1932

Abstract

The combination of synthetic stable branched DNA and sticky-ended cohesion has led to the development of structural DNA nanotechnology over the past 30 years. The basis of this enterprise is that it is possible to construct novel DNA-based materials by combining these features in a self-assembly protocol. Thus, simple branched molecules lead directly to the construction of polyhedrons, whose edges consist of double helical DNA and whose vertices correspond to the branch points. Stiffer branched motifs can be used to produce self-assembled two-dimensional and three-dimensional periodic lattices of DNA (crystals). DNA has also been used to make a variety of nanomechanical devices, including molecules that change their shapes and molecules that can walk along a DNA sidewalk. Devices have been incorporated into two-dimensional DNA arrangements; sequence-dependent devices are driven by increases in nucleotide pairing at each step in their machine cycles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060308-102244
2010-07-07
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/79/1/annurev-biochem-060308-102244.html?itemId=/content/journals/10.1146/annurev-biochem-060308-102244&mimeType=html&fmt=ahah

Literature Cited

  1. Voet D, Rich A. 1.  1970. The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog. Nucl. Acid Res. Mol. Biol. 10:183–265 [Google Scholar]
  2. Watson JD, Crick FHC. 2.  1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–38 [Google Scholar]
  3. Rich A, Davies DR. 3.  1956. A new two stranded helical structure: polyadenylic acid and polyuridylic acid. J. Am. Chem. Soc. 78:3548–49 [Google Scholar]
  4. Cohen SN, Chang ACY, Boyer HW, Helling RB. 4.  1973. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70:3340–44 [Google Scholar]
  5. Yin P, Choi HMT, Calvert CR, Pierce NA. 5.  2008. Programming biomolecular self-assembly pathways. Nature 451:318–23 [Google Scholar]
  6. Qiu H, Dewan JD, Seeman NC. 6.  1997. A DNA decamer with a sticky end: the crystal structure of d-CGACGATCGT. J. Mol. Biol. 267:881–98 [Google Scholar]
  7. Watson JD, Crick FHC. 7.  1953. Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–67 [Google Scholar]
  8. Holliday R. 8.  1964. A mechanism for gene conversion in fungi. Genet. Res. 5:282–304 [Google Scholar]
  9. Seeman NC. 9.  1982. Nucleic acid junctions and lattices. J. Theor. Biol. 99:237–47 [Google Scholar]
  10. Hsieh P, Panyutin IG. 10.  1995. DNA branch migration. Nucleic Acids and Molecular Biology F Eckstein, DMJ Lilley 942–65 Berlin: Springer-Verlag [Google Scholar]
  11. Caruthers MH. 11.  1985. Gene synthesis machines: DNA chemistry and its uses. Science 230:281–85 [Google Scholar]
  12. Fu T-J, Seeman NC. 12.  1993. DNA double crossover structures. Biochemistry 33:3311–20 [Google Scholar]
  13. Sa-Ardyen P, Vologodskii AV, Seeman NC. 13.  2003. The flexibility of DNA double crossover molecules. Biophys. J. 84:3829–37 [Google Scholar]
  14. LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E. 14.  et al. 2000. The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122:1848–60 [Google Scholar]
  15. Ding B, Seeman NC. 15.  2006. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 31:1583–85 [Google Scholar]
  16. Yan H, Zhang X, Shen Z, Seeman NC. 16.  2002. A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65 [Google Scholar]
  17. Lu M, Guo Q, Marky LA, Seeman NC, Kallenbach NR. 17.  1992. Thermodynamics of DNA chain branching. J. Mol. Biol. 223:781–89 [Google Scholar]
  18. Seeman NC. 18.  1990. De novo design of sequences for nucleic acid structure engineering. J. Biomol. Struct. Dyn. 8:573–81 [Google Scholar]
  19. Wang X, Seeman NC. 19.  2007. Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 129:8169–76 [Google Scholar]
  20. Liu H, Chen Y, He Y, Ribbe AE, Mao C. 20.  2006. Approaching the limit: Can one oligonucleotide assemble into large nanostructures?. Angew. Chem. Int. Ed. Engl. 45:1942–45 [Google Scholar]
  21. Rothemund PWK. 21.  2006. Scaffolded DNA origami for nanoscale shapes and patterns. Nature 440:297–302 [Google Scholar]
  22. Douglas SM, Dietz H, Liedl T, Högborg B, Graf F, Shih WM. 22.  2009. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–18 [Google Scholar]
  23. Dietz H, Douglas SM, Shih WM. 23.  2009. Folding DNA into twisted and curved nanoscale shapes. Science 325:725–30 [Google Scholar]
  24. Högborg B, Liedl T, Shih WM. 24.  2009. Folding DNA origami from a double-stranded source of scaffold. J. Am. Chem. Soc. 131:9154–55 [Google Scholar]
  25. Ma R-I, Kallenbach NR, Sheardy RD, Petrillo ML, Seeman NC. 25.  1986. Three-arm nucleic acid junctions are flexible. Nucleic Acids Res. 14:9745–53 [Google Scholar]
