1932

Abstract

Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cisregulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052621-091808
2023-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-052621-091808.html?itemId=/content/journals/10.1146/annurev-biochem-052621-091808&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B et al. 2014. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J 33:981–93
    [Google Scholar]
  2. 2.
    Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS. 2012. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–57
    [Google Scholar]
  3. 3.
    Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ et al. 2014. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8:1365–79
    [Google Scholar]
  4. 4.
    Chew GL, Pauli A, Rinn JL, Regev A, Schier AF, Valen E. 2013. Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 140:2828–34
    [Google Scholar]
  5. 5.
    van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E et al. 2019. The translational landscape of the human heart. Cell 178:242–60.e29
    [Google Scholar]
  6. 6.
    Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A et al. 2016. Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods 13:165–70
    [Google Scholar]
  7. 7.
    Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA et al. 2014. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343:1248636
    [Google Scholar]
  8. 8.
    Johnstone TG, Bazzini AA, Giraldez AJ. 2016. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 35:706–23
    [Google Scholar]
  9. 9.
    Barbosa C, Peixeiro I, Romao L. 2013. Gene expression regulation by upstream open reading frames and human disease. PLOS Genet 9:e1003529
    [Google Scholar]
  10. 10.
    Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. 2020. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J 39:e104763
    [Google Scholar]
  11. 11.
    Shoemaker CJ, Green R. 2012. Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 19:594–601
    [Google Scholar]
  12. 12.
    Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N et al. 2015. Codon optimality is a major determinant of mRNA stability. Cell 160:1111–24
    [Google Scholar]
  13. 13.
    Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE et al. 2016. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J 35:2087–103
    [Google Scholar]
  14. 14.
    Wu Q, Medina SG, Kushawah G, DeVore ML, Castellano LA et al. 2019. Translation affects mRNA stability in a codon-dependent manner in human cells. eLife 8:e45396
    [Google Scholar]
  15. 15.
    Wu Q, Bazzini AA. 2018. Systems to study codon effect on post-transcriptional regulation of gene expression. Methods 137:82–89
    [Google Scholar]
  16. 16.
    Richter JD, Coller J. 2015. Pausing on polyribosomes: Make way for elongation in translational control. Cell 163:292–300
    [Google Scholar]
  17. 17.
    Mishima Y, Tomari Y. 2016. Codon usage and 3′ UTR length determine maternal mRNA stability in zebrafish. Mol. Cell 61:874–85
    [Google Scholar]
  18. 18.
    Radhakrishnan A, Chen YH, Martin S, Alhusaini N, Green R, Coller J. 2016. The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell 167:122–32.e9
    [Google Scholar]
  19. 19.
    Harigaya Y, Parker R. 2016. Analysis of the association between codon optimality and mRNA stability in Schizosaccharomyces pombe. BMC Genom 17:895
    [Google Scholar]
  20. 20.
    Boel G, Letso R, Neely H, Price WN, Wong KH et al. 2016. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529:358–63
    [Google Scholar]
  21. 21.
    Jeacock L, Faria J, Horn D 2018. Codon usage bias controls mRNA and protein abundance in trypanosomatids. eLife 7:e32496
    [Google Scholar]
  22. 22.
    de Freitas Nascimento J, Kelly S, Sunter J, Carrington M 2018. Codon choice directs constitutive mRNA levels in trypanosomes. eLife 7:e32467
    [Google Scholar]
  23. 23.
    Burow DA, Martin S, Quail JF, Alhusaini N, Coller J, Cleary MD. 2018. Attenuated codon optimality contributes to neural-specific mRNA decay in Drosophila. Cell Rep 24:1704–12
    [Google Scholar]
  24. 24.
    Chu D, Wei L. 2021. Direct in vivo observation of the effect of codon usage bias on gene expression in Arabidopsis hybrids. J. Plant Physiol. 265:153490
    [Google Scholar]
  25. 25.
    Shu H, Donnard E, Liu B, Jung S, Wang R, Richter JD 2020. FMRP links optimal codons to mRNA stability in neurons. PNAS 117:30400–11
    [Google Scholar]
  26. 26.
    Narula A, Ellis J, Taliaferro JM, Rissland OS. 2019. Coding regions affect mRNA stability in human cells. RNA 25:1751–64
    [Google Scholar]
  27. 27.
    Forrest ME, Pinkard O, Martin S, Sweet TJ, Hanson G, Coller J. 2020. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLOS ONE 15:e0228730
    [Google Scholar]
  28. 28.
    Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y. 2018. Codon usage of highly expressed genes affects proteome-wide translation efficiency. PNAS 115:E4940–49
    [Google Scholar]
  29. 29.
    Diez M, Medina-Munoz SG, Castellano LA, da Silva Pescador G, Wu Q, Bazzini AA. 2022. iCodon customizes gene expression based on the codon composition. Sci. Rep. 12:12126
    [Google Scholar]
  30. 30.
