1932

Abstract

Muscles are essential for movement and heart function. Contraction and relaxation of muscles rely on the sliding of two types of filaments—the thin filament and the thick myosin filament. The thin filament is composed mainly of filamentous actin (F-actin), tropomyosin, and troponin. Additionally, several other proteins are involved in the contraction mechanism, and their malfunction can lead to diverse muscle diseases, such as cardiomyopathies. We review recent high-resolution structural data that explain the mechanism of action of muscle proteins at an unprecedented level of molecular detail. We focus on the molecular structures of the components of the thin and thick filaments and highlight the mechanisms underlying force generation through actin–myosin interactions, as well as Ca2+-dependent regulation via the dihydropyridine receptor, the ryanodine receptor, and troponin. We particularly emphasize the impact of cryo–electron microscopy and cryo–electron tomography in leading muscle research into a new era.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-042909
2023-06-20
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-052521-042909.html?itemId=/content/journals/10.1146/annurev-biochem-052521-042909&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    van Leeuwenhoek A. 1682. An account of several curious discoveries about the internal texture of the flesh of muscles, of strange motions in the finns or beard of oysters; of the manner of the production of oyster shells; and several other late observations made by Mr. Anthony Leuwenhoek fellow of the Royal Society; sent in a letter to R. H. from Delft, and by him exhibited to the said Society. Philos. Collections 5:152–60
    [Google Scholar]
  2. 2.
    Kühne W. 1864. Untersuchungen über das Protoplasma und die Contractilität Leipzig, Ger.: Verlag von Wilhelm Engelmann
    [Google Scholar]
  3. 3.
    Straub FB. 1942. Actin. Stud. Inst. Med. Chem. Univ. Szeged 2:3–15
    [Google Scholar]
  4. 4.
    Szent-Györgyi A. 1943. The crystallization of myosin and some of its properties and reactions. Stud. Inst. Med. Chem. Univ. Szeged 3:76–85
    [Google Scholar]
  5. 5.
    Zernike F. 1955. How I discovered phase contrast. Science 121:3141345–49
    [Google Scholar]
  6. 6.
    Smith FH. 1954. Two half-shade devices for optical polarizing instruments. Nature 173:362–63
    [Google Scholar]
  7. 7.
    Knoll M, Ruska E. 1931. Beitrag zur geometrischen Elektronenoptik. I. Ann. Phys. 404:5607–61
    [Google Scholar]
  8. 8.
    Huxley AF, Niedergerke R. 1954. Structural changes in muscle during contraction. Nature 173:4412971–73
    [Google Scholar]
  9. 9.
    Huxley H, Hanson J. 1954. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:4412973–76
    [Google Scholar]
  10. 10.
    Shi Y. 2014. A glimpse of structural biology through X-ray crystallography. Cell 159:5995–1014
    [Google Scholar]
  11. 11.
    Marvin DA. 2017. Fibre diffraction studies of biological macromolecules. Prog. Biophys. Mol. Biol. 127:43–87
    [Google Scholar]
  12. 12.
    Huxley HE, Brown W. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30:2383–434
    [Google Scholar]
  13. 13.
    Wray JS, Vibert PJ, Cohen C. 1975. Diversity of cross-bridge configurations in invertebrate muscles. Nature 257:561–64
    [Google Scholar]
  14. 14.
    Holmes KC, Popp D, Gebhard W, Kabsch W. 1990. Atomic model of the actin filament. Nature 347:44–49
    [Google Scholar]
  15. 15.
    Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. 1990. Atomic structure of the actin:DNase I complex. Nature 347:37–44
    [Google Scholar]
  16. 16.
    Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR et al. 1993. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:511750–58
    [Google Scholar]
  17. 17.
    Quentin D, Raunser S 2018. Electron cryomicroscopy as a powerful tool in biomedical research. J. Mol. Med. 96:6483–93
    [Google Scholar]
  18. 18.
    Galkin VE, Orlova A, Cherepanova O, Lebart M-C, Egelman EH. 2008. High-resolution cryo-EM structure of the F-actin–fimbrin/plastin ABD2 complex. PNAS 105:1494–98
    [Google Scholar]
  19. 19.
    Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. 2009. The nature of the globular- to fibrous-actin transition. Nature 457:7228441–45
    [Google Scholar]
  20. 20.
    Murakami K, Yasunaga T, Noguchi TQP, Gomibuchi Y, Ngo KX et al. 2010. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143:2275–87
    [Google Scholar]
  21. 21.
