1932

Abstract

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90–CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-040754
2024-08-02
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-052521-040754.html?itemId=/content/journals/10.1146/annurev-biochem-052521-040754&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lavoie H, Therrien M. 2015.. Regulation of RAF protein kinases in ERK signalling. . Nat. Rev. Mol. Cell Biol. 16::28198
    [Crossref] [Google Scholar]
  2. 2.
    Simanshu DK, Nissley DV, McCormick F. 2017.. RAS proteins and their regulators in human disease. . Cell 170::1733
    [Crossref] [Google Scholar]
  3. 3.
    Cherfils J, Zeghouf M. 2013.. Regulation of small GTPases by GEFs, GAPs, and GDIs. . Physiol. Rev. 93::269309
    [Crossref] [Google Scholar]
  4. 4.
    Vojtek AB, Hollenberg SM, Cooper JA. 1993.. Mammalian Ras interacts directly with the serine/threonine kinase Raf. . Cell 74::20514
    [Crossref] [Google Scholar]
  5. 5.
    Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M. 1993.. Complex formation between RAS and RAF and other protein kinases. . PNAS 90::621317
    [Crossref] [Google Scholar]
  6. 6.
    Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, et al. 1993.. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. . Nature 364::30813
    [Crossref] [Google Scholar]
  7. 7.
    Leevers SJ, Paterson HF, Marshall CJ. 1994.. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. . Nature 369::41114
    [Crossref] [Google Scholar]
  8. 8.
    Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. 1994.. Activation of Raf as a result of recruitment to the plasma membrane. . Science 264::146367
    [Crossref] [Google Scholar]
  9. 9.
    Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, et al. 2001.. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. . Recent. Prog. Horm. Res. 56::12755
    [Crossref] [Google Scholar]
  10. 10.
    Wellbrock C, Karasarides M, Marais R. 2004.. The RAF proteins take centre stage. . Nat. Rev. Mol. Cell Biol. 5::87585
    [Crossref] [Google Scholar]
  11. 11.
    Kondo Y, Ognjenovic J, Banerjee S, Karandur D, Merk A, et al. 2019.. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. . Science 366::10915
    [Crossref] [Google Scholar]
  12. 12.
    Park E, Rawson S, Li K, Kim BW, Ficarro SB, et al. 2019.. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. . Nature 575::54550
    [Crossref] [Google Scholar]
  13. 13.
    Liau NPD, Wendorff TJ, Quinn JG, Steffek M, Phung W, et al. 2020.. Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. . Nat. Struct. Mol. Biol. 27::13441
    [Crossref] [Google Scholar]
  14. 14.
    Martinez Fiesco JA, Durrant DE, Morrison DK, Zhang P. 2022.. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. . Nat. Commun. 13::486
    [Crossref] [Google Scholar]
  15. 15.
    Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, Fried M, McCormick F. 2006.. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. . Mol. Cell 22::21730
    [Crossref] [Google Scholar]
  16. 16.
    Young LC, Hartig N, Boned Del Rio I, Sari S, Ringham-Terry B, et al. 2018.. SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. . PNAS 115::E1057685
    [Crossref] [Google Scholar]
  17. 17.
    Hauseman ZJ, Fodor M, Dhembi A, Viscomi J, Egli D, et al. 2022.. Structure of the MRAS–SHOC2–PP1C phosphatase complex. . Nature 609::41623
    [Crossref] [Google Scholar]
  18. 18.
    Kwon JJ, Hajian B, Bian Y, Young LC, Amor AJ, et al. 2022.. Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. . Nature 609::40815
    [Crossref] [Google Scholar]
  19. 19.
    Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, et al. 2022.. Structural basis for SHOC2 modulation of RAS signalling. . Nature 609::4007
    [Crossref] [Google Scholar]
  20. 20.
    Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, et al. 2022.. Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome. . Nat. Struct. Mol. Biol. 29::96677
    [Crossref] [Google Scholar]
  21. 21.
    Oberoi J, Guiu XA, Outwin EA, Schellenberger P, Roumeliotis TI, et al. 2022.. HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation. . Nat. Commun. 13::7343
    [Crossref] [Google Scholar]
  22. 22.
    Garcia-Alonso S, Mesa P, Ovejero LP, Aizpurua G, Lechuga CG, et al. 2022.. Structure of the RAF1-HSP90-CDC37 complex reveals the basis of RAF1 regulation. . Mol. Cell 82::343852.e8
    [Crossref] [Google Scholar]
  23. 23.
