, Gonzalez-Bosch C, Dopazo J, Perez-Ortin JE. 1992. Phylogenetic analysis of the thiolase family. Implications for the evolutionary origin of peroxisomes. J. Mol. Evol. 35:147–55
    [Google Scholar]
  90. 90.
    Christenson JK, Jensen MR, Goblirsch BR, Mohamed F, Zhang W et al. 2017. Active multienzyme assemblies for long-chain olefinic hydrocarbon biosynthesis. J. Bacteriol. 199:e00890-16
    [Google Scholar]
  91. 91.
    Millerioux Y, Mazet M, Bouyssou G, Allmann S, Kiema T-R et al. 2018. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: carbon source preferences and metabolic flux redistributions. PLOS Pathog. 14:e1007116
    [Google Scholar]
  92. 92.
    Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. 2015. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure 23:21–33
    [Google Scholar]
  93. 93.
    Liu L, Zhou S, Deng Y. 2020. The 3-ketoacyl-CoA thiolase: an engineered enzyme for carbon chain elongation of chemical compounds. Appl. Microbiol. Biotechnol. 104:8117–29
    [Google Scholar]
  94. 94.
    Marshall AC, Bruning JB. 2021. Engineering potassium activation into biosynthetic thiolase. Biochem. J. 478:3047–62
    [Google Scholar]
  95. 95.
    Mehrer CR, Incha MR, Politz MC, Pfleger BF. 2018. Anaerobic production of medium-chain fatty alcohols via a β-reduction pathway. Metab. Eng. 48:63–71
    [Google Scholar]
  96. 96.
    Kim S, Jang YS, Ha SC, Ahn JW, Kim EJ et al. 2015. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat. Commun. 6:8410
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-033746
Loading
/content/journals/10.1146/annurev-biochem-052521-033746
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error