    Fujii T, Iwane AH, Yanagida T, Namba K. 2010. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:7316724–28
    [Google Scholar]
  22. 22.
    Zoghbi ME, Woodhead JL, Moss RL, Craig R 2008. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. PNAS 105:72386–90
    [Google Scholar]
  23. 23.
    Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R. 2005. Atomic model of a myosin filament in the relaxed state. Nature 436:70541195–99
    [Google Scholar]
  24. 24.
    AL-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP. 2013. Atomic model of the human cardiac muscle myosin filament. PNAS 110:1318–23
    [Google Scholar]
  25. 25.
    Rayment I, Holden H, Whittaker M, Yohn C, Lorenz M et al. 1993. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:511758–65
    [Google Scholar]
  26. 26.
    Holmes KC, Angert I, Kull FJ, Jahn W, Schröder RR. 2003. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:6956423–27
    [Google Scholar]
  27. 27.
    Volkmann N, Ouyang G, Trybus KM, DeRosier DJ, Lowey S, Hanein D. 2003. Myosin isoforms show unique conformations in the actin-bound state. PNAS 100:63227–32
    [Google Scholar]
  28. 28.
    Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S. 2012. Structure of the rigor actin-tropomyosin-myosin complex. Cell 150:2327–38
    [Google Scholar]
  29. 29.
    Kühlbrandt W. 2014. The resolution revolution. Science 343:61781443–44
    [Google Scholar]
  30. 30.
    Turk M, Baumeister W. 2020. The promise and the challenges of cryo-electron tomography. FEBS Lett. 594:203243–61
    [Google Scholar]
  31. 31.
    Marko M, Hsieh C, Schalek R, Frank J, Mannella C. 2007. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods 4:3215–17
    [Google Scholar]
  32. 32.
    Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM. 2017. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197:273–82
    [Google Scholar]
  33. 33.
    Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. 2021. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 184:82135–50.e13
    [Google Scholar]
  34. 34.
    Tacke S, Erdmann P, Wang Z, Klumpe S, Grange M et al. 2021. A streamlined workflow for automated cryo focused ion beam milling. J. Struct. Biol. 213:3107743
    [Google Scholar]
  35. 35.
    Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. 2021. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 18:2186–93
    [Google Scholar]
  36. 36.
    Wang Z, Grange M, Pospich S, Wagner T, Kho AL et al. 2022. Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin. Science 375:6582eabn1934
    [Google Scholar]
  37. 37.
    Draper MH, Hodge AJ. 1949. Sub-microscopic localization of minerals in skeletal muscle by internal “micro-incineration” within the electron microscope. Nature 163:576–77
    [Google Scholar]
  38. 38.
    Taylor KA, Reedy MC, Cordova L, Reedy MK. 1984. Three-dimensional reconstruction of rigor insect flight muscle from tilted thin sections. Nature 310:5975285–91
    [Google Scholar]
  39. 39.
    Liu J, Reedy MC, Goldman YE, Franzini-Armstrong C, Sasaki H et al. 2004. Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J. Struct. Biol. 147:3268–82
    [Google Scholar]
  40. 40.
    von der Ecken J, Müller M, Lehman W, Manstein DJ, Penczek PA, Raunser S. 2015. Structure of the F-actin–tropomyosin complex. Nature 519:7541114–17
    [Google Scholar]
  41. 41.
    Merino F, Pospich S, Funk J, Wagner T, Küllmer F et al. 2018. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM. Nat. Struct. Mol. Biol. 25:6528–37
    [Google Scholar]
  42. 42.
    Chou SZ, Pollard TD. 2019. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. PNAS 116:104265–74
    [Google Scholar]
  43. 43.
    Oosterheert W, Klink BU, Belyy A, Pospich S, Raunser S. 2022. Structural basis of actin filament assembly and aging. Nature 611:374–79
    [Google Scholar]
  44. 44.
    Pospich S, Kumpula EP, von der Ecken J, Vahokoski J, Kursula I, Raunser S 2017. Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability. PNAS 114:4010636–41
    [Google Scholar]
  45. 45.
    Pospich S, Merino F, Raunser S. 2020. Structural effects and functional implications of phalloidin and jasplakinolide binding to actin filaments. Structure 28:4437–49.e5
    [Google Scholar]
  46. 46.