    Terrell EM, Morrison DK. 2019.. Ras-mediated activation of the Raf family kinases. . Cold Spring Harb. Perspect. Med. 9::a033746
    [Crossref] [Google Scholar]
  24. 24.
    Karoulia Z, Gavathiotis E, Poulikakos PI. 2017.. New perspectives for targeting RAF kinase in human cancer. . Nat. Rev. Cancer 17::67691
    [Crossref] [Google Scholar]
  25. 25.
    Hymowitz SG, Malek S. 2018.. Targeting the MAPK pathway in RAS mutant cancers. . Cold Spring Harb. Perspect. Med. 8::a031492
    [Crossref] [Google Scholar]
  26. 26.
    Yaeger R, Corcoran RB. 2019.. Targeting alterations in the RAF–MEK pathway. . Cancer Discov. 9::32941
    [Crossref] [Google Scholar]
  27. 27.
    Lemmon MA, Schlessinger J. 2010.. Cell signaling by receptor tyrosine kinases. . Cell 141::111734
    [Crossref] [Google Scholar]
  28. 28.
    Freeman AK, Ritt DA, Morrison DK. 2013.. The importance of Raf dimerization in cell signaling. . Small GTPases 4::18085
    [Crossref] [Google Scholar]
  29. 29.
    Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. 2009.. A dimerization-dependent mechanism drives RAF catalytic activation. . Nature 461::54245
    [Crossref] [Google Scholar]
  30. 30.
    Weber CK, Slupsky JR, Kalmes HA, Rapp UR. 2001.. Active Ras induces heterodimerization of cRaf and BRaf. . Cancer Res. 61::359598
    [Google Scholar]
  31. 31.
    Rushworth LK, Hindley AD, O'Neill E, Kolch W. 2006.. Regulation and role of Raf-1/B-Raf heterodimerization. . Mol. Cell. Biol. 26::226272
    [Crossref] [Google Scholar]
  32. 32.
    Garnett MJ, Rana S, Paterson H, Barford D, Marais R. 2005.. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. . Mol. Cell 20::96369
    [Crossref] [Google Scholar]
  33. 33.
    Lavoie H, Gagnon J, Therrien M. 2020.. ERK signalling: a master regulator of cell behaviour, life and fate. . Nat. Rev. Mol. Cell Biol. 21::60732
    [Crossref] [Google Scholar]
  34. 34.
    Eblen ST. 2018.. Extracellular-regulated kinases: signaling from Ras to ERK substrates to control biological outcomes. . Adv. Cancer Res. 138::99142
    [Crossref] [Google Scholar]
  35. 35.
    Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL. 1996.. The solution structure of the Raf-1 cysteine-rich domain: a novel Ras and phospholipid binding site. . PNAS 93::831217
    [Crossref] [Google Scholar]
  36. 36.
    Leonard TA, Hurley JH. 2011.. Regulation of protein kinases by lipids. . Curr. Opin. Struct. Biol. 21::78591
    [Crossref] [Google Scholar]
  37. 37.
    Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM. 1996.. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid: Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. . J. Biol. Chem. 271::847280
    [Crossref] [Google Scholar]
  38. 38.
    Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, et al. 2018.. MEK drives BRAF activation through allosteric control of KSR proteins. . Nature 554::54953
    [Crossref] [Google Scholar]
  39. 39.
    Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, et al. 2011.. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. . Nature 472::36669
    [Crossref] [Google Scholar]
  40. 40.
    Haling JR, Sudhamsu J, Yen I, Sideris S, Sandoval W, et al. 2014.. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. . Cancer Cell 26::40213
    [Crossref] [Google Scholar]
  41. 41.
    Fukui M, Yamamoto T, Kawai S, Mitsunobu F, Toyoshima K. 1987.. Molecular cloning and characterization of an activated human c-raf-1 gene. . Mol. Cell. Biol. 7::177681
    [Google Scholar]
  42. 42.
    Stanton VP Jr., Cooper GM. 1987.. Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences. . Mol. Cell. Biol. 7::117179
    [Google Scholar]
  43. 43.
    Ishikawa F, Sakai R, Ochiai M, Takaku F, Sugimura T, Nagao M. 1988.. Identification of a transforming activity suppressing sequence in the c-raf oncogene. . Oncogene 3::65358
    [Google Scholar]
  44. 44.
    Stanton VP Jr., Nichols DW, Laudano AP, Cooper GM. 1989.. Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. . Mol. Cell. Biol. 9::63947
    [Google Scholar]
  45. 45.
