1932

Abstract

Positive-strand RNA viruses encompass a variety of established and emerging eukaryotic pathogens. Their genome replication is confined to specialized cytoplasmic membrane compartments known as replication organelles (ROs). These ROs derive from host membranes, transformed into distinct structures such as invaginated spherules or intricate membrane networks including single- and/or double-membrane vesicles. ROs play a vital role in orchestrating viral RNA synthesis and evading detection by innate immune sensors of the host. In recent years, groundbreaking cryo–electron microscopy studies conducted with several prototypic viruses have significantly advanced our understanding of RO structure and function. Notably, these studies unveiled the presence of crown-shaped multimeric viral protein complexes that seem to actively participate in viral RNA synthesis and regulate the release of newly synthesized RNA into the cytosol for translation and packaging. These findings have shed light on novel viral functions and fascinating macromolecular complexes that delineate promising new avenues for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-115736
2024-08-02
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/biochem/93/1/annurev-biochem-052521-115736.html?itemId=/content/journals/10.1146/annurev-biochem-052521-115736&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Koonin EV, Dolja VV, Krupovic M. 2015.. Origins and evolution of viruses of eukaryotes: the ultimate modularity. . Virology 479–80::225
    [Crossref] [Google Scholar]
  2. 2.
    Wolf YI, Silas S, Wang Y, Wu S, Bocek M, et al. 2020.. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. . Nat. Microbiol. 5::126270
    [Crossref] [Google Scholar]
  3. 3.
    Decroly E, Ferron F, Lescar J, Canard B. 2011.. Conventional and unconventional mechanisms for capping viral mRNA. . Nat. Rev. Microbiol. 10::5165
    [Crossref] [Google Scholar]
  4. 4.
    Jaafar ZA, Kieft JS. 2019.. Viral RNA structure-based strategies to manipulate translation. . Nat. Rev. Microbiol. 17::11023
    [Crossref] [Google Scholar]
  5. 5.
    Romero-Brey I, Bartenschlager R. 2014.. Membranous replication factories induced by plus-strand RNA viruses. . Viruses 6::282657
    [Crossref] [Google Scholar]
  6. 6.
    Nagy PD. 2022.. Co-opted membranes, lipids, and host proteins: What have we learned from tombusviruses?. Curr. Opin. Virol. 56::101258
    [Crossref] [Google Scholar]
  7. 7.
    Neufeldt CJ, Cortese M. 2022.. Membrane architects: how positive-strand RNA viruses restructure the cell. . J. Gen. Virol. 103:. https://doi.org/10.1099/jgv.0.001773
    [Crossref] [Google Scholar]
  8. 8.
    Nishikiori M, den Boon JA, Unchwaniwala N, Ahlquist P. 2022.. Crowning touches in positive-strand RNA virus genome replication complex structure and function. . Annu. Rev. Virol. 9::193212
    [Crossref] [Google Scholar]
  9. 9.
    Stok JE, Vega Quiroz ME, van der Veen AG. 2020.. Self RNA sensing by RIG-I–like receptors in viral infection and sterile inflammation. . J. Immunol. 205::88391
    [Crossref] [Google Scholar]
  10. 10.
    Rehwinkel J, Gack MU. 2020.. RIG-I-like receptors: their regulation and roles in RNA sensing. . Nat. Rev. Immunol. 20::53751
    [Crossref] [Google Scholar]
  11. 11.
    Scutigliani EM, Kikkert M. 2017.. Interaction of the innate immune system with positive-strand RNA virus replication organelles. . Cytokine Growth Factor Rev. 37::1727
    [Crossref] [Google Scholar]
  12. 12.
    Du X, Zhang Y, Zou J, Yuan Z, Yi Z. 2018.. Replicase-mediated shielding of the poliovirus replicative double-stranded RNA to avoid recognition by MDA5. . J. Gen. Virol. 99::1199209
    [Crossref] [Google Scholar]
  13. 13.
    Neufeldt CJ, Joyce MA, Van Buuren N, Levin A, Kirkegaard K, et al. 2016.. The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. . PLOS Pathog. 12::e1005428
    [Crossref] [Google Scholar]
  14. 14.