    Kumari A, Kesarwani S, Javoor MG, Vinothkumar KR, Sirajuddin M. 2020. Structural insights into actin filament recognition by commonly used cellular actin markers. EMBO J. 39:14e104006
    [Google Scholar]
  47. 47.
    Merino F, Pospich S, Raunser S. 2020. Towards a structural understanding of the remodeling of the actin cytoskeleton. Semin. Cell Dev. Biol. 102:51–64
    [Google Scholar]
  48. 48.
    Tanaka K, Takeda S, Mitsuoka K, Oda T, Kimura-Sakiyama C et al. 2018. Structural basis for cofilin binding and actin filament disassembly. Nat. Commun. 9:11860
    [Google Scholar]
  49. 49.
    Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM. 2022. Bending forces and nucleotide state jointly regulate F-actin structure. Nature 611:380–86
    [Google Scholar]
  50. 50.
    Moncman CL, Wang K. 1995. Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil. Cytoskelet. 32:3205–25
    [Google Scholar]
  51. 51.
    Labeit S, Gibson T, Lakey A, Leonard K, Zeviani M et al. 1991. Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett. 282:2313–16
    [Google Scholar]
  52. 52.
    Funk J, Merino F, Schaks M, Rottner K, Raunser S, Bieling P. 2021. A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks. Nat. Commun. 12:15329
    [Google Scholar]
  53. 53.
    Rao JN, Madasu Y, Dominguez R. 2014. Mechanism of actin filament pointed-end capping by tropomodulin. Science 345:6195463–67
    [Google Scholar]
  54. 54.
    Hartman MA, Spudich JA. 2012. The myosin superfamily at a glance. J. Cell Sci. 125:71627–32
    [Google Scholar]
  55. 55.
    Dominguez R, Freyzon Y, Trybus KM, Cohen C. 1998. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:5559–71
    [Google Scholar]
  56. 56.
    Houdusse A, Szent-Györgyi AG, Cohen C. 2000. Three conformational states of scallop myosin S1. PNAS 97:2111238–43
    [Google Scholar]
  57. 57.
    Gourinath S, Himmel DM, Brown JH, Reshetnikova L, Szent-Györgyi AG, Cohen C. 2003. Crystal structure of scallop myosin S1 in the pre-power stroke state to 2.6 Å resolution: flexibility and function in the head. Structure 11:121621–27
    [Google Scholar]
  58. 58.
    Trybus KM. 1994. Role of myosin light chains. J. Muscle Res. Cell Motil. 15:587–94
    [Google Scholar]
  59. 59.
    Sweeney HL, Bowman BF, Stull JT, Lee H, Stull JT. 1993. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am. J. Physiol. Cell Physiol. 264:5C1085–95
    [Google Scholar]
  60. 60.
    Sweeney HL, Stullt JT. 1990. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin–myosin interaction. PNAS 87:414–18
    [Google Scholar]
  61. 61.
    Blankenfeldt W, Thomä NH, Wray JS, Gautel M, Schlichting I. 2006. Crystal structures of human cardiac β-myosin II S2-Δ provide insight into the functional role of the S2 subfragment. PNAS 103:4717713–17
    [Google Scholar]
  62. 62.
    Squire JM. 2009. Muscle myosin filaments: cores, crowns and couplings. Biophys. Rev. 1:3149–60
    [Google Scholar]
  63. 63.
    Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA. 2016. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution. Sci. Adv. 2:9e1600058
    [Google Scholar]
  64. 64.
    Daneshparvar N, Taylor DW, O'Leary TS, Rahmani H, Abbasiyeganeh F et al. 2020. CryoEM structure of Drosophila flight muscle thick filaments at 7 Å resolution. Life Sci. Alliance 3:8e202000823
    [Google Scholar]
  65. 65.
    Maruyama K, Natori R, Nonomura Y. 1976. New elastic protein from muscle. Nature 262:58–60
    [Google Scholar]
  66. 66.
    Linke WA. 2018. Titin gene and protein functions in passive and active muscle. Annu. Rev. Physiol. 80:389–411
    [Google Scholar]
  67. 67.
    Gautel M, Zuffardi O, Freiburg A, Labeit S. 1995. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction?. EMBO J. 14:91952–60
    [Google Scholar]
  68. 68.
    Heling LWHJ, Geeves MA, Kad NM. 2020. MyBP-C: one protein to govern them all. J. Muscle Res. Cell Motil. 41:191–101
    [Google Scholar]
  69. 69.