    Clark GJ, Drugan JK, Rossman KL, Carpenter JW, Rogers-Graham K, et al. 1997.. 14-3-3 ζ negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain. . J. Biol. Chem. 272::2099093
    [Crossref] [Google Scholar]
  46. 46.
    Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R. 1995.. Crystal structure of the zeta isoform of the 14-3-3 protein. . Nature 376::19194
    [Crossref] [Google Scholar]
  47. 47.
    Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, et al. 1997.. The structural basis for 14-3-3:phosphopeptide binding specificity. . Cell 91::96171
    [Crossref] [Google Scholar]
  48. 48.
    Muslin AJ, Tanner JW, Allen PM, Shaw AS. 1996.. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. . Cell 84::88997
    [Crossref] [Google Scholar]
  49. 49.
    Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, et al. 1994.. Activation of Raf-1 by 14-3-3 proteins. . Nature 371::61214
    [Crossref] [Google Scholar]
  50. 50.
    Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R. 1994.. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. . Science 265::171316
    [Crossref] [Google Scholar]
  51. 51.
    Fu H, Xia K, Pallas DC, Cui C, Conroy K, et al. 1994.. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. . Science 266::12629
    [Crossref] [Google Scholar]
  52. 52.
    Tzivion G, Luo Z, Avruch J. 1998.. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. . Nature 394::8892
    [Crossref] [Google Scholar]
  53. 53.
    Fabian JR, Daar IO, Morrison DK. 1993.. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. . Mol. Cell. Biol. 13::717079
    [Google Scholar]
  54. 54.
    Marais R, Light Y, Paterson HF, Marshall CJ. 1995.. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. . EMBO J. 14::313645
    [Crossref] [Google Scholar]
  55. 55.
    Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. 1999.. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. . EMBO J. 18::213748
    [Crossref] [Google Scholar]
  56. 56.
    Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ. 1997.. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic Ras and tyrosine kinases. . J. Biol. Chem. 272::437883
    [Crossref] [Google Scholar]
  57. 57.
    Diaz B, Barnard D, Filson A, MacDonald S, King A, Marshall M. 1997.. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. . Mol. Cell. Biol. 17::450916
    [Crossref] [Google Scholar]
  58. 58.
    Baljuls A, Mueller T, Drexler HC, Hekman M, Rapp UR. 2007.. Unique N-region determines low basal activity and limited inducibility of A-RAF kinase: the role of N-region in the evolutionary divergence of RAF kinase function in vertebrates. . J. Biol. Chem. 282::2657590
    [Crossref] [Google Scholar]
  59. 59.
    Tran NH, Frost JA. 2003.. Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. . J. Biol. Chem. 278::1122126
    [Crossref] [Google Scholar]
  60. 60.
    Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, et al. 1993.. Protein kinase Cα activates RAF-1 by direct phosphorylation. . Nature 364::24952
    [Crossref] [Google Scholar]
  61. 61.
    Hamilton M, Liao J, Cathcart MK, Wolfman A. 2001.. Constitutive association of c-N-Ras with c-Raf-1 and protein kinase Cε in latent signaling modules. . J. Biol. Chem. 276::2907990
    [Crossref] [Google Scholar]
  62. 62.
    Ritt DA, Zhou M, Conrads TP, Veenstra TD, Copeland TD, Morrison DK. 2007.. CK2 is a component of the KSR1 scaffold complex that contributes to Raf kinase activation. . Curr. Biol. 17::17984
    [Crossref] [Google Scholar]
  63. 63.
    Marais R, Light Y, Mason C, Paterson H, Olson MF, Marshall CJ. 1998.. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. . Science 280::10912
    [Crossref] [Google Scholar]
  64. 64.
    Tran NH, Wu X, Frost JA. 2005.. B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. . J. Biol. Chem. 280::1624453
    [Crossref] [Google Scholar]
  65. 65.
    Hu J, Stites EC, Yu H, Germino EA, Meharena HS, et al. 2013.. Allosteric activation of functionally asymmetric RAF kinase dimers. . Cell 154::103646
    [Crossref] [Google Scholar]
  66. 66.
    Cutler RE Jr., Stephens RM, Saracino MR, Morrison DK. 1998.. Autoregulation of the Raf-1 serine/threonine kinase. . PNAS 95::921419
    [Crossref] [Google Scholar]
  67. 67.
    Zhang BH, Guan KL. 2000.. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. . EMBO J. 19::542939
    [Crossref] [Google Scholar]
  68. 68.
    Chong H, Lee J, Guan KL. 2001.. Positive and negative regulation of Raf kinase activity and function by phosphorylation. . EMBO J. 20::371627
    [Crossref] [Google Scholar]
  69. 69.