    Barrington CL, Koch AL, Galindo G, Larkin-Gero E, Morrison EJ et al. 2022. Synonymous codon usage regulates translation initiation. bioRxiv 2022.05.13.491887. https://doi.org/10.1101/2022.05.13.491887
  31. 31.
    Zhou Z, Dang Y, Zhou M, Li L, Yu CH et al. 2016. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. PNAS 113:E6117–25
    [Google Scholar]
  32. 32.
    Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y 2018. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. eLife 7:e33569
    [Google Scholar]
  33. 33.
    Yang Q, Lyu X, Zhao F, Liu Y. 2021. Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Res 49:818–31
    [Google Scholar]
  34. 34.
    Cartegni L, Chew SL, Krainer AR. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3:285–98
    [Google Scholar]
  35. 35.
    Mordstein C, Savisaar R, Young RS, Bazile J, Talmane L et al. 2020. Codon usage and splicing jointly influence mRNA localization. Cell Syst 10:351–62.e8
    [Google Scholar]
  36. 36.
    Courel M, Clement Y, Bossevain C, Foretek D, Vidal Cruchez O et al. 2019. GC content shapes mRNA storage and decay in human cells. eLife 8:e49708
    [Google Scholar]
  37. 37.
    Yu CH, Dang Y, Zhou Z, Wu C, Zhao F et al. 2015. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59:744–54
    [Google Scholar]
  38. 38.
    Zhou M, Guo J, Cha J, Chae M, Chen S et al. 2013. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111–15
    [Google Scholar]
  39. 39.
    Liu Y, Yang Q, Zhao F 2021. Synonymous but not silent: the codon usage code for gene expression and protein folding. Annu. Rev. Biochem. 90:375–401
    [Google Scholar]
  40. 40.
    Liu Y. 2020. A code within the genetic code: Codon usage regulates co-translational protein folding. Cell Commun. Signal. 18:145
    [Google Scholar]
  41. 41.
    Hanson G, Coller J. 2018. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19:20–30
    [Google Scholar]
  42. 42.
    Sharp PM, Li WH. 1987. The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–95
    [Google Scholar]
  43. 43.
    dos Reis M, Savva R, Wernisch L. 2004. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036–44
    [Google Scholar]
  44. 44.
    Hia F, Yang SF, Shichino Y, Yoshinaga M, Murakawa Y et al. 2019. Codon bias confers stability to human mRNAs. EMBO Rep 20:e48220
    [Google Scholar]
  45. 45.
    Herzog VA, Reichholf B, Neumann T, Rescheneder P, Bhat P et al. 2017. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14:1198–204
    [Google Scholar]
  46. 46.
    Schofield JA, Duffy EE, Kiefer L, Sullivan MC, Simon MD. 2018. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15:221–25
    [Google Scholar]
  47. 47.
    Imamachi N, Tani H, Mizutani R, Imamura K, Irie T et al. 2014. BRIC-seq: a genome-wide approach for determining RNA stability in mammalian cells. Methods 67:55–63
    [Google Scholar]
  48. 48.
    Yang X, Boehm JS, Yang X, Salehi-Ashtiani K, Hao T et al. 2011. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8:659–61
    [Google Scholar]
  49. 49.
    Mishima Y, Han P, Ishibashi K, Kimura S, Iwasaki S. 2022. Ribosome slowdown triggers codon-mediated mRNA decay independently of ribosome quality control. EMBO J 41:e109256
    [Google Scholar]
  50. 50.
    Medina-Munoz SG, Kushawah G, Castellano LA, Diez M, DeVore ML et al. 2021. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol 22:14
    [Google Scholar]
  51. 51.
    Harigaya Y, Parker R 2017. The link between adjacent codon pairs and mRNA stability. BMC Genom 18:364
    [Google Scholar]
  52. 52.
    Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97
    [Google Scholar]
  53. 53.
    Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–46
    [Google Scholar]
  54. 54.
    Despic V, Neugebauer KM. 2018. RNA tales – how embryos read and discard messages from mom. J. Cell Sci. 131:jcs201996
    [Google Scholar]
  55. 55.
    Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH et al. 2022. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13:1536
    [Google Scholar]
  56. 56.
    Diez M, Medina-Muñoz SG, Castellano LA, da Silva Pescador G, Wu Q, Bazzini AA. 2021. iCodon customizes gene expression based on the codon composition. Sci. Rep. 12:12126
    [Google Scholar]
  57. 57.
    Bazzini AA, Lee MT, Giraldez AJ. 2012. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–37
    [Google Scholar]
  58. 58.
    Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S et al. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79
    [Google Scholar]
  59. 59.