    Craig R, Offer G. 1976. The location of C protein in rabbit skeletal muscle. Proc. R. Soc. B 192:1109451–61
    [Google Scholar]
  70. 70.
    Luther PK, Winkler H, Taylor K, Zoghbic ME, Craig R et al. 2011. Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. PNAS 108:2811423–28
    [Google Scholar]
  71. 71.
    Risi C, Belknap B, Forgacs-Lonart E, Harris SP, Schröder GF et al. 2018. N-terminal domains of cardiac myosin binding protein C cooperatively activate the thin filament. Structure 26:121604–11.e4
    [Google Scholar]
  72. 72.
    Risi CM, Patra M, Belknap B, Harris SP, White HD, Galkin VE. 2021. Interaction of the C2 Ig-like domain of cardiac myosin binding protein-C with F-actin. J. Mol. Biol. 433:19167178
    [Google Scholar]
  73. 73.
    Lymn RW, Taylor EW. 1971. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:254617–24
    [Google Scholar]
  74. 74.
    Holmes KC. 1997. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7:2112–18
    [Google Scholar]
  75. 75.
    Llinas P, Isabet T, Song L, Ropars V, Zong B et al. 2015. How actin initiates the motor activity of myosin. Dev. Cell 33:4401–12
    [Google Scholar]
  76. 76.
    Sweeney HL, Houdusse A, Robert-Paganin J. 2020. Myosin structures. Myosins: A Superfamily of Molecular Motors LM Coluccio 7–19. Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  77. 77.
    von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein D, Raunser S. 2016. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534:724–28
    [Google Scholar]
  78. 78.
    Fujii T, Namba K. 2017. Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nat. Commun. 8:13969
    [Google Scholar]
  79. 79.
    Banerjee C, Hu Z, Huang Z, Warrington JA, Taylor DW et al. 2017. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state. J. Struct. Biol. 200:3325–33
    [Google Scholar]
  80. 80.
    Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R et al. 2018. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. PNAS 115:61292–97
    [Google Scholar]
  81. 81.
    Doran MH, Pavadai E, Rynkiewicz MJ, Walklate J, Bullitt E et al. 2020. Cryo-EM and molecular docking shows myosin loop 4 contacts actin and tropomyosin on thin filaments. Biophys. J. 119:4821–30
    [Google Scholar]
  82. 82.
    Pospich S, Sweeney HL, Houdusse A, Raunser S. 2021. High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. eLife 10:e73724
    [Google Scholar]
  83. 83.
    Risi C, Schäfer LU, Belknap B, Pepper I, White HD et al. 2021. High-resolution cryo-EM structure of the cardiac actomyosin complex. Structure 29:150–60.e4
    [Google Scholar]
  84. 84.
    Gurel PS, Kim LY, Ruijgrok PV, Omabegho T, Bryant Z, Alushin GM. 2017. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. eLife 6:e31125
    [Google Scholar]
  85. 85.
    Wulf SF, Ropars V, Fujita-Becker S, Oster M, Hofhaus G et al. 2016. Force-producing ADP state of myosin bound to actin. PNAS 113:13E1844–52
    [Google Scholar]
  86. 86.
    Blanc F, Isabet T, Benisty H, Sweeney HL, Cecchini M, Houdusse A. 2018. An intermediate along the recovery stroke of myosin VI revealed by X-ray crystallography and molecular dynamics. PNAS 115:246213–18
    [Google Scholar]
  87. 87.
    Joel PB, Trybus KM, Sweeney HL. 2001. Two conserved lysines at the 50/20-kDa junction of myosin are necessary for triggering actin activation. J. Biol. Chem. 276:52998–3003
    [Google Scholar]
  88. 88.
    Onishi H, Mikhailenko SV, Morales MF. 2006. Toward understanding actin activation of myosin ATPase: the role of myosin surface loops. PNAS 103:166136–41
    [Google Scholar]
  89. 89.
    Stewart MA, Franks-Skiba K, Chen S, Cooke R 2010. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. PNAS 107:1430–35
    [Google Scholar]
  90. 90.
    Hooijman P, Stewart MA, Cooke R. 2011. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100:81969–76
    [Google Scholar]
  91. 91.
    Nag S, Trivedi DV. 2021. To lie or not to lie: super-relaxing with myosins. eLife 10:e63703
    [Google Scholar]
  92. 92.