    Baljuls A, Schmitz W, Mueller T, Zahedi RP, Sickmann A, et al. 2008.. Positive regulation of A-RAF by phosphorylation of isoform-specific hinge segment and identification of novel phosphorylation sites. . J. Biol. Chem. 283::2723954
    [Crossref] [Google Scholar]
  70. 70.
    Barnard D, Diaz B, Clawson D, Marshall M. 1998.. Oncogenes, growth factors and phorbol esters regulate Raf-1 through common mechanisms. . Oncogene 17::153947
    [Crossref] [Google Scholar]
  71. 71.
    Brummer T, Naegele H, Reth M, Misawa Y. 2003.. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. . Oncogene 22::882334
    [Crossref] [Google Scholar]
  72. 72.
    Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, et al. 2005.. Regulation of Raf-1 by direct feedback phosphorylation. . Mol. Cell 17::21524
    [Crossref] [Google Scholar]
  73. 73.
    Ritt DA, Monson DM, Specht SI, Morrison DK. 2010.. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. . Mol. Cell. Biol. 30::80619
    [Crossref] [Google Scholar]
  74. 74.
    Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, et al. 2018.. Oncogenic signaling pathways in The Cancer Genome Atlas. . Cell 173::32137.e10
    [Crossref] [Google Scholar]
  75. 75.
    Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites EC. 2021.. Cancer gene mutation frequencies for the U.S. population. . Nat. Commun. 12::5961
    [Crossref] [Google Scholar]
  76. 76.
    Prior IA, Hood FE, Hartley JL. 2020.. The frequency of Ras mutations in cancer. . Cancer Res. 80::296974
    [Crossref] [Google Scholar]
  77. 77.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. 2002.. Mutations of the BRAF gene in human cancer. . Nature 417::94954
    [Crossref] [Google Scholar]
  78. 78.
    Holderfield M, Deuker MM, McCormick F, McMahon M. 2014.. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. . Nat. Rev. Cancer 14::45567
    [Crossref] [Google Scholar]
  79. 79.
    Yao Z, Torres NM, Tao A, Gao Y, Luo L, et al. 2015.. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. . Cancer Cell 28::37083
    [Crossref] [Google Scholar]
  80. 80.
    Imielinski M, Greulich H, Kaplan B, Araujo L, Amann J, et al. 2014.. Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma. . J. Clin. Investig. 124::158286
    [Crossref] [Google Scholar]
  81. 81.
    Noeparast A, Giron P, Noor A, Bahadur Shahi R, De Brakeleer S, et al. 2019.. CRAF mutations in lung cancer can be oncogenic and predict sensitivity to combined type II RAF and MEK inhibition. . Oncogene 38::593341
    [Crossref] [Google Scholar]
  82. 82.
    Rauen KA. 2013.. The RASopathies. . Annu. Rev. Genom. Hum. Genet. 14::35569
    [Crossref] [Google Scholar]
  83. 83.
    Hebron KE, Hernandez ER, Yohe ME. 2022.. The RASopathies: from pathogenetics to therapeutics. . Dis. Model. Mech. 15::dmm049107
    [Crossref] [Google Scholar]
  84. 84.
    Mazzanti L, Cacciari E, Cicognani A, Bergamaschi R, Scarano E, Forabosco A. 2003.. Noonan-like syndrome with loose anagen hair: a new syndrome?. Am. J. Med. Genet. A 118A::27986
    [Crossref] [Google Scholar]
  85. 85.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, et al. 2004.. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. . Cell 116::85567
    [Crossref] [Google Scholar]
  86. 86.
    Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A. 1995.. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. . Nature 375::55460
    [Crossref] [Google Scholar]
  87. 87.
    Diedrich B, Rigbolt KT, Roring M, Herr R, Kaeser-Pebernard S, et al. 2017.. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. . EMBO J. 36::64663
    [Crossref] [Google Scholar]
  88. 88.
    Fischmann TO, Smith CK, Mayhood TW, Myers JE, Reichert P, et al. 2009.. Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. . Biochemistry 48::266174
    [Crossref] [Google Scholar]
  89. 89.
    Huse M, Kuriyan J. 2002.. The conformational plasticity of protein kinases. . Cell 109::27582
    [Crossref] [Google Scholar]
  90. 90.
    Thevakumaran N, Lavoie H, Critton DA, Tebben A, Marinier A, et al. 2015.. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. . Nat. Struct. Mol. Biol. 22::3743
    [Crossref] [Google Scholar]
  91. 91.
