1932

Abstract

Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, 6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-035330
2023-06-20
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-052521-035330.html?itemId=/content/journals/10.1146/annurev-biochem-052521-035330&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Desrosiers R, Friderici K, Rottman F. 1974. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. PNAS 71:3971–75
    [Google Scholar]
  2. 2.
    Perry RP, Kelley DE. 1974. Existence of methylated messenger RNA in mouse L cells. Cell 1:37–42
    [Google Scholar]
  3. 3.
    Wei CM, Gershowitz A, Moss B. 1976. 5′-terminal and internal methylated nucleotide sequences in HeLa cell mRNA. Biochemistry 15:397–401
    [Google Scholar]
  4. 4.
    Wei CM, Moss B. 1977. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16:1672–76
    [Google Scholar]
  5. 5.
    Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46
    [Google Scholar]
  6. 6.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–6
    [Google Scholar]
  7. 7.
    Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87
    [Google Scholar]
  8. 8.
    Harper JE, Miceli SM, Roberts RJ, Manley JL. 1990. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 18:5735–41
    [Google Scholar]
  9. 9.
    Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. 1994. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269:17697–704
    [Google Scholar]
  10. 10.
    Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–47
    [Google Scholar]
  11. 11.
    Liu J, Yue Y, Han D, Wang X, Fu Y et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10:93–95
    [Google Scholar]
  12. 12.
    Sledz P, Jinek M. 2016. Structural insights into the molecular mechanism of the m6A writer complex. eLife 5:e18434
    [Google Scholar]
  13. 13.
    Wang P, Doxtader KA, Nam Y 2016. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63:306–17
    [Google Scholar]
  14. 14.
    Wang X, Feng J, Xue Y, Guan Z, Zhang D et al. 2016. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 534:575–78
    [Google Scholar]
  15. 15.
    Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K et al. 2014. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–96
    [Google Scholar]
  16. 16.
    Lin S, Choe J, Du P, Triboulet R, Gregory RI. 2016. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62:335–45
    [Google Scholar]
  17. 17.
    Choe J, Lin S, Zhang W, Liu Q, Wang L et al. 2018. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556–60
    [Google Scholar]
  18. 18.
    Zhong S, Li H, Bodi Z, Button J, Vespa L et al. 2008. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20:1278–88
    [Google Scholar]
  19. 19.
    Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. 2012. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLOS Genet. 8:e1002732
    [Google Scholar]
  20. 20.
    Ping XL, Sun BF, Wang L, Xiao W, Yang X et al. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–89
    [Google Scholar]
  21. 21.
    Yue Y, Liu J, Cui X, Cao J, Luo G et al. 2018. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:10
    [Google Scholar]
  22. 22.
    Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M et al. 2013. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem. 288:33292–302
    [Google Scholar]
  23. 23.
    Ortega A, Niksic M, Bachi A, Wilm M, Sanchez L et al. 2003. Biochemical function of female-lethal (2)D/Wilms' tumor suppressor-1-associated proteins in alternative pre-mRNA splicing. J. Biol. Chem. 278:3040–47
    [Google Scholar]
  24. 24.
    Patil DP, Chen CK, Pickering BF, Chow A, Jackson C et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–73
    [Google Scholar]
  25. 25.
    Wang Y, Zhang L, Ren H, Ma L, Guo J et al. 2021. Role of Hakai in m6A modification pathway in Drosophila. Nat. Commun. 12:2159
    [Google Scholar]
  26. 26.
    Bawankar P, Lence T, Paolantoni C, Haussmann IU, Kazlauskiene M et al. 2021. Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nat. Commun. 12:3778
    [Google Scholar]
  27. 27.
    Ruzicka K, Zhang M, Campilho A, Bodi Z, Kashif M et al. 2017. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 215:157–72
    [Google Scholar]
  28. 28.
    Wen J, Lv R, Ma H, Shen H, He C et al. 2018. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69:1028–38.e6
    [Google Scholar]
  29. 29.
    Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R et al. 2019. Deciphering the “m6A Code” via antibody-independent quantitative profiling. Cell 178:731–47.e16
    [Google Scholar]
  30. 30.
    Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ et al. 2015. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–53
    [Google Scholar]
  31. 31.
    Uzonyi A, Dierks D, Nir R, Kwon OS, Toth U et al. 2023. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell 83:237–51.e7
    [Google Scholar]
  32. 32.
    Yang X, Triboulet R, Liu Q, Sendinc E, Gregory RI. 2022. Exon junction complex shapes the m6A epitranscriptome. Nat. Commun. 13:7904
    [Google Scholar]
  33. 33.
    He PC, Wei J, Dou X, Harada BT, Zhang Z et al. 2023. Exon architecture controls mRNA m6A suppression and gene expression. Science 379:677–82
    [Google Scholar]
  34. 34.
    Huang H, Weng H, Zhou K, Wu T, Zhao BS et al. 2019. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567:414–19
    [Google Scholar]
  35. 35.
    Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millan-Zambrano G et al. 2017. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552:126–31
    [Google Scholar]
  36. 36.
    Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D et al. 2018. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555:256–59
    [Google Scholar]
  37. 37.
    Raj N, Wang M, Seoane JA, Zhao RL, Kaiser AM et al. 2022. The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Mol. Cell 82:2370–84.e10
    [Google Scholar]
  38. 38.
    Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F et al. 2017. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169:326–37.e12
    [Google Scholar]
  39. 39.
    Jonkers I, Lis JT. 2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16:167–77
    [Google Scholar]
  40. 40.
    Liu J, Li K, Cai J, Zhang M, Zhang X et al. 2020. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues. Mol. Cell 77:426–40.e6
    [Google Scholar]
  41. 41.
    Yin R, Chang J, Li Y, Gao Z, Qiu Q et al. 2022. Differential m6A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell 29:149–59.e7
    [Google Scholar]
  42. 42.
    Tegowski M, Flamand MN, Meyer KD. 2022. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82:868–78.e10
    [Google Scholar]
  43. 43.
    Du Y, Hou G, Zhang H, Dou J, He J et al. 2018. SUMOylation of the m6A–RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 46:5195–208
    [Google Scholar]
  44. 44.
    Wang Z, Pan Z, Adhikari S, Harada BT, Shen L et al. 2021. m6A deposition is regulated by PRMT1-mediated arginine methylation of METTL14 in its disordered C-terminal region. EMBO J. 40:e106309
    [Google Scholar]
  45. 45.
    Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y et al. 2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–35.e14
    [Google Scholar]
  46. 46.
    Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H et al. 2017. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18:2004–14
    [Google Scholar]
  47. 47.
    Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. 2016. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. PNAS 113:14013–18
    [Google Scholar]
  48. 48.
    Mendel M, Delaney K, Pandey RR, Chen KM, Wenda JM et al. 2021. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184:3125–42.e25
    [Google Scholar]
  49. 49.
    Watabe E, Togo-Ohno M, Ishigami Y, Wani S, Hirota K et al. 2021. m6A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J. 40:e106434
    [Google Scholar]
  50. 50.
    Su R, Dong L, Li Y, Gao M, He PC et al. 2022. METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat. Cell Biol. 24:205–16
    [Google Scholar]
  51. 51.
    Li X, Zhu P, Ma S, Song J, Bai J et al. 2015. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11:592–97
    [Google Scholar]
  52. 52.
    Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46
    [Google Scholar]
  53. 53.
    Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–62
    [Google Scholar]
  54. 54.
    Martinez NM, Su A, Burns MC, Nussbacher JK, Schaening C et al. 2022. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82:645–59.e9
    [Google Scholar]
  55. 55.
    Karijolich J, Yu YT. 2011. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–98
    [Google Scholar]
  56. 56.
    Ozanick S, Krecic A, Andersland J, Anderson JT. 2005. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA 11:1281–90
    [Google Scholar]
  57. 57.
    Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A et al. 2017. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–55
    [Google Scholar]
  58. 58.
    Grozhik AV, Olarerin-George AO, Sindelar M, Li X, Gross SS, Jaffrey SR. 2019. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat. Commun. 10:5126
    [Google Scholar]
  59. 59.
    Li X, Xiong X, Wang K, Wang L, Shu X et al. 2016. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12:311–16
    [Google Scholar]
  60. 60.
    Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N et al. 2016. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–46
    [Google Scholar]
  61. 61.
    Arango D, Sturgill D, Yang R, Kanai T, Bauer P et al. 2022. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol. Cell 82:2797–814.e11
    [Google Scholar]
  62. 62.
    Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ et al. 2018. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872–86.e24
    [Google Scholar]
  63. 63.
    Guo G, Shi X, Wang H, Ye L, Tong X et al. 2020. Epitranscriptomic N4-acetylcytidine profiling in CD4+ T cells of systemic lupus erythematosus. Front. Cell Dev. Biol. 8:842
    [Google Scholar]
  64. 64.
    Dubin DT, Taylor RH. 1975. The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res. 2:1653–68
    [Google Scholar]
  65. 65.
    Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40:5023–33
    [Google Scholar]
  66. 66.
    Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D et al. 2017. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 27:1589–96
    [Google Scholar]
  67. 67.
    Huang T, Chen W, Liu J, Gu N, Zhang R. 2019. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26:380–88
    [Google Scholar]
  68. 68.
    Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. 2019. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. PNAS 116:6784–89
    [Google Scholar]
  69. 69.
    Fang L, Wang W, Li G, Zhang L, Li J et al. 2020. CIGAR-seq, a CRISPR/Cas-based method for unbiased screening of novel mRNA modification regulators. Mol. Syst. Biol. 16:e10025
    [Google Scholar]
  70. 70.
    Yang X, Yang Y, Sun BF, Chen YS, Xu JW et al. 2017. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27:606–25
    [Google Scholar]
  71. 71.
    Blanco S, Frye M. 2014. Role of RNA methyltransferases in tissue renewal and pathology. Curr. Opin. Cell Biol. 31:1–7
    [Google Scholar]
  72. 72.
    Bohnsack KE, Hobartner C, Bohnsack MT. 2019. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes 10:E102
    [Google Scholar]
  73. 73.
    Decatur WA, Fournier MJ. 2003. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278:695–98
    [Google Scholar]
  74. 74.
    Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N et al. 2017. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods 14:695–98
    [Google Scholar]
  75. 75.
    Omer AD, Ziesche S, Ebhardt H, Dennis PP. 2002. In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. PNAS 99:5289–94
    [Google Scholar]
  76. 76.
    Elliott BA, Ho HT, Ranganathan SV, Vangaveti S, Ilkayeva O et al. 2019. Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat. Commun. 10:3401
    [Google Scholar]
  77. 77.
    Belanger F, Stepinski J, Darzynkiewicz E, Pelletier J. 2010. Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J. Biol. Chem. 285:33037–44
    [Google Scholar]
  78. 78.
    Furuichi Y, Morgan M, Shatkin AJ, Jelinek W, Salditt-Georgieff M, Darnell JE. 1975. Methylated, blocked 5′ termini in HeLa cell mRNA. PNAS 72:1904–8
    [Google Scholar]
  79. 79.
    Wei C, Gershowitz A, Moss B. 1975. N6, O2′-dimethyladenosine a novel methylated ribonucleoside next to the 5′ terminal of animal cell and virus mRNAs. Nature 257:251–53
    [Google Scholar]
  80. 80.
    Boulias K, Toczydlowska-Socha D, Hawley BR, Liberman N, Takashima K et al. 2019. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol. Cell 75:631–43.e8
    [Google Scholar]
  81. 81.
    Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T et al. 2019. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol. Cell 75:620–30.e9
    [Google Scholar]
  82. 82.