    Wendt T, Taylor D, Trybus KM, Taylor K. 2001. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. PNAS 98:84361–66
    [Google Scholar]
  93. 93.
    Yang S, Tiwari P, Lee KH, Sato O, Ikebe M et al. 2020. Cryo-EM structure of the inhibited (10S) form of myosin II. Nature 588:7838521–25
    [Google Scholar]
  94. 94.
    Scarff CA, Carrington G, Casas-Mao D, Chalovich JM, Knight PJ et al. 2020. Structure of the shutdown state of myosin-2. Nature 588:7838515–20
    [Google Scholar]
  95. 95.
    Heissler SM, Arora AS, Billington N, Sellers JR, Chinthalapudi K. 2021. Cryo-EM structure of the autoinhibited state of myosin-2. Science Adv. 7:52eabk3273
    [Google Scholar]
  96. 96.
    Craig R, Smith R, Kendrick-Jones J. 1983. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302:5907436–39
    [Google Scholar]
  97. 97.
    Trybus KM, Lowey S. 1984. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J. Biol. Chem. 259:138564–71
    [Google Scholar]
  98. 98.
    McNamara JW, Li A, dos Remedios CG, Cooke R. 2015. The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys. Rev. 7:15–14
    [Google Scholar]
  99. 99.
    Linari M, Brunello E, Reconditi M, Fusi L, Caremani M et al. 2015. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528:7581276–79
    [Google Scholar]
  100. 100.
    Tyska MJ, Dupuis DE, Guilford WH, Patlak JB, Waller GS et al. 1999. Two heads of myosin are better than one for generating force and motion. PNAS 96:4402–7
    [Google Scholar]
  101. 101.
    Craig R, Szent-Györgyi AG, Beese L, Flickers P, Vibert P, Cohew C. 1980. Electron microscopy of thin filaments decorated with a Ca2+-regulated myosin. J. Mol. Biol. 140:35–55
    [Google Scholar]
  102. 102.
    Conibear PB, Geeves MA. 1998. Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin. Biophys. J. 75:2926–37
    [Google Scholar]
  103. 103.
    Sandow A. 1952. Excitation-contraction coupling in muscular response. Yale J. Biol. Med. 25:3176–201
    [Google Scholar]
  104. 104.
    Serysheva II, Ludtke SJ, Baker MR, Chiu W, Hamilton SL. 2002. Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. PNAS 99:1610370–75
    [Google Scholar]
  105. 105.
    Wolf M, Eberhart A, Glossmann H, Striessnig J, Grigorieff N. 2003. Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J. Mol. Biol. 332:1171–82
    [Google Scholar]
  106. 106.
    van Petegem F, Clark KA, Chatelain FC, Minor DL. 2004. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429:6992671–75
    [Google Scholar]
  107. 107.
    Chen Y, Li M, Zhang Y, He L, Yamada Y et al. 2004. Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429:6992675–80
    [Google Scholar]
  108. 108.
    Wu J, Yan Z, Li Z, Yan C, Lu S et al. 2015. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:6267aad2395
    [Google Scholar]
  109. 109.
    Wu J, Yan Z, Li Z, Qian X, Lu S et al. 2016. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537:7619191–96
    [Google Scholar]
  110. 110.
    Zhao Y, Huang G, Wu J, Wu Q, Gao S et al. 2019. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 177:61495–506.e12
    [Google Scholar]
  111. 111.
    Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N. 1991. The roles of the subunits in the function of the calcium channel. Science 253:50271553–57
    [Google Scholar]
  112. 112.
    Chen Z, Mondal A, Abderemane-Ali F, Montano J, Zaro B, Minor DL Jr. 2022. EMC holdase:CaV1.2/CaVβ3 complex and CaV1.2 channel structures reveal CaV assembly and drug binding mechanisms. bioRxiv 2022.10.03.510667. https://doi.org/10.1101/2022.10.03.510667
    [Crossref]
  113. 113.
    Inuis M, Saito A, Fleischer S. 1987. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262:41740–47
    [Google Scholar]
  114. 114.
    Nakai J, Imagawa T, Hakamata Y, Shigekawa M, Takeshima H, Numa S. 1990. Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett. 271:1169–77
    [Google Scholar]
  115. 115.
    Hakamata Y, Nakai J, Takeshima H, Imoto K. 1992. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 312:2229–35
    [Google Scholar]
  116. 116.
    Rios E, Brum G. 1987. Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle. Nature 325:6106717–20
    [Google Scholar]
  117. 117.