    Viktorova EG, Nchoutmboube JA, Ford-Siltz LA, Iverson E, Belov GA. 2018.. Phospholipid synthesis fueled by lipid droplets drives the structural development of poliovirus replication organelles. . PLOS Pathog. 14::e1007280
    [Crossref] [Google Scholar]
  15. 15.
    Wolff G, Bárcena M. 2021.. Multiscale electron microscopy for the study of viral replication organelles. . Viruses 13::197
    [Crossref] [Google Scholar]
  16. 16.
    Kaelber JT, Hryc CF, Chiu W. 2017.. Electron cryomicroscopy of viruses at near-atomic resolutions. . Annu. Rev. Virol. 4::287308
    [Crossref] [Google Scholar]
  17. 17.
    Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, et al. 2022.. Better, faster, cheaper: recent advances in cryo–electron microscopy. . Annu. Rev. Biochem. 91::132
    [Crossref] [Google Scholar]
  18. 18.
    Villa E, Schaffer M, Plitzko JM, Baumeister W. 2013.. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. . Curr. Opin. Struct. Biol. 23::77177
    [Crossref] [Google Scholar]
  19. 19.
    Berger C, Premaraj N, Ravelli RBG, Knoops K, Lopez-Iglesias C, Peters PJ. 2023.. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. . Nat. Methods 20::499511
    [Crossref] [Google Scholar]
  20. 20.
    Dales S, Franklin RM. 1962.. A comparison of the changes in fine structure of L cells during single cycles of viral multiplication, following their infection with the viruses of Mengo and encephalomyocarditis. . J. Cell Biol. 14::281302
    [Crossref] [Google Scholar]
  21. 21.
    Godman GC, Rifkind RA, Howe C, Rose HM. 1964.. A description of ECHO-9 virus infection in cultured cells. I. The cytopathic effect. . Am. J. Pathol. 44::127
    [Google Scholar]
  22. 22.
    Dales S, Eggers HJ, Tamm I, Palade GE. 1965.. Electron microscopic study of the formation of poliovirus. . Virology 26::37989
    [Crossref] [Google Scholar]
  23. 23.
    David-Ferreira JF, Manaker RA. 1965.. An electron microscope study of the development of a mouse hepatitis virus in tissue culture cells. . J. Cell Biol. 24::5778
    [Crossref] [Google Scholar]
  24. 24.
    Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, et al. 2009.. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. . Cell Host Microbe 5::36575
    [Crossref] [Google Scholar]
  25. 25.
    Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 2010.. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. . J. Virol. 84::1043847
    [Crossref] [Google Scholar]
  26. 26.
    Offerdahl DK, Dorward DW, Hansen BT, Bloom ME. 2012.. A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines. . PLOS ONE 7::e47912
    [Crossref] [Google Scholar]
  27. 27.
    Miorin L, Romero-Brey I, Maiuri P, Hoppe S, Krijnse-Locker J, et al. 2013.. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA. . J. Virol. 87::646981
    [Crossref] [Google Scholar]
  28. 28.
    Cortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, et al. 2017.. Ultrastructural characterization of Zika virus replication factories. . Cell Rep. 18::211323
    [Crossref] [Google Scholar]
  29. 29.
    Fontana J, Lopez-Iglesias C, Tzeng WP, Frey TK, Fernandez JJ, Risco C. 2010.. Three-dimensional structure of Rubella virus factories. . Virology 405::57991
    [Crossref] [Google Scholar]
  30. 30.
    Ahola T, McInerney G, Merits A. 2021.. Alphavirus RNA replication in vertebrate cells. . Adv. Virus Res. 111::11156
    [Crossref] [Google Scholar]
  31. 31.
    Cao X, Jin X, Zhang X, Li Y, Wang C, et al. 2015.. Morphogenesis of endoplasmic reticulum membrane-invaginated vesicles during Beet black scorch virus infection: role of auxiliary replication protein and new implications of three-dimensional architecture. . J. Virol. 89::618495
    [Crossref] [Google Scholar]
  32. 32.
    Gomez-Aix C, Garcia-Garcia M, Aranda MA, Sanchez-Pina MA. 2015.. Melon necrotic spot virus replication occurs in association with altered mitochondria. . Mol. Plant-Microbe Interact. 28::38797
    [Crossref] [Google Scholar]
  33. 33.
    Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P. 2002.. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. . Mol. Cell 9::50514
    [Crossref] [Google Scholar]
  34. 34.