    Liau NPD, Venkatanarayan A, Quinn JG, Phung W, Malek S, et al. 2020.. Dimerization induced by C-terminal 14-3-3 binding is sufficient for BRAF kinase activation. . Biochemistry 59::398292
    [Crossref] [Google Scholar]
  92. 92.
    Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, et al. 2004.. Structures of human MAP kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. . Nat. Struct. Mol. Biol. 11::119297
    [Crossref] [Google Scholar]
  93. 93.
    Hatzivassiliou G, Haling JR, Chen H, Song K, Price S, et al. 2013.. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. . Nature 501::23236
    [Crossref] [Google Scholar]
  94. 94.
    Khan ZM, Real AM, Marsiglia WM, Chow A, Duffy ME, et al. 2020.. Structural basis for the action of the drug trametinib at KSR-bound MEK. . Nature 588::50914
    [Crossref] [Google Scholar]
  95. 95.
    Lito P, Saborowski A, Yue J, Solomon M, Joseph E, et al. 2014.. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. . Cancer Cell 25::697710
    [Crossref] [Google Scholar]
  96. 96.
    Gonzalez-Del Pino GL, Li K, Park E, Schmoker AM, Ha BH, Eck MJ. 2021.. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. . PNAS 118::e2107207118
    [Crossref] [Google Scholar]
  97. 97.
    Rasmussen DM, Semonis MM, Muretta JM, Thompson AR, Thomas DD, et al. 2023.. Allosteric coupling asymmetry mediates paradoxical activation of BRAF. . bioRxiv 2023.04.18.536450. https://doi.org/10.1101/2023.04.18.536450
  98. 98.
    Kochen Rossi J, Nuevo-Tapioles C, Philips MR. 2023.. Differential functions of the KRAS splice variants. . Biochem. Soc. Trans. 51::119199
    [Crossref] [Google Scholar]
  99. 99.
    Gutierrez L, Magee AI, Marshall CJ, Hancock JF. 1989.. Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. . EMBO J. 8::109398
    [Crossref] [Google Scholar]
  100. 100.
    Hancock JF, Magee AI, Childs JE, Marshall CJ. 1989.. All ras proteins are polyisoprenylated but only some are palmitoylated. . Cell 57::116777
    [Crossref] [Google Scholar]
  101. 101.
    Hancock JF, Cadwallader K, Paterson H, Marshall CJ. 1991.. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. . EMBO J. 10::403339
    [Crossref] [Google Scholar]
  102. 102.
    Vetter IR, Wittinghofer A. 2001.. The guanine nucleotide-binding switch in three dimensions. . Science 294::1299304
    [Crossref] [Google Scholar]
  103. 103.
    Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, et al. 2015.. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. . Structure 23::50516
    [Crossref] [Google Scholar]
  104. 104.
    Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR. 2007.. B- and C-RAF display essential differences in their binding to Ras: The isotype-specific N terminus of B-RAF facilitates Ras binding. . J. Biol. Chem. 282::2650316
    [Crossref] [Google Scholar]
  105. 105.
    Thapar R, Williams JG, Campbell SL. 2004.. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. . J. Mol. Biol. 343::1391408
    [Crossref] [Google Scholar]
  106. 106.
    Cookis T, Mattos C. 2021.. Crystal structure reveals the full Ras–Raf interface and advances mechanistic understanding of Raf activation. . Biomolecules 11::996
    [Crossref] [Google Scholar]
  107. 107.
    Tran TH, Chan AH, Young LC, Bindu L, Neale C, et al. 2021.. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. . Nat. Commun. 12::1176
    [Crossref] [Google Scholar]
  108. 108.
    Travers T, Lopez CA, Van QN, Neale C, Tonelli M, et al. 2018.. Molecular recognition of RAS/RAF complex at the membrane: role of RAF cysteine-rich domain. . Sci. Rep. 8::8461
    [Crossref] [Google Scholar]
  109. 109.
    Fang Z, Lee KY, Huo KG, Gasmi-Seabrook G, Zheng L, et al. 2020.. Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane. . PNAS 117::121018
    [Crossref] [Google Scholar]
  110. 110.
    Park E, Rawson S, Schmoker A, Kim BW, Oh S, et al. 2023.. Cryo-EM structure of a RAS/RAF recruitment complex. . Nat. Commun. 14::4580
    [Crossref] [Google Scholar]
  111. 111.
    Van QN, Prakash P, Shrestha R, Balius TE, Turbyville TJ, Stephen AG. 2021.. RAS nanoclusters: dynamic signaling platforms amenable to therapeutic intervention. . Biomolecules 11::377
    [Crossref] [Google Scholar]
  112. 112.