    Näbauer M, Callewaert G, Cleemann L, Morad M. 1989. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244:4906800–3
    [Google Scholar]
  118. 118.
    Efremov RG, Leitner A, Aebersold R, Raunser S. 2015. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:753239–43
    [Google Scholar]
  119. 119.
    Yan Z, Bai XC, Yan C, Wu J, Li Z et al. 2015. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:753250–55
    [Google Scholar]
  120. 120.
    Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S et al. 2015. Structure of a mammalian ryanodine receptor. Nature 517:753244–49
    [Google Scholar]
  121. 121.
    des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ et al. 2016. Structural basis for gating and activation of RyR1. Cell 167:1145–57.e17
    [Google Scholar]
  122. 122.
    Wei R, Wang X, Zhang Y, Mukherjee S, Zhang L et al. 2016. Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1. Cell Res. 26:9977–94
    [Google Scholar]
  123. 123.
    Bai XC, Yan Z, Wu J, Li Z, Yan N 2016. The central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Cell Res. 26:9995–1006
    [Google Scholar]
  124. 124.
    Nayak AR, Samsó M. 2022. Ca2+ inactivation of the mammalian ryanodine receptor type 1 in a lipidic environment revealed by cryo-EM. eLife 11:e75568
    [Google Scholar]
  125. 125.
    Peng W, Shen H, Wu J, Guo W, Pan X et al. 2016. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 354:6310aah5324
    [Google Scholar]
  126. 126.
    Gong D, Chi X, Wei J, Zhou G, Huang G et al. 2019. Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 572:7769347–51
    [Google Scholar]
  127. 127.
    Chi X, Gong D, Ren K, Zhou G, Huang G et al. 2019. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. PNAS 116:5125575–82
    [Google Scholar]
  128. 128.
    El-Hayek R, Antoniu B, Wang J, Hamilton SL, Ikemoto N. 1995. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J. Biol. Chem. 270:3822116–18
    [Google Scholar]
  129. 129.
    Chen W, Kudryashev M. 2020. Structure of RyR1 in native membranes. EMBO Rep. 21:5e49891
    [Google Scholar]
  130. 130.
    Whitby FG, Phillips GN. 2000. Crystal structure of tropomyosin at 7 Ångstroms resolution. Protein 38:49–59
    [Google Scholar]
  131. 131.
    McKillop DF, Geeves MA. 1993. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65:2693–701
    [Google Scholar]
  132. 132.
    Vibert P, Craig R, Lehman W. 1997. Steric-model for activation of muscle thin filaments. J. Mol. Biol. 268:8–14
    [Google Scholar]
  133. 133.
    Takeda S, Yamashita A, Maeda K, Maéda Y. 2003. Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424:694435–41
    [Google Scholar]
  134. 134.
    Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R et al. 2005. Ca2+-regulated structural changes in troponin. PNAS 102:145038–43
    [Google Scholar]
  135. 135.
    Yamada Y, Namba K, Fujii T. 2020. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 11:1153
    [Google Scholar]
  136. 136.
    Oda T, Yanagisawa H, Wakabayashi T. 2020. Cryo-EM structures of cardiac thin filaments reveal the 3D architecture of troponin. J. Struct. Biol. 209:3107450
    [Google Scholar]
  137. 137.
    Risi CM, Pepper I, Belknap B, Landim-Vieira M, White HD et al. 2021. The structure of the native cardiac thin filament at systolic Ca2+ levels. PNAS 118:132–9
    [Google Scholar]
  138. 138.
    Bang M-L, Caremani M, Brunello E, Littlefield R, Lieber RL et al. 2009. Nebulin plays a direct role in promoting strong actin-myosin interactions. FASEB J. 23:124117–25
    [Google Scholar]
  139. 139.
    Burbaum L, Schneider J, Scholze S, Böttcher RT, Baumeister W et al. 2021. Molecular-scale visualization of sarcomere contraction within native cardiomyocytes. Nat. Commun. 12:14086
    [Google Scholar]
  140. 140.
    Xue L, Lenz S, Zimmermann-Kogadeeva M, Tegunov D, Cramer P et al. 2022. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610:205–11
    [Google Scholar]
  141. 141.
    Zivanov J, Otón J, Ke Z, von Kügelgen A, Pyle E et al. 2022. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. eLife 11e83724
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-042909
Loading
/content/journals/10.1146/annurev-biochem-052521-042909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error