    Jin X, Jiang Z, Zhang K, Wang P, Cao X, et al. 2018.. Three-dimensional analysis of chloroplast structures associated with virus infection. . Plant Physiol. 176::28294
    [Crossref] [Google Scholar]
  35. 35.
    Diaz A, Wang X. 2014.. Bromovirus-induced remodeling of host membranes during viral RNA replication. . Curr. Opin. Virol. 9::10410
    [Crossref] [Google Scholar]
  36. 36.
    Yong CY, Yeap SK, Omar AR, Tan WS. 2017.. Advances in the study of nodavirus. . PeerJ 5::e3841
    [Crossref] [Google Scholar]
  37. 37.
    Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, et al. 2008.. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. . PLOS Biol. 6::e226
    [Crossref] [Google Scholar]
  38. 38.
    Maier HJ, Hawes PC, Cottam EM, Mantell J, Verkade P, et al. 2013.. Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes. . mBio 4::e00801-13
    [Crossref] [Google Scholar]
  39. 39.
    Cortese M, Lee JY, Cerikan B, Neufeldt CJ, Oorschot VMJ, et al. 2020.. Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. . Cell Host Microbe 28::85366.e5
    [Crossref] [Google Scholar]
  40. 40.
    Snijder EJ, Limpens R, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC, et al. 2020.. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. . PLOS Biol. 18::25
    [Crossref] [Google Scholar]
  41. 41.
    Knoops K, Bárcena M, Limpens RW, Koster AJ, Mommaas AM, Snijder EJ. 2012.. Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis. . J. Virol. 86::247487
    [Crossref] [Google Scholar]
  42. 42.
    Zhang W, Chen K, Zhang X, Guo C, Chen Y, Liu X. 2018.. An integrated analysis of membrane remodeling during porcine reproductive and respiratory syndrome virus replication and assembly. . PLOS ONE 13::e0200919
    [Crossref] [Google Scholar]
  43. 43.
    Limpens RW, van der Schaar HM, Kumar D, Koster AJ, Snijder EJ, et al. 2011.. The transformation of enterovirus replication structures: a three-dimensional study of single- and double-membrane compartments. . mBio 2::e00166-11
    [Crossref] [Google Scholar]
  44. 44.
    Belov GA, Nair V, Hansen BT, Hoyt FH, Fischer ER, Ehrenfeld E. 2012.. Complex dynamic development of poliovirus membranous replication complexes. . J. Virol. 86::30212
    [Crossref] [Google Scholar]
  45. 45.
    Melia CE, van der Schaar HM, de Jong AWM, Lyoo HR, Snijder EJ, et al. 2018.. The origin, dynamic morphology, and PI4P-independent formation of encephalomyocarditis virus replication organelles. . mBio 9::e00420-18
    [Crossref] [Google Scholar]
  46. 46.
    Bub T, Hargest V, Tan S, Smith M, Vazquez-Pagan A, et al. 2023.. Astrovirus replication is dependent on induction of double-membrane vesicles through a PI3K-dependent, LC3-independent pathway. . J. Virol. 97::e0102523
    [Crossref] [Google Scholar]
  47. 47.
    Wan J, Basu K, Mui J, Vali H, Zheng H, Laliberte JF. 2015.. Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. . J. Virol. 89::1244156
    [Crossref] [Google Scholar]
  48. 48.
    Romero-Brey I, Merz A, Chiramel A, Lee JY, Chlanda P, et al. 2012.. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. . PLOS Pathog. 8::e1003056
    [Crossref] [Google Scholar]
  49. 49.
    Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. 2018.. Rewiring cellular networks by members of the Flaviviridae family. . Nat. Rev. Microbiol. 16::12542
    [Crossref] [Google Scholar]
  50. 50.
    Wolff G, Melia CE, Snijder EJ, Bárcena M. 2020.. Double-membrane vesicles as platforms for viral replication. . Trends Microbiol. 28::102233
    [Crossref] [Google Scholar]
  51. 51.
    Doerflinger SY, Cortese M, Romero-Brey I, Menne Z, Tubiana T, et al. 2017.. Membrane alterations induced by nonstructural proteins of human norovirus. . PLOS Pathog. 13::e1006705
    [Crossref] [Google Scholar]
  52. 52.