    Ben-Haim MS, Pinto Y, Moshitch-Moshkovitz S, Hershkovitz V, Kol N et al. 2021. Dynamic regulation of N6,2′-O-dimethyladenosine (m6Am) in obesity. Nat. Commun. 12:7185
    [Google Scholar]
  83. 83.
    Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV et al. 2017. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541:371–75
    [Google Scholar]
  84. 84.
    Kruse S, Zhong S, Bodi Z, Button J, Alcocer MJ et al. 2011. A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA. Sci. Rep. 1:126
    [Google Scholar]
  85. 85.
    Stoilov P, Rafalska I, Stamm S. 2002. YTH: a new domain in nuclear proteins. Trends Biochem. Sci. 27:495–97
    [Google Scholar]
  86. 86.
    Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P et al. 2010. The YTH domain is a novel RNA binding domain. J. Biol. Chem. 285:14701–10
    [Google Scholar]
  87. 87.
    Wang C, Zhu Y, Bao H, Jiang Y, Xu C et al. 2016. A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1. Nucleic Acids Res. 44:969–82
    [Google Scholar]
  88. 88.
    Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P et al. 2013. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155:1409–21
    [Google Scholar]
  89. 89.
    Li F, Zhao D, Wu J, Shi Y. 2014. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24:1490–92
    [Google Scholar]
  90. 90.
    Zhu T, Roundtree IA, Wang P, Wang X, Wang L et al. 2014. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–96
    [Google Scholar]
  91. 91.
    Xu C, Wang X, Liu K, Roundtree IA, Tempel W et al. 2014. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 10:927–29
    [Google Scholar]
  92. 92.
    Luo S, Tong L. 2014. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. PNAS 111:13834–39
    [Google Scholar]
  93. 93.
    Theler D, Dominguez C, Blatter M, Boudet J, Allain FH. 2014. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res. 42:13911–19
    [Google Scholar]
  94. 94.
    Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J 2015. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 290:24902–13
    [Google Scholar]
  95. 95.
    Zaccara S, Jaffrey SR. 2020. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181:1582–95.e18
    [Google Scholar]
  96. 96.
    Liu B, Merriman DK, Choi SH, Schumacher MA, Plangger R et al. 2018. A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nat. Commun. 9:2761
    [Google Scholar]
  97. 97.
    Nayler O, Hartmann AM, Stamm S. 2000. The ER repeat protein YT521-B localizes to a novel subnuclear compartment. J. Cell Biol. 150:949–62
    [Google Scholar]
  98. 98.
    Hartmann AM, Nayler O, Schwaiger FW, Obermeier A, Stamm S. 1999. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol. Biol. Cell 10:3909–26
    [Google Scholar]
  99. 99.
    Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ et al. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61:507–19
    [Google Scholar]
  100. 100.
    Cheng Y, Xie W, Pickering BF, Chu KL, Savino AM et al. 2021. N6-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39:958–72.e8
    [Google Scholar]
  101. 101.
    Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T et al. 2017. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6:e31311
    [Google Scholar]
  102. 102.
    Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y et al. 2018. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLOS Genet. 14:e1007412
    [Google Scholar]
  103. 103.
    Zhang C, Chen L, Peng D, Jiang A, He Y et al. 2020. METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol. Cell 79:425–42.e7
    [Google Scholar]
  104. 104.
    Liu J, Gao M, He J, Wu K, Lin S et al. 2021. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591:322–26
    [Google Scholar]
  105. 105.
    Li Y, Xia L, Tan K, Ye X, Zuo Z et al. 2020. N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52:870–77
    [Google Scholar]
  106. 106.
    Liu J, Dou X, Chen C, Chen C, Liu C et al. 2020. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367:580–86
    [Google Scholar]
  107. 107.
    Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X et al. 2017. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–27
    [Google Scholar]
  108. 108.
    Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. 2017. Regulation of m6A transcripts by the 3′→5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68:374–87.e12
    [Google Scholar]
  109. 109.
    Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H et al. 2016. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett. 376:34–42
    [Google Scholar]
  110. 110.
    Saito Y, Hawley BR, Puno MR, Sarathy SN, Lima CD et al. 2022. YTHDC2 control of gametogenesis requires helicase activity but not m6A binding. Genes Dev. 36:180–94
    [Google Scholar]
  111. 111.
    Li L, Krasnykov K, Homolka D, Gos P, Mendel M et al. 2022. The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Mol. Cell 82:1678–90.e12
    [Google Scholar]
  112. 112.
    Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S et al. 2019. m6A enhances the phase separation potential of mRNA. Nature 571:424–28
    [Google Scholar]
  113. 113.
    Fu Y, Zhuang X. 2020. m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16:955–63
    [Google Scholar]
  114. 114.
    Wang X, Lu Z, Gomez A, Hon GC, Yue Y et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–20
    [Google Scholar]
  115. 115.
    Wang X, Zhao BS, Roundtree IA, Lu Z, Han D et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–99
    [Google Scholar]
  116. 116.
    Shi H, Wang X, Lu Z, Zhao BS, Ma H et al. 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–28
    [Google Scholar]
  117. 117.
    Lasman L, Krupalnik V, Viukov S, Mor N, Aguilera-Castrejon A et al. 2020. Context-dependent functional compensation between Ythdf m6A reader proteins. Genes Dev. 34:1373–91
    [Google Scholar]
  118. 118.
    Kontur C, Jeong M, Cifuentes D, Giraldez AJ. 2020. Ythdf m6A readers function redundantly during zebrafish development. Cell Rep. 33:108598
    [Google Scholar]
  119. 119.
    Flamand MN, Ke K, Tamming R, Meyer KD. 2022. Single-molecule identification of the target RNAs of different RNA binding proteins simultaneously in cells. Genes Dev. 36:1002–15
    [Google Scholar]
  120. 120.
    Sommer S, Lavi U, Darnell JE Jr. 1978. The absolute frequency of labeled N-6-methyladenosine in HeLa cell messenger RNA decreases with label time. J. Mol. Biol. 124:487–99
    [Google Scholar]
  121. 121.
    Batista PJ, Molinie B, Wang J, Qu K, Zhang J et al. 2014. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–19
    [Google Scholar]
  122. 122.
    Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N et al. 2015. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347:1002–6
    [Google Scholar]
  123. 123.
    Du H, Zhao Y, He J, Zhang Y, Xi H et al. 2016. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7:12626
    [Google Scholar]
  124. 124.
    Flamand MN, Meyer KD. 2022. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res. 50:4464–83
    [Google Scholar]
  125. 125.
    Park OH, Ha H, Lee Y, Boo SH, Kwon DH et al. 2019. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol. Cell 74:494–507.e8
    [Google Scholar]
  126. 126.
    Boo SH, Ha H, Lee Y, Shin MK, Lee S, Kim YK 2022. UPF1 promotes rapid degradation of m6A-containing RNAs. Cell Rep. 39:110861
    [Google Scholar]
  127. 127.
    Lin X, Chai G, Wu Y, Li J, Chen F et al. 2019. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat. Commun. 10:2065
    [Google Scholar]
  128. 128.
    Meyer KD. 2019. m6A-mediated translation regulation. Biochim. Biophys. Acta Gene Regul. Mech. 1862:301–9
    [Google Scholar]
  129. 129.
    Shi H, Zhang X, Weng YL, Lu Z, Liu Y et al. 2018. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563:249–53
    [Google Scholar]
  130. 130.
    Merkurjev D, Hong WT, Iida K, Oomoto I, Goldie BJ et al. 2018. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 21:1004–14
    [Google Scholar]
  131. 131.
    Weng YL, Wang X, An R, Cassin J, Vissers C et al. 2018. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron 97:313–25.e6
    [Google Scholar]
  132. 132.
    Li A, Chen YS, Ping XL, Yang X, Xiao W et al. 2017. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–47
    [Google Scholar]
  133. 133.