  26. Petrillo ML, Newton CJ, Cunningham RP, Ma R-I, Kallenbach NR, Seeman NC. 26.  1988. The ligation and flexibility of four-arm DNA junctions. Biopolymers 27:1337–52 [Google Scholar]
  27. Chen J, Seeman NC. 27.  1991. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–33 [Google Scholar]
  28. Zhang Y, Seeman NC. 28.  1994. The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116:1661–69 [Google Scholar]
  29. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM. 29.  et al. 2005. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–65 [Google Scholar]
  30. Shih WM, Quispe JD, Joyce GF. 30.  2004. DNA that folds into a nanoscale octahedron. Nature 427:618–21 [Google Scholar]
  31. He Y, Ye T, Su M, Zhang C, Ribbe AE. 31.  et al. 2008. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201 [Google Scholar]
  32. Erben CM, Goodman RP, Turberfield AJ. 32.  2006. Single molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. Engl. 45:7414–17 [Google Scholar]
  33. Seeman NC. 33.  1992. The design of single-stranded nucleic acid knots. Mol. Eng. 2:297–307 [Google Scholar]
  34. Du SM, Stollar BD, Seeman NC. 34.  1995. A synthetic DNA molecule in three knotted topologies. J. Am. Chem. Soc. 117:1194–1200 [Google Scholar]
  35. Fu T-J, Tse-Dinh Y-C, Seeman NC. 35.  1994. Holliday junction crossover topology. J. Mol. Biol. 236:91–105 [Google Scholar]
  36. Mao C, Sun W, Seeman NC. 36.  1997. Assembly of Borromean rings from DNA. Nature 386:137–38 [Google Scholar]
  37. Wang H, Di Gate RJ, Seeman NC. 37.  1996. An RNA topoisomerase. Proc. Natl. Acad. Sci. USA 93:9477–82 [Google Scholar]
  38. Yan H, LaBean TH, Feng L, Reif JH. 38.  2003. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. USA 100:8103–8 [Google Scholar]
  39. Zhang X, Yan H, Shen Z, Seeman NC. 39.  2002. Paranemic cohesion of topologically-closed DNA molecules. J. Am. Chem. Soc. 124:12940–41 [Google Scholar]
  40. Winfree E, Liu F, Wenzler LA, Seeman NC. 40.  1998. Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–44 [Google Scholar]
  41. Gu H, Chao J, Xiao SJ, Seeman NC. 41.  2009. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat. Nanotechnol. 4:245–49 [Google Scholar]
  42. Mathieu F, Liao S, Mao C, Kopatsch J, Wang T, Seeman NC. 42.  2005. Six-helix bundles designed from DNA. Nano Lett. 5:661–65 [Google Scholar]
  43. Douglas SM, Chou JJ, Shih WM. 43.  2007. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104:6644–48 [Google Scholar]
  44. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R. 44.  et al. 2009. Self-assembly of a nanoscale box with a controllable lid. Nature 459:73–76 [Google Scholar]
  45. Li X, Yang X, Qi J, Seeman NC. 45.  1996. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118:6131–40 [Google Scholar]
  46. Ding B, Sha R, Seeman NC. 46.  2004. Pseudohexagonal 2D DNA crystals from double crossover cohesion. J. Am. Chem. Soc. 126:10230–31 [Google Scholar]
  47. Seeman NC. 47.  2002. Key experimental approaches in DNA nanotechnology. Curr. Protoc. Nucleic Acid Chem. Chapter 12:Unit 12.1 [Google Scholar]
  48. Mao C, Sun W, Seeman NC. 48.  1999. Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121:5437–43 [Google Scholar]
  49. Kim SH, Quigley G, Suddath FL, McPherson A, Sneden D. 49.  et al. 1972. The three-dimensional structure of yeast phenylalanine transfer RNA: shape of the molecule at 5.5-Å resolution. Proc. Natl. Acad. Sci. USA 69:3746–50 [Google Scholar]
  50. Liu D, Wang W, Deng Z, Walulu R, Mao C. 50.  2004. Tensegrity: construction of rigid DNA triangles with flexible four-arm junctions. J. Am. Chem. Soc. 126:2324–25 [Google Scholar]
  51. Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R. 51.  et al. 2009. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77 [Google Scholar]
  52. Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H. 52.  2005. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett. 5:729–33 [Google Scholar]
  53. Rinker S, Ke YG, Liu Y, Chhabra R, Yan H. 53.  2008. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol. 7:418–22 [Google Scholar]
  54. Robinson BH, Seeman NC. 54.  1987. The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng. 1:295–300 [Google Scholar]
  55. Alivisatos AP, Johnson KP, Peng XG, Wilson TE, Loweth CJ. 55.  et al. 1996. Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–11 [Google Scholar]
  56. Mastroianni AJ, Claridge SA, Alivisatos AP. 56.  2009. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131:8455–59 [Google Scholar]
  57. Li HY, Park SH, Reif JH, LaBean TH, Yan H. 57.  2004. DNA-templated self-assembly of protein and nanoparticle linear arrays. J. Am. Chem. Soc. 126:418–19 [Google Scholar]