    Cottrell KA, Szczesny P, Djuranovic S. 2017. Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci. Rep. 7:14884
    [Google Scholar]
  60. 60.
    Rutkowski AJ, Erhard F, L'Hernault A, Bonfert T, Schilhabel M et al. 2015. Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 6:7126
    [Google Scholar]
  61. 61.
    Jackson RJ, Hellen CU, Pestova TV. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11:113–27
    [Google Scholar]
  62. 62.
    Dever TE, Dinman JD, Green R. 2018. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10:a032649
    [Google Scholar]
  63. 63.
    Hellen CUT. 2018. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb. Perspect. Biol. 10:a032656
    [Google Scholar]
  64. 64.
    Chu D, Kazana E, Bellanger N, Singh T, Tuite MF, von der Haar T. 2014. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J 33:21–34
    [Google Scholar]
  65. 65.
    Yan X, Hoek TA, Vale RD, Tanenbaum ME. 2016. Dynamics of translation of single mRNA molecules in vivo. Cell 165:976–89
    [Google Scholar]
  66. 66.
    Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. 2004. Multiple links between transcription and splicing. RNA 10:1489–98
    [Google Scholar]
  67. 67.
    Thornlow BP, Armstrong J, Holmes AD, Howard JM, Corbett-Detig RB, Lowe TM. 2020. Predicting transfer RNA gene activity from sequence and genome context. Genome Res 30:85–94
    [Google Scholar]
  68. 68.
    Suzuki T. 2021. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22:375–92
    [Google Scholar]
  69. 69.
    Phizicky EM, Hopper AK. 2010. tRNA biology charges to the front. Genes Dev 24:1832–60
    [Google Scholar]
  70. 70.
    Kirchner S, Ignatova Z. 2015. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16:98–112
    [Google Scholar]
  71. 71.
    Rak R, Dahan O, Pilpel Y. 2018. Repertoires of tRNAs: the couplers of genomics and proteomics. Annu. Rev. Cell Dev. Biol. 34:239–64
    [Google Scholar]
  72. 72.
    Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF. 2016. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165:1416–27
    [Google Scholar]
  73. 73.
    Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F et al. 2014. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158:1281–92
    [Google Scholar]
  74. 74.
    Passarelli MC, Pinzaru AM, Asgharian H, Liberti MV, Heissel S et al. 2022. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat. Cell Biol. 24:307–15
    [Google Scholar]
  75. 75.
    Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E et al. 2021. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol. Cell 81:3323–38.e14
    [Google Scholar]
  76. 76.
    Ishimura R, Nagy G, Dotu I, Zhou H, Yang XL et al. 2014. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345:455–59
    [Google Scholar]
  77. 77.
    Huang SQ, Sun B, Xiong ZP, Shu Y, Zhou HH et al. 2018. The dysregulation of tRNAs and tRNA derivatives in cancer. J. Exp. Clin. Cancer Res. 37:101
    [Google Scholar]
  78. 78.
    Schimmel P. 2018. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19:45–58
    [Google Scholar]
  79. 79.
    Torrent M, Chalancon G, de Groot NS, Wuster A, Madan Babu M 2018. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11:eaat6409
    [Google Scholar]
  80. 80.
    Pinkard O, McFarland S, Sweet T, Coller J. 2020. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11:4104
    [Google Scholar]
  81. 81.
    Schaffer AE, Pinkard O, Coller JM. 2019. tRNA metabolism and neurodevelopmental disorders. Annu. Rev. Genom. Hum. Genet. 20:359–87
    [Google Scholar]
  82. 82.
    Dittmar KA, Goodenbour JM, Pan T. 2006. Tissue-specific differences in human transfer RNA expression. PLOS Genet 2:e221
    [Google Scholar]
  83. 83.
    Zheng G, Qin Y, Clark WC, Dai Q, Yi C et al. 2015. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12:835–37
    [Google Scholar]
  84. 84.
    Evans ME, Clark WC, Zheng G, Pan T. 2017. Determination of tRNA aminoacylation levels by high-throughput sequencing. Nucleic Acids Res 45:e133
    [Google Scholar]
  85. 85.
    Gogakos T, Brown M, Garzia A, Meyer C, Hafner M, Tuschl T. 2017. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep 20:1463–75
    [Google Scholar]
  86. 86.
    Buschauer R, Matsuo Y, Sugiyama T, Chen YH, Alhusaini N et al. 2020. The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science 368:eaay6912
    [Google Scholar]
  87. 87.
    Allen GE, Panasenko OO, Villanyi Z, Zagatti M, Weiss B et al. 2021. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Cell Rep 36:109633
    [Google Scholar]
  88. 88.
    Yang Q, Yu CH, Zhao F, Dang Y, Wu C et al. 2019. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res 47:9243–58
    [Google Scholar]
  89. 89.