    Zhou Y, Prakash P, Liang H, Cho KJ, Gorfe AA, Hancock JF. 2017.. Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. . Cell 168::23951.e16
    [Crossref] [Google Scholar]
  113. 113.
    Zhou Y, Prakash P, Gorfe AA, Hancock JF. 2018.. Ras and the plasma membrane: a complicated relationship. . Cold Spring Harb. Perspect. Med. 8::a031831
    [Crossref] [Google Scholar]
  114. 114.
    Simanshu DK, Philips MR, Hancock JF. 2023.. Consensus on the RAS dimerization hypothesis: strong evidence for lipid-mediated clustering but not for G-domain-mediated interactions. . Mol. Cell 83::121015
    [Crossref] [Google Scholar]
  115. 115.
    Whaby M, Wallon L, Mazzei M, Khan I, Teng KW, et al. 2022.. Mutations in the α4-α5 allosteric lobe of RAS do not significantly impair RAS signaling or self-association. . J. Biol. Chem. 298::102661
    [Crossref] [Google Scholar]
  116. 116.
    Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, et al. 1999.. Paradoxical activation of Raf by a novel Raf inhibitor. . Chem. Biol. 6::55968
    [Crossref] [Google Scholar]
  117. 117.
    Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, et al. 2010.. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. . Cell 140::20921
    [Crossref] [Google Scholar]
  118. 118.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. 2010.. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. . Nature 464::42730
    [Crossref] [Google Scholar]
  119. 119.
    Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, et al. 2010.. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. . Nature 464::43135
    [Crossref] [Google Scholar]
  120. 120.
    Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, et al. 2017.. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. . Nature 548::23438
    [Crossref] [Google Scholar]
  121. 121.
    Blasco RB, Francoz S, Santamaria D, Canamero M, Dubus P, et al. 2011.. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. . Cancer Cell 19::65263
    [Crossref] [Google Scholar]
  122. 122.
    Karreth FA, Frese KK, DeNicola GM, Baccarini M, Tuveson DA. 2011.. C-Raf is required for the initiation of lung cancer by K-RasG12D. . Cancer Discov. 1::12836
    [Crossref] [Google Scholar]
  123. 123.
    Sanclemente M, Francoz S, Esteban-Burgos L, Bousquet-Mur E, Djurec M, et al. 2018.. c-RAF ablation induces regression of advanced Kras/Trp53 mutant lung adenocarcinomas by a mechanism independent of MAPK signaling. . Cancer Cell 33::21728.e4
    [Crossref] [Google Scholar]
  124. 124.
    Sanclemente M, Nieto P, Garcia-Alonso S, Fernandez-Garcia F, Esteban-Burgos L, et al. 2021.. RAF1 kinase activity is dispensable for KRAS/p53 mutant lung tumor progression. . Cancer Cell 39::29496
    [Crossref] [Google Scholar]
  125. 125.
    Venkatanarayan A, Liang J, Yen I, Shanahan F, Haley B, et al. 2022.. CRAF dimerization with ARAF regulates KRAS-driven tumor growth. . Cell Rep. 38::110351
    [Crossref] [Google Scholar]
  126. 126.
    Foster SA, Whalen DM, Ozen A, Wongchenko MJ, Yin J, et al. 2016.. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. . Cancer Cell 29::47793
    [Crossref] [Google Scholar]
  127. 127.
    Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, et al. 2016.. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. . Cancer Discov. 6::30015
    [Crossref] [Google Scholar]
  128. 128.
    Nelson DS, Quispel W, Badalian-Very G, van Halteren AGS, van den Bos C, et al. 2014.. Somatic activating ARAF mutations in Langerhans cell histiocytosis. . Blood 123::315255
    [Crossref] [Google Scholar]
  129. 129.
    Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, et al. 2015.. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. . Nat. Genet. 47::9961002
    [Crossref] [Google Scholar]
  130. 130.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, et al. 2008.. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. . Cancer Res. 68::867377
    [Crossref] [Google Scholar]
  131. 131.
    Jones DTW, Bandopadhayay P, Jabado N. 2019.. The power of human cancer genetics as revealed by low-grade gliomas. . Annu. Rev. Genet. 53::483503
    [Crossref] [Google Scholar]
  132. 132.
    Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, et al. 2013.. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. . PNAS 110::595762
    [Crossref] [Google Scholar]
  133. 133.
    Sarkozy A, Carta C, Moretti S, Zampino G, Digilio MC, et al. 2009.. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. . Hum. Mutat. 30::695702
    [Crossref] [Google Scholar]
  134. 134.