  58. Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA. 58.  2005. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5:2399–402 [Google Scholar]
  59. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC. 59.  2006. 2D nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6:1502–4 [Google Scholar]
  60. Rothemund PWK, Papadakis N, Winfree E. 60.  2004. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2:2041–52 [Google Scholar]
  61. Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S. 61.  2008. A fixed-width cellular automaton pattern. Nano Lett. 8:1791–97 [Google Scholar]
  62. Barish RD, Rothemund PWK, Winfree E. 62.  2005. Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5:2586–92 [Google Scholar]
  63. Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E. 63.  et al. 2004. Building programmable jigsaw puzzles with RNA. Science 306:2068–72 [Google Scholar]
  64. Mao C, LaBean TH, Reif JH, Seeman NC. 64.  2000. Logical computation using algorithmic self-assembly of DNA triple crossover molecules. Nature 407:493–96 [Google Scholar]
  65. Severcan I, Geary C, Venzemnieks A, Jaeger L. 65.  2009. Square-shaped RNA particles from different RNA folds. Nano Lett. 9:1270–77 [Google Scholar]
  66. Zhang RS, McCullum EO, Chaput JC. 66.  2008. Synthesis of two mirror-image 4-helix junctions derived from glycerol nucleic acid. J. Am. Chem. Soc. 130:5846–47 [Google Scholar]
  67. Lukeman PS, Mittal A, Seeman NC. 67.  2004. Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. Chem. Commun. 2004:1694–95 [Google Scholar]
  68. Yang H, Sleiman HF. 68.  2008. Templated synthesis of highly stable, electroactive and dynamic metal-DNA branched junctions. Angew. Chem. Int. Ed. Engl. 47:2443–46 [Google Scholar]
  69. Yang H, McLaughlin CK, Aldaye FA, Hamblin GD, Rys AZ. 69.  et al. 2009. Metal-nucleic acid cages. Nat. Chem. 1:390–96 [Google Scholar]
  70. Kieltyka R, Engelbienne P, Fakhoury J, Autexier C, Moitessier N, Sleiman HF. 70.  2008. A platinum supramolecular square as an effective G-quadruplex binder and telomerase inhibitor. J. Am. Chem. Soc. 130:10040–41 [Google Scholar]
  71. Lo PK, Sleiman HF. 71.  2008. Synthesis and molecular recognition of conjugated polymer with DNA-mimetic properties. Macromolecules 41:5590–603 [Google Scholar]
  72. Rich A, Nordheim A, Wang AHJ. 72.  1984. The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem. 53:791–846 [Google Scholar]
  73. Mao C, Sun W, Shen Z, Seeman NC. 73.  1999. A DNA nanomechanical device based on the B-Z transition. Nature 397:144–46 [Google Scholar]
  74. Modi S, Swetha MG, Goswami D, Gupta G, Mayor S, Krishnan Y. 74.  2009. A DNA nanomachine maps spatiotemporal pH changes in living cells. Nat. Nanotechnol. 4:325–29 [Google Scholar]
  75. Hou X, Guo W, Xia F, Nie FQ, Dong H. 75.  et al. 2009. A biomimetic potassium-responsive nanochannel: G-quadruplex conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 131:7800–5 [Google Scholar]
  76. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Newmann JL. 76.  2000. A DNA-fuelled molecular machine made of DNA. Nature 406:605–8 [Google Scholar]
  77. Sherman WB, Seeman NC. 77.  2004. A precisely controlled DNA bipedal walking device. Nano Lett. 4:1203–7 [Google Scholar]
  78. Shin JS, Pierce NA. 78.  2004. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126:10834–35 [Google Scholar]
  79. Omabegho T, Sha R, Seeman NC. 79.  2009. A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71 [Google Scholar]
  80. Zhang DY, Turberfield AJ, Yurke B, Winfree E. 80.  2007. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–25 [Google Scholar]
  81. Niemeyer CM. 81.  2007. Functional devices from DNA and proteins. Nano Today 2:42–52 [Google Scholar]
  82. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. 82.  1996. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Science 382:607–9 [Google Scholar]
  83. Nykypanchuk D, Maye MM, van der Lelie D, Gang O. 83.  2008. DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–52 [Google Scholar]
  84. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. 84.  2008. DNA-programmable nanoparticle crystallization. Nature 451:553–56 [Google Scholar]
  85. Liu Y, Ke Y, Yan H. 85.  2005. Self-assembly of symmetric finite-size DNA arrays. J. Am. Chem. Soc. 127:17140–41 [Google Scholar]
  86. Seeman NC. 86.  1991. The construction of three-dimensional stick figures from branched DNA. DNA Cell Biol. 10:475–86 [Google Scholar]
  87. Lin C, Wang X, Liu Y, Seeman NC, Yan H. 87.  2007. Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure. J. Am. Chem. Soc. 129:14475–