    Wu CC, Zinshteyn B, Wehner KA, Green R. 2019. High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol. Cell 73:959–70.e5
    [Google Scholar]
  90. 90.
    Wu CC, Peterson A, Zinshteyn B, Regot S, Green R. 2020. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182:404–16.e14
    [Google Scholar]
  91. 91.
    Sinha NK, Ordureau A, Best K, Saba JA, Zinshteyn B et al. 2020. EDF1 coordinates cellular responses to ribosome collisions. eLife 9:e58828
    [Google Scholar]
  92. 92.
    Veltri AJ, D'Orazio KN, Lessen LN, Loll-Krippleber R, Brown GW, Green R 2021. Distinct ribosome states trigger diverse mRNA quality control pathways. bioRxiv 2021.12.01.470814. https://doi.org/10.1101/2021.12.01.470814
  93. 93.
    Young DJ, Guydosh NR, Zhang F, Hinnebusch AG, Green R. 2015. Rli1/abce1 recycles terminating ribosomes and controls translation reinitiation in 3′ UTRs in vivo. Cell 162:872–84
    [Google Scholar]
  94. 94.
    Wahle E, Winkler GS. 2013. RNA decay machines: deadenylation by the Ccr4–Not and Pan2–Pan3 complexes. Biochim. Biophys. Acta Gene Regul. Mach. 1829:561–70
    [Google Scholar]
  95. 95.
    Garneau NL, Wilusz J, Wilusz CJ. 2007. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8:113–26
    [Google Scholar]
  96. 96.
    Webster MW, Chen YH, Stowell JAW, Alhusaini N, Sweet T et al. 2018. mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Mol. Cell 70:1089–100.e8
    [Google Scholar]
  97. 97.
    Chen Y, Boland A, Kuzuoglu-Ozturk D, Bawankar P, Loh B et al. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54:737–50
    [Google Scholar]
  98. 98.
    Freimer JW, Hu TJ, Blelloch R 2018. Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. eLife 7:e38014
    [Google Scholar]
  99. 99.
    Mishima Y, Tomari Y. 2017. Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal mRNA clearance in zebrafish. Genes Cells 22:670–78
    [Google Scholar]
  100. 100.
    Labno A, Tomecki R, Dziembowski A. 2016. Cytoplasmic RNA decay pathways – enzymes and mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1863:3125–47
    [Google Scholar]
  101. 101.
    Huntzinger E, Kashima I, Fauser M, Sauliere J, Izaurralde E. 2008. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14:2609–17
    [Google Scholar]
  102. 102.
    Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH. 2009. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. 16:49–55
    [Google Scholar]
  103. 103.
    D'Orazio KN, Wu CC, Sinha N, Loll-Krippleber R, Brown GW, Green R 2019. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay. eLife 8:e49117
    [Google Scholar]
  104. 104.
    Marzluff WF, Wagner EJ, Duronio RJ. 2008. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9:843–54
    [Google Scholar]
  105. 105.
    Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA 2012. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392–407
    [Google Scholar]
  106. 106.
    Tauber D, Tauber G, Parker R. 2020. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45:764–78
    [Google Scholar]
  107. 107.
    Anderson P, Kedersha N. 2009. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10:430–36
    [Google Scholar]
  108. 108.
    Minshall N, Kress M, Weil D, Standart N. 2009. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Mol. Biol. Cell 20:2464–72
    [Google Scholar]
  109. 109.
    Allen G, Weiss B, Panasenko O, Huch S, Villanyi Z et al. 2022. Not1 and Not4 inversely determine mRNA solubility that sets the dynamics of co-translational events. bioRxiv 2022.03.14.484207. https://doi.org/10.1101/2022.03.14.484207
  110. 110.
    Sharp PM, Emery LR, Zeng K. 2010. Forces that influence the evolution of codon bias. Philos. Trans. R. Soc. B 365:1203–12
    [Google Scholar]
  111. 111.
    Shen X, Song S, Li C, Zhang J. 2022. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 606:725–31
    [Google Scholar]
  112. 112.
    Kim A, Le Douce J, Diab F, Ferovova M, Dubourg C et al. 2020. Synonymous variants in holoprosencephaly alter codon usage and impact the Sonic Hedgehog protein. Brain 143:2027–38
    [Google Scholar]
  113. 113.
    Sauna ZE, Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12:683–91
    [Google Scholar]
  114. 114.
    Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B. 2014. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156:1324–35
    [Google Scholar]
  115. 115.
    Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12:32–42
    [Google Scholar]
  116. 116.
    Dhindsa RS, Wang Q, Vitsios D, Burren OS, Hu F et al. 2022. A minimal role for synonymous variation in human disease. Am. J. Hum. Genet. 109:2105–9
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052621-091808
Loading
/content/journals/10.1146/annurev-biochem-052621-091808
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error