    Spencer-Smith R, Terrell EM, Insinna C, Agamasu C, Wagner ME, et al. 2022.. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation. . Mol. Cell 82::426276.e5
    [Crossref] [Google Scholar]
  135. 135.
    Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, et al. 2000.. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. . J. Biol. Chem. 275::223004
    [Crossref] [Google Scholar]
  136. 136.
    Jaumot M, Hancock JF. 2001.. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. . Oncogene 20::394958
    [Crossref] [Google Scholar]
  137. 137.
    Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK. 2003.. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. . Curr. Biol. 13::135664
    [Crossref] [Google Scholar]
  138. 138.
    Shi Y. 2009.. Serine/threonine phosphatases: mechanism through structure. . Cell 139::46884
    [Crossref] [Google Scholar]
  139. 139.
    Casamayor A, Arino J. 2020.. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. . Adv. Protein Chem. Struct. Biol. 122::23188
    [Crossref] [Google Scholar]
  140. 140.
    DeVore DL, Horvitz HR, Stern MJ. 1995.. An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. . Cell 83::61120
    [Crossref] [Google Scholar]
  141. 141.
    Selfors LM, Schutzman JL, Borland CZ, Stern MJ. 1998.. soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. . PNAS 95::69038
    [Crossref] [Google Scholar]
  142. 142.
    Sieburth DS, Sun Q, Han M. 1998.. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. . Cell 94::11930
    [Crossref] [Google Scholar]
  143. 143.
    Kwon JJ, Hahn WC. 2021.. A leucine-rich repeat protein provides a SHOC2 the RAS circuit: a structure-function perspective. . Mol. Cell. Biol. 41::e00627-20
    [Crossref] [Google Scholar]
  144. 144.
    Wang T, Yu H, Hughes NW, Liu B, Kendirli A, et al. 2017.. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. . Cell 168::890903.e15
    [Crossref] [Google Scholar]
  145. 145.
    Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, et al. 2019.. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. . Nature 568::51116
    [Crossref] [Google Scholar]
  146. 146.
    Han K, Pierce SE, Li A, Spees K, Anderson GR, et al. 2020.. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. . Nature 580::13641
    [Crossref] [Google Scholar]
  147. 147.
    Sulahian R, Kwon JJ, Walsh KH, Pailler E, Bosse TL, et al. 2019.. Synthetic lethal interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. . Cell Rep. 29::11834.e8
    [Crossref] [Google Scholar]
  148. 148.
    Jones GG, Del Rio IB, Sari S, Sekerim A, Young LC, et al. 2019.. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. . Nat. Commun. 10::2532
    [Crossref] [Google Scholar]
  149. 149.
    Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J. 1995.. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. . Nature 376::74553
    [Crossref] [Google Scholar]
  150. 150.
    Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, et al. 2017.. Defining a cancer dependency map. . Cell 170::56476.e16
    [Crossref] [Google Scholar]
  151. 151.
    Bonsor DA, Simanshu DK. 2023.. Structural insights into the role of SHOC2-MRAS-PP1C complex in RAF activation. . FEBS J. 290::485263
    [Crossref] [Google Scholar]
  152. 152.
    Cordeddu V, Di Schiavi E, Pennacchio LA, Ma'ayan A, Sarkozy A, et al. 2009.. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. . Nat. Genet. 41::102226
    [Crossref] [Google Scholar]
  153. 153.
    Schulte TW, Blagosklonny MV, Ingui C, Neckers L. 1995.. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. . J. Biol. Chem. 270::2458588
    [Crossref] [Google Scholar]
  154. 154.
    Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH. 1999.. p50cdc37 acting in concert with Hsp90 is required for Raf-1 function. . Mol. Cell. Biol. 19::166172
    [Crossref] [Google Scholar]
  155. 155.
    Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, et al. 2012.. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. . Cell 150::9871001
    [Crossref] [Google Scholar]
  156. 156.
    Verba KA, Agard DA. 2017.. How Hsp90 and Cdc37 lubricate kinase molecular switches. . Trends Biochem. Sci. 42::799811
    [Crossref] [Google Scholar]
  157. 157.
    Verba KA, Wang RY, Arakawa A, Liu Y, Shirouzu M, et al. 2016.. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. . Science 352::154247
    [Crossref] [Google Scholar]
  158. 158.
    Schopf FH, Biebl MM, Buchner J. 2017.. The HSP90 chaperone machinery. . Nat. Rev. Mol. Cell Biol. 18::34560
    [Crossref] [Google Scholar]
  159. 159.