    Xu K, Nagy PD. 2014.. Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. . Curr. Opin. Virol. 9::11926
    [Crossref] [Google Scholar]
  53. 53.
    Grimley PM, Berezesky IK, Friedman RM. 1968.. Cytoplasmic structures associated with an arbovirus infection: loci of viral ribonucleic acid synthesis. . J. Virol. 2::132638
    [Crossref] [Google Scholar]
  54. 54.
    Kujala P, Ikaheimonen A, Ehsani N, Vihinen H, Auvinen P, Kaariainen L. 2001.. Biogenesis of the Semliki Forest virus RNA replication complex. . J. Virol. 75::387384
    [Crossref] [Google Scholar]
  55. 55.
    Kopek BG, Perkins G, Miller DJ, Ellisman MH, Ahlquist P. 2007.. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. . PLOS Biol. 5::e220
    [Crossref] [Google Scholar]
  56. 56.
    Junjhon J, Pennington JG, Edwards TJ, Perera R, Lanman J, Kuhn RJ. 2014.. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. . J. Virol. 88::468797
    [Crossref] [Google Scholar]
  57. 57.
    Fernandez de Castro I, Fernandez JJ, Barajas D, Nagy PD, Risco C. 2017.. Three-dimensional imaging of the intracellular assembly of a functional viral RNA replicase complex. . J. Cell Sci. 130::26068
    [Google Scholar]
  58. 58.
    Ertel KJ, Benefield D, Castano-Diez D, Pennington JG, Horswill M, et al. 2017.. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. . eLife 6::e25940
    [Crossref] [Google Scholar]
  59. 59.
    Unchwaniwala N, Zhan H, Pennington J, Horswill M, den Boon JA, Ahlquist P. 2020.. Subdomain cryo-EM structure of nodaviral replication protein A crown complex provides mechanistic insights into RNA genome replication. . PNAS 117::1868091
    [Crossref] [Google Scholar]
  60. 60.
    Zhan H, Unchwaniwala N, Rebolledo-Viveros A, Pennington J, Horswill M, et al. 2023.. Nodavirus RNA replication crown architecture reveals proto-crown precursor and viral protein A conformational switching. . PNAS 120::e2217412120
    [Crossref] [Google Scholar]
  61. 61.
    Jones R, Bragagnolo G, Arranz R, Reguera J. 2020.. Capping pores of alphavirus nsP1 gate membranous viral replication factories. . Nature 589::61519
    [Crossref] [Google Scholar]
  62. 62.
    Zhang K, Law YS, Law MCY, Tan YB, Wirawan M, Luo D. 2021.. Structural insights into viral RNA capping and plasma membrane targeting by Chikungunya virus nonstructural protein 1. . Cell Host Microbe 29::75764.e3
    [Crossref] [Google Scholar]
  63. 63.
    Tan YB, Chmielewski D, Law MCY, Zhang K, He Y, et al. 2022.. Molecular architecture of the Chikungunya virus replication complex. . Sci. Adv. 8::eadd2536
    [Crossref] [Google Scholar]
  64. 64.
    Bauerlein FJB, Baumeister W. 2021.. Towards visual proteomics at high resolution. . J. Mol. Biol. 433::167187
    [Crossref] [Google Scholar]
  65. 65.
    Laurent T, Kumar P, Liese S, Zare F, Jonasson M, et al. 2022.. Architecture of the chikungunya virus replication organelle. . eLife 11::e83042
    [Crossref] [Google Scholar]
  66. 66.
    Bukhari K, Mulley G, Gulyaeva AA, Zhao L, Shu G, et al. 2018.. Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. . Virology 524::16071
    [Crossref] [Google Scholar]
  67. 67.
    Gulyaeva AA, Gorbalenya AE. 2021.. A nidovirus perspective on SARS-CoV-2. . Biochem. Biophys. Res. Commun. 538::2434
    [Crossref] [Google Scholar]
  68. 68.
    Neuman BW. 2016.. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. . Antivir. Res. 135::97107
    [Crossref] [Google Scholar]
  69. 69.
    Mihelc EM, Baker SC, Lanman JK. 2021.. Coronavirus infection induces progressive restructuring of the endoplasmic reticulum involving the formation and degradation of double membrane vesicles. . Virology 556::922
    [Crossref] [Google Scholar]
  70. 70.