    Flamand MN, Meyer KD. 2019. The epitranscriptome and synaptic plasticity. Curr. Opin. Neurobiol. 59:41–48
    [Google Scholar]
  134. 134.
    Yoon KJ, Ringeling FR, Vissers C, Jacob F, Pokrass M et al. 2017. Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171:877–89.e17
    [Google Scholar]
  135. 135.
    Zhuang M, Li X, Zhu J, Zhang J, Niu F et al. 2019. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res. 47:4765–77
    [Google Scholar]
  136. 136.
    Zhang Z, Wang M, Xie D, Huang Z, Zhang L et al. 2018. METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res. 28:1050–61
    [Google Scholar]
  137. 137.
    Koranda JL, Dore L, Shi H, Patel MJ, Vaasjo LO et al. 2018. Mettl14 is essential for epitranscriptomic regulation of striatal function and learning. Neuron 99:283–92.e5
    [Google Scholar]
  138. 138.
    Zong X, Xiao X, Shen B, Jiang Q, Wang H et al. 2021. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res 49:5537–52
    [Google Scholar]
  139. 139.
    Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43:D512–20
    [Google Scholar]
  140. 140.
    Fei Q, Zou Z, Roundtree IA, Sun HL, He C. 2020. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLOS Biol. 18:e3000664
    [Google Scholar]
  141. 141.
    Hou G, Zhao X, Li L, Yang Q, Liu X et al. 2021. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 49:2859–77
    [Google Scholar]
  142. 142.
    Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ et al. 2017. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24:870–78
    [Google Scholar]
  143. 143.
    Arguello AE, DeLiberto AN, Kleiner RE. 2017. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139:17249–52
    [Google Scholar]
  144. 144.
    Huang H, Weng H, Sun W, Qin X, Shi H et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20:285–95
    [Google Scholar]
  145. 145.
    Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA et al. 2015. 5′ UTR m6A promotes cap-independent translation. Cell 163:999–1010
    [Google Scholar]
  146. 146.
    Yang Y, Fan X, Mao M, Song X, Wu P et al. 2017. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–41
    [Google Scholar]
  147. 147.
    Sun L, Fazal FM, Li P, Broughton JP, Lee B et al. 2019. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26:322–30
    [Google Scholar]
  148. 148.
    Zhang F, Kang Y, Wang M, Li Y, Xu T et al. 2018. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet. 27:3936–50
    [Google Scholar]
  149. 149.
    Edens BM, Vissers C, Su J, Arumugam S, Xu Z et al. 2019. FMRP modulates neural differentiation through m6A-dependent mRNA nuclear export. Cell Rep. 28:845–54.e5
    [Google Scholar]
  150. 150.
    Hsu PJ, Shi H, Zhu AC, Lu Z, Miller N et al. 2019. The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine–containing mRNAs. J. Biol. Chem. 294:19889–95
    [Google Scholar]
  151. 151.
    Wu R, Li A, Sun B, Sun JG, Zhang J et al. 2019. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 29:23–41
    [Google Scholar]
  152. 152.
    Choi SH, Flamand MN, Liu B, Zhu H, Hu M et al. 2022. RBM45 is an m6A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Rep. 40:111293
    [Google Scholar]
  153. 153.
    Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET. 2015. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137:2107–15
    [Google Scholar]
  154. 154.
    Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. 2015. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–64
    [Google Scholar]
  155. 155.
    Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. 2017. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–63
    [Google Scholar]
  156. 156.
    Wu B, Su S, Patil DP, Liu H, Gan J et al. 2018. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun. 9:420
    [Google Scholar]
  157. 157.
    Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. 2014. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16:191–98
    [Google Scholar]
  158. 158.
    Boo SH, Ha H, Kim YK. 2022. m1A and m6A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep. 40:111317
    [Google Scholar]
  159. 159.