    Keramisanou D, Vasantha Kumar MV, Boose N, Abzalimov RR, Gelis I. 2022.. Assembly mechanism of early Hsp90-Cdc37-kinase complexes. . Sci. Adv. 8::eabm9294
    [Crossref] [Google Scholar]
  160. 160.
    Surve S, Watkins SC, Sorkin A. 2021.. EGFR-RAS-MAPK signaling is confined to the plasma membrane and associated endorecycling protrusions. . J. Cell Biol. 220::e202107103
    [Crossref] [Google Scholar]
  161. 161.
    Terrell EM, Durrant DE, Ritt DA, Sealover NE, Sheffels E, et al. 2019.. Distinct binding preferences between Ras and Raf family members and the impact on oncogenic Ras signaling. . Mol. Cell 76::87284.e5
    [Crossref] [Google Scholar]
  162. 162.
    Rohrer L, Spohr C, Beha C, Griffin R, Braun S, et al. 2023.. Analysis of RAS and drug induced homo- and heterodimerization of RAF and KSR1 proteins in living cells using split Nanoluc luciferase. . Cell Commun. Signal. 21::136
    [Crossref] [Google Scholar]
  163. 163.
    Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, et al. 2022.. Non-canonical β-adrenergic activation of ERK at endosomes. . Nature 611::17379
    [Crossref] [Google Scholar]
  164. 164.
    Zang Y, Kahsai AW, Pakharukova N, Huang LY, Lefkowitz RJ. 2021.. The GPCR–β-arrestin complex allosterically activates C-Raf by binding its amino terminus. . J. Biol. Chem. 297::101369
    [Crossref] [Google Scholar]
  165. 165.
    Scheres SH. 2016.. Processing of structurally heterogeneous Cryo-EM data in RELION. . Methods Enzymol. 579::12557
    [Crossref] [Google Scholar]
  166. 166.
    Kornfeld K, Hom DB, Horvitz HR. 1995.. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. . Cell 83::90313
    [Crossref] [Google Scholar]
  167. 167.
    Sundaram M, Han M. 1995.. The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction. . Cell 83::889901
    [Crossref] [Google Scholar]
  168. 168.
    Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM. 1995.. KSR, a novel protein kinase required for RAS signal transduction. . Cell 83::87988
    [Crossref] [Google Scholar]
  169. 169.
    Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, et al. 2002.. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. . Mol. Cell. Biol. 22::303545
    [Crossref] [Google Scholar]
  170. 170.
    Roy F, Laberge G, Douziech M, Ferland-McCollough D, Therrien M. 2002.. KSR is a scaffold required for activation of the ERK/MAPK module. . Genes Dev. 16::42738
    [Crossref] [Google Scholar]
  171. 171.
    Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL. 1999.. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. . Mol. Cell. Biol. 19::552334
    [Crossref] [Google Scholar]
  172. 172.
    Claperon A, Therrien M. 2007.. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. . Oncogene 26::314358
    [Crossref] [Google Scholar]
  173. 173.
    Koveal D, Schuh-Nuhfer N, Ritt D, Page R, Morrison DK, Peti W. 2012.. A CC-SAM, for coiled coil–sterile α motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. . Sci. Signal. 5::ra94
    [Crossref] [Google Scholar]
  174. 174.
    Paniagua G, Jacob HKC, Brehey O, Garcia-Alonso S, Lechuga CG, et al. 2022.. KSR induces RAS-independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors. . Mol. Oncol. 16::306681
    [Crossref] [Google Scholar]
  175. 175.
    Su F, Viros A, Milagre C, Trunzer K, Bollag G, et al. 2012.. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. . N. Engl. J. Med. 366::20715
    [Crossref] [Google Scholar]
  176. 176.
    Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, et al. 2012.. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. . J. Clin. Oncol. 30::31621
    [Crossref] [Google Scholar]
  177. 177.
    Subbiah V, Baik C, Kirkwood JM. 2020.. Clinical development of BRAF plus MEK inhibitor combinations. . Trends Cancer 6::797810
    [Crossref] [Google Scholar]
  178. 178.
    Jin T, Lavoie H, Sahmi M, David M, Hilt C, et al. 2017.. RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. . Nat. Commun. 8::1211
    [Crossref] [Google Scholar]
  179. 179.
    Yao Z, Gao Y, Su W, Yaeger R, Tao J, et al. 2019.. RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. . Nat. Med. 25::28491
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-040754
Loading
/content/journals/10.1146/annurev-biochem-052521-040754
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error