    Avila-Perez G, Rejas MT, Chichon FJ, Guerra M, Fernandez JJ, Rodriguez D. 2022.. Architecture of torovirus replicative organelles. . Mol. Microbiol. 117::83750
    [Crossref] [Google Scholar]
  71. 71.
    Doyle N, Hawes PC, Simpson J, Adams LH, Maier HJ. 2019.. The porcine deltacoronavirus replication organelle comprises double-membrane vesicles and zippered endoplasmic reticulum with double-membrane spherules. . Viruses 11::1030
    [Crossref] [Google Scholar]
  72. 72.
    Snijder EJ, van Tol H, Roos N, Pedersen KW. 2001.. Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. . J. Gen. Virol. 82::98594
    [Crossref] [Google Scholar]
  73. 73.
    Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. 2013.. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. . mBio 4::e00524-13
    [Crossref] [Google Scholar]
  74. 74.
    van der Hoeven B, Oudshoorn D, Koster AJ, Snijder EJ, Kikkert M, Bárcena M. 2016.. Biogenesis and architecture of arterivirus replication organelles. . Virus Res. 220::7090
    [Crossref] [Google Scholar]
  75. 75.
    Oudshoorn D, Rijs K, Limpens R, Groen K, Koster AJ, et al. 2017.. Expression and cleavage of Middle East respiratory syndrome coronavirus nsp3–4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. . mBio 8::e01658-17
    [Crossref] [Google Scholar]
  76. 76.
    Tabata K, Prasad V, Paul D, Lee JY, Pham MT, et al. 2021.. Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. . Nat. Commun. 12::7276
    [Crossref] [Google Scholar]
  77. 77.
    Zimmermann L, Zhao X, Makroczyova J, Wachsmuth-Melm M, Prasad V, et al. 2022.. SARS-CoV-2 nsp3–4 suffice to form a pore shaping replication organelles. . bioRxiv 2022.10.21.513196. https://doi.org/10.1101/2022.10.21.513196
  78. 78.
    Ricciardi S, Guarino AM, Giaquinto L, Polishchuk EV, Santoro M, et al. 2022.. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. . Nature 606::76168
    [Crossref] [Google Scholar]
  79. 79.
    Hagemeijer MC, Monastyrska I, Griffith J, van der Sluijs P, Voortman J, et al. 2014.. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. . Virology 458–459::12535
    [Crossref] [Google Scholar]
  80. 80.
    Posthuma CC, Pedersen KW, Lu Z, Joosten RG, Roos N, et al. 2008.. Formation of the arterivirus replication/transcription complex: a key role for nonstructural protein 3 in the remodeling of intracellular membranes. . J. Virol. 82::448091
    [Crossref] [Google Scholar]
  81. 81.
    Oudshoorn D, van der Hoeven B, Limpens RW, Beugeling C, Snijder EJ, et al. 2016.. Antiviral innate immune response interferes with the formation of replication-associated membrane structures induced by a positive-strand RNA virus. . mBio 7::e01991-16
    [Crossref] [Google Scholar]
  82. 82.
    Pedersen KW, van der Meer Y, Roos N, Snijder EJ. 1999.. Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. . J. Virol. 73::201626
    [Crossref] [Google Scholar]
  83. 83.
    Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. 2002.. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. . J. Virol. 76::3697708
    [Crossref] [Google Scholar]
  84. 84.
    Hagemeijer MC, Vonk AM, Monastyrska I, Rottier PJ, de Haan CA. 2012.. Visualizing coronavirus RNA synthesis in time by using click chemistry. . J. Virol. 86::580816
    [Crossref] [Google Scholar]
  85. 85.
    Avila-Perez G, Rejas MT, Rodriguez D. 2016.. Ultrastructural characterization of membranous torovirus replication factories. . Cell. Microbiol. 18::1691708
    [Crossref] [Google Scholar]
  86. 86.
    van Hemert MJ, de Wilde AH, Gorbalenya AE, Snijder EJ. 2008.. The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor. . J. Biol. Chem. 283::1652536
    [Crossref] [Google Scholar]
  87. 87.
    van Hemert MJ, van den Worm SH, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ. 2008.. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. . PLOS Pathog. 4::e1000054
    [Crossref] [Google Scholar]
  88. 88.