    Yang Y, Wang L, Han X, Yang WL, Zhang M et al. 2019. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75:1188–202.e11
    [Google Scholar]
  160. 160.
    Chen H, Yang H, Zhu X, Yadav T, Ouyang J et al. 2020. m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat. Commun. 11:2834
    [Google Scholar]
  161. 161.
    Levi O, Arava YS. 2021. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res. 49:432–43
    [Google Scholar]
  162. 162.
    Xiang Y, Zhou C, Zeng Y, Guo Q, Huang J et al. 2021. NAT10-mediated N4-acetylcytidine of RNA contributes to post-transcriptional regulation of mouse oocyte maturation in vitro. Front. Cell Dev. Biol. 9:704341
    [Google Scholar]
  163. 163.
    Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. 2015. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J. Biol. Chem. 290:20734–42
    [Google Scholar]
  164. 164.
    Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L et al. 2013. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat. Neurosci. 16:1042–48
    [Google Scholar]
  165. 165.
    Fu Y, Jia G, Pang X, Wang RN, Wang X et al. 2013. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4:1798
    [Google Scholar]
  166. 166.
    Zou S, Toh JD, Wong KH, Gao YG, Hong W, Woon EC. 2016. N6-methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci. Rep. 6:25677
    [Google Scholar]
  167. 167.
    Zhang X, Wei LH, Wang Y, Xiao Y, Liu J et al. 2019. Structural insights into FTO's catalytic mechanism for the demethylation of multiple RNA substrates. PNAS 116:2919–24
    [Google Scholar]
  168. 168.
    Koh CWQ, Goh YT, Goh WSS. 2019. Atlas of quantitative single-base-resolution N6-methyl-adenine methylomes. Nat. Commun. 10:5636
    [Google Scholar]
  169. 169.
    Jia G, Yang CG, Yang S, Jian X, Yi C et al. 2008. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582:3313–19
    [Google Scholar]
  170. 170.
    Wei J, Liu F, Lu Z, Fei Q, Ai Y et al. 2018. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71:973–85.e5
    [Google Scholar]
  171. 171.
    Gulati P, Cheung MK, Antrobus R, Church CD, Harding HP et al. 2013. Role for the obesity-related FTO gene in the cellular sensing of amino acids. PNAS 110:2557–62
    [Google Scholar]
  172. 172.
    Yu J, Chen M, Huang H, Zhu J, Song H et al. 2018. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 46:1412–23
    [Google Scholar]
  173. 173.
    Vujovic P, Stamenkovic S, Jasnic N, Lakic I, Djurasevic SF et al. 2013. Fasting induced cytoplasmic Fto expression in some neurons of rat hypothalamus. PLOS ONE 8:e63694
    [Google Scholar]
  174. 174.
    Walters BJ, Mercaldo V, Gillon CJ, Yip M, Neve RL et al. 2017. The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology 42:1502–10
    [Google Scholar]
  175. 175.
    Zhu T, Yong XLH, Xia D, Widagdo J, Anggono V. 2018. Ubiquitination regulates the proteasomal degradation and nuclear translocation of the fat mass and obesity-associated (FTO) protein. J. Mol. Biol. 430:363–71
    [Google Scholar]
  176. 176.
    Mauer J, Sindelar M, Despic V, Guez T, Hawley BR et al. 2019. FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat. Chem. Biol. 15:340–47
    [Google Scholar]
  177. 177.
    Zhao X, Yang Y, Sun BF, Shi Y, Yang X et al. 2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24:1403–19
    [Google Scholar]
  178. 178.
    Wei J, Yu X, Yang L, Liu X, Gao B et al. 2022. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science 376:968–73
    [Google Scholar]
  179. 179.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–94
    [Google Scholar]
  180. 180.
    Lan N, Lu Y, Zhang Y, Pu S, Xi H et al. 2020. FTO – a common genetic basis for obesity and cancer. Front. Genet. 11:559138
    [Google Scholar]
  181. 181.
    Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ et al. 2014. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–75
    [Google Scholar]
  182. 182.