    Doyle N, Simpson J, Hawes PC, Maier HJ. 2021.. Coronavirus RNA synthesis takes place within membrane-bound sites. . Viruses 13::2540
    [Crossref] [Google Scholar]
  89. 89.
    Wolff G, Limpens R, Zevenhoven-Dobbe JC, Laugks U, Zheng S, et al. 2020.. A molecular pore spans the double membrane of the coronavirus replication organelle. . Science 369::139598
    [Crossref] [Google Scholar]
  90. 90.
    Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, et al. 2020.. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. . Nat. Commun. 11::5885
    [Crossref] [Google Scholar]
  91. 91.
    Mendonca L, Howe A, Gilchrist JB, Sheng Y, Sun D, et al. 2021.. Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. . Nat. Commun. 12::4629
    [Crossref] [Google Scholar]
  92. 92.
    Freeman MC, Graham RL, Lu X, Peek CT, Denison MR. 2014.. Coronavirus replicase-reporter fusions provide quantitative analysis of replication and replication complex formation. . J. Virol. 88::531927
    [Crossref] [Google Scholar]
  93. 93.
    Wolff G. 2022.. Cellular cryo-tomography of nidovirus replication organelles. PhD Thesis , Leiden Univ., Leiden, Neth:.
    [Google Scholar]
  94. 94.
    Unchwaniwala N, Ahlquist P. 2020.. Coronavirus dons a new crown. . Science 369::13067
    [Crossref] [Google Scholar]
  95. 95.
    Kopek BG, Settles EW, Friesen PD, Ahlquist P. 2010.. Nodavirus-induced membrane rearrangement in replication complex assembly requires replicase protein A, RNA templates, and polymerase activity. . J. Virol. 84::12492503
    [Crossref] [Google Scholar]
  96. 96.
    Spuul P, Balistreri G, Hellstrom K, Golubtsov AV, Jokitalo E, Ahola T. 2011.. Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. . J. Virol. 85::473951
    [Crossref] [Google Scholar]
  97. 97.
    Unchwaniwala N, Zhan H, den Boon JA, Ahlquist P. 2021.. Cryo-electron microscopy of nodavirus RNA replication organelles illuminates positive-strand RNA virus genome replication. . Curr. Opin. Virol. 51::7479
    [Crossref] [Google Scholar]
  98. 98.
    Kallio K, Hellstrom K, Balistreri G, Spuul P, Jokitalo E, Ahola T. 2013.. Template RNA length determines the size of replication complex spherules for Semliki Forest virus. . J. Virol. 87::912534
    [Crossref] [Google Scholar]
  99. 99.
    Cerikan B, Goellner S, Neufeldt CJ, Haselmann U, Mulder K, et al. 2020.. A non-replicative role of the 3′ terminal sequence of the dengue virus genome in membranous replication organelle formation. . Cell Rep. 32::107859
    [Crossref] [Google Scholar]
  100. 100.
    Aktepe TE, Liebscher S, Prier JE, Simmons CP, Mackenzie JM. 2017.. The host protein reticulon 3.1A is utilized by flaviviruses to facilitate membrane remodelling. . Cell Rep. 21::163954
    [Crossref] [Google Scholar]
  101. 101.
    Neufeldt CJ, Cortese M, Scaturro P, Cerikan B, Wideman JG, et al. 2019.. ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly. . Nat. Microbiol. 4::241629
    [Crossref] [Google Scholar]
  102. 102.
    Malone B, Urakova N, Snijder EJ, Campbell EA. 2022.. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. . Nat. Rev. Mol. Cell Biol. 23::2139
    [Crossref] [Google Scholar]
  103. 103.
    Lou Z, Rao Z. 2022.. The life of SARS-CoV-2 inside cells: replication–transcription complex assembly and function. . Annu. Rev. Biochem. 91::381401
    [Crossref] [Google Scholar]
  104. 104.
    Yang H, Rao Z. 2021.. Structural biology of SARS-CoV-2 and implications for therapeutic development. . Nat. Rev. Microbiol. 19::685700
    [Crossref] [Google Scholar]
  105. 105.
    Perry JK, Appleby TC, Bilello JP, Feng JY, Schmitz U, Campbell EA. 2021.. An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. . J. Biol. Chem. 297::101218
    [Crossref] [Google Scholar]
  106. 106.