    Reitz C, Tosto G, Mayeux R, Luchsinger JA, NIA-LOAD/NCRAD Family Study Group, Alzheimer's Disease Neuroimaging I. 2012. Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer's disease. PLOS ONE 7:e50354
    [Google Scholar]
  183. 183.
    Keller L, Xu W, Wang HX, Winblad B, Fratiglioni L, Graff C. 2011. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study. J. Alzheimers Dis. 23:461–69
    [Google Scholar]
  184. 184.
    Chang R, Huang Z, Zhao S, Zou J, Li Y, Tan S. 2022. Emerging roles of FTO in neuropsychiatric disorders. Biomed. Res. Int. 2022:2677312
    [Google Scholar]
  185. 185.
    Li Y, Su R, Deng X, Chen Y, Chen J 2022. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8:598–614
    [Google Scholar]
  186. 186.
    Li Z, Weng H, Su R, Weng X, Zuo Z et al. 2017. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31:127–41
    [Google Scholar]
  187. 187.
    Su R, Dong L, Li C, Nachtergaele S, Wunderlich M et al. 2018. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172:90–105.e23
    [Google Scholar]
  188. 188.
    Cui Q, Shi H, Ye P, Li L, Qu Q et al. 2017. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–34
    [Google Scholar]
  189. 189.
    Bodi Z, Zhong S, Mehra S, Song J, Graham N et al. 2012. Adenosine methylation in arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front. Plant Sci. 3:48
    [Google Scholar]
  190. 190.
    Yu Q, Liu S, Yu L, Xiao Y, Zhang S et al. 2021. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat. Biotechnol. 39:1581–88
    [Google Scholar]
  191. 191.
    Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49:18–29
    [Google Scholar]
  192. 192.
    Aik W, Scotti JS, Choi H, Gong L, Demetriades M et al. 2014. Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. 42:4741–54
    [Google Scholar]
  193. 193.
    Feng C, Liu Y, Wang G, Deng Z, Zhang Q et al. 2014. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J. Biol. Chem. 289:11571–83
    [Google Scholar]
  194. 194.
    Xu C, Liu K, Tempel W, Demetriades M, Aik W et al. 2014. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J. Biol. Chem. 289:17299–311
    [Google Scholar]
  195. 195.
    Li Z, Wang P, Li J, Xie Z, Cen S et al. 2021. The N6-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death Dis. 12:578
    [Google Scholar]
  196. 196.
    Zhang C, Samanta D, Lu H, Bullen JW, Zhang H et al. 2016. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. PNAS 113:E2047–56
    [Google Scholar]
  197. 197.
    Zhang S, Zhao BS, Zhou A, Lin K, Zheng S et al. 2017. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31:591–606.e6
    [Google Scholar]
  198. 198.
    Liu F, Clark W, Luo G, Wang X, Fu Y et al. 2016. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167:1897
    [Google Scholar]
  199. 199.
    Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M et al. 2017. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 7:42271
    [Google Scholar]
  200. 200.
    Zhang C, Jia G. 2018. Reversible RNA modification N1-methyladenosine (m1A) in mRNA and tRNA. Genom. Proteom. Bioinformat. 16:155–61
    [Google Scholar]
  201. 201.
    Kohli RM, Zhang Y. 2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–79
    [Google Scholar]
  202. 202.
    Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y et al. 2014. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136:11582–85
    [Google Scholar]
  203. 203.
    Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E et al. 2016. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351:282–85
    [Google Scholar]
  204. 204.
    Huber SM, van Delft P, Mendil L, Bachman M, Smollett K et al. 2015. Formation and abundance of 5-hydroxymethylcytosine in RNA. Chembiochemistry 16:752–55
    [Google Scholar]
  205. 205.
    Lan J, Rajan N, Bizet M, Penning A, Singh NK et al. 2020. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat. Commun. 11:4956
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-035330
Loading
/content/journals/10.1146/annurev-biochem-052521-035330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error