    Gui M, Liu X, Guo D, Zhang Z, Yin CC, et al. 2017.. Electron microscopy studies of the coronavirus ribonucleoprotein complex. . Protein Cell 8::21924
    [Crossref] [Google Scholar]
  107. 107.
    Serrano P, Johnson MA, Almeida MS, Horst R, Herrmann T, et al. 2007.. Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. . J. Virol. 81::1204960
    [Crossref] [Google Scholar]
  108. 108.
    Hurst KR, Koetzner CA, Masters PS. 2013.. Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. . J. Virol. 87::915972
    [Crossref] [Google Scholar]
  109. 109.
    Bessa LM, Guseva S, Camacho-Zarco AR, Salvi N, Maurin D, et al. 2022.. The intrinsically disordered SARS-CoV-2 nucleoprotein in dynamic complex with its viral partner nsp3a. . Sci. Adv. 8::eabm4034
    [Crossref] [Google Scholar]
  110. 110.
    Cong Y, Ulasli M, Schepers H, Mauthe M, V'Kovski P, et al. 2020.. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. . J. Virol. 94::e01925-19
    [Crossref] [Google Scholar]
  111. 111.
    de Haan CA, Rottier PJ. 2005.. Molecular interactions in the assembly of coronaviruses. . Adv. Virus Res. 64::165230
    [Crossref] [Google Scholar]
  112. 112.
    Spilman MS, Welbon C, Nelson E, Dokland T. 2009.. Cryo-electron tomography of porcine reproductive and respiratory syndrome virus: organization of the nucleocapsid. . J. Gen. Virol. 90::52735
    [Crossref] [Google Scholar]
  113. 113.
    Magnusson P, Hyllseth B, Marusyk H. 1970.. Morphological studies on equine arteritis virus. . Arch. Gesamte Virusforsch. 30::10512
    [Crossref] [Google Scholar]
  114. 114.
    Stueckemann JA, Holth M, Swart WJ, Kowalchyk K, Smith MS, et al. 1982.. Replication of lactate dehydrogenase-elevating virus in macrophages. 2. Mechanism of persistent infection in mice and cell culture. . J. Gen. Virol. 59::26372
    [Crossref] [Google Scholar]
  115. 115.
    Barnard TR, Abram QH, Lin QF, Wang AB, Sagan SM. 2021.. Molecular determinants of flavivirus virion assembly. . Trends Biochem. Sci. 46::37890
    [Crossref] [Google Scholar]
  116. 116.
    Lee JY, Cortese M, Haselmann U, Tabata K, Romero-Brey I, et al. 2019.. Spatiotemporal coupling of the hepatitis C virus replication cycle by creating a lipid droplet-proximal membranous replication compartment. . Cell Rep. 27::360217.e5
    [Crossref] [Google Scholar]
  117. 117.
    Zell R. 2018.. Picornaviridae—the ever-growing virus family. . Arch. Virol. 163::299317
    [Crossref] [Google Scholar]
  118. 118.
    Dahmane S, Kerviel A, Morado DR, Shankar K, Ahlman B, et al. 2022.. Membrane-assisted assembly and selective secretory autophagy of enteroviruses. . Nat. Commun. 13::5986
    [Crossref] [Google Scholar]
  119. 119.
    Monaghan P, Cook H, Jackson T, Ryan M, Wileman T. 2004.. The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. . J. Gen. Virol. 85::93346
    [Crossref] [Google Scholar]
  120. 120.
    Suhy DA, Giddings TH Jr., Kirkegaard K. 2000.. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. . J. Virol. 74::895365
    [Crossref] [Google Scholar]
  121. 121.
    Melia CE, Peddie CJ, de Jong AWM, Snijder EJ, Collinson LM, et al. 2019.. Origins of enterovirus replication organelles established by whole-cell electron microscopy. . mBio 10::e00951-19
    [Crossref] [Google Scholar]
  122. 122.
    Gomez-Sanchez R, Tooze SA, Reggiori F. 2021.. Membrane supply and remodeling during autophagosome biogenesis. . Curr. Opin. Cell Biol. 71::11219
    [Crossref] [Google Scholar]
  123. 123.
    Melia CE, van der Schaar HM, Lyoo H, Limpens R, Feng Q, et al. 2017.. Escaping host factor PI4KB inhibition: enterovirus genomic RNA replication in the absence of replication organelles. . Cell Rep. 21::58799
    [Crossref] [Google Scholar]
  124. 124.
    Bienz K, Egger D, Pfister T, Troxler M. 1992.. Structural and functional characterization of the poliovirus replication complex. . J. Virol. 66::274047
    [Crossref] [Google Scholar]
  125. 125.
    Lyle JM, Bullitt E, Bienz K, Kirkegaard K. 2002.. Visualization and functional analysis of RNA-dependent RNA polymerase lattices. . Science 296::221822
    [Crossref] [Google Scholar]
  126. 126.
    Nugent CI, Johnson KL, Sarnow P, Kirkegaard K. 1999.. Functional coupling between replication and packaging of poliovirus replicon RNA. . J. Virol. 73::42735
    [Crossref] [Google Scholar]
  127. 127.
    Bird SW, Maynard ND, Covert MW, Kirkegaard K. 2014.. Nonlytic viral spread enhanced by autophagy components. . PNAS 111::1308186
    [Crossref] [Google Scholar]
  128. 128.
    Robinson SM, Tsueng G, Sin J, Mangale V, Rahawi S, et al. 2014.. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. . PLOS Pathog. 10::e1004045
    [Crossref] [Google Scholar]
  129. 129.
    Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, et al. 2015.. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. . Cell 160::61930
    [Crossref] [Google Scholar]
  130. 130.
    van der Grein SG, Defourny KAY, Rabouw HH, Goerdayal SS, van Herwijnen MJC, et al. 2022.. The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy. . Nat. Commun. 13::3625
    [Crossref] [Google Scholar]
  131. 131.
    Lin DH, Hoelz A. 2019.. The structure of the nuclear pore complex (an update). . Annu. Rev. Biochem. 88::72583
    [Crossref] [Google Scholar]
  132. 132.
    Greseth MD, Traktman P. 2022.. The life cycle of the vaccinia virus genome. . Annu. Rev. Virol. 9::23959
    [Crossref] [Google Scholar]
  133. 133.
    Tolonen N, Doglio L, Schleich S, Krijnse Locker J. 2001.. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. . Mol. Biol. Cell 12::203146
    [Crossref] [Google Scholar]
  134. 134.
    Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, et al. 2017.. Assembly of a nucleus-like structure during viral replication in bacteria. . Science 355::19497
    [Crossref] [Google Scholar]
  135. 135.
    Laughlin TG, Deep A, Prichard AM, Seitz C, Gu Y, et al. 2022.. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. . Nature 608::42935
    [Crossref] [Google Scholar]
  136. 136.
    Nieweglowska ES, Brilot AF, Mendez-Moran M, Kokontis C, Baek M, et al. 2023.. The varphiPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice. . Nat. Commun. 14::927
    [Crossref] [Google Scholar]
  137. 137.
    Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, et al. 2020.. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. . Nature 577::24448
    [Crossref] [Google Scholar]
  138. 138.
    Paul D, Hoppe S, Saher G, Krijnse-Locker J, Bartenschlager R. 2013.. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. . J. Virol. 87::1061227
    [Crossref] [Google Scholar]
  139. 139.
    Ferraris P, Beaumont E, Uzbekov R, Brand D, Gaillard J, et al. 2013.. Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection. . Cell. Mol. Life Sci. 70::1297306
    [Crossref] [Google Scholar]
  140. 140.
    Paul D, Madan V, Ramirez O, Bencun M, Stoeck IK, et al. 2018.. Glycine zipper motifs in hepatitis C virus nonstructural protein 4B are required for the establishment of viral replication organelles. . J. Virol. 92::e01890-17
    [Crossref] [Google Scholar]
  141. 141.
    Hong Y, Song Y, Zhang Z, Li S. 2023.. Cryo-electron tomography: the resolution revolution and a surge of in situ virological discoveries. . Annu. Rev. Biophys. 52::33960
    [Crossref] [Google Scholar]
  142. 142.
    Quinkert D, Bartenschlager R, Lohmann V. 2005.. Quantitative analysis of the hepatitis C virus replication complex. . J. Virol. 79::13594605
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-115736
Loading
/content/journals/10.1146/annurev-biochem-052521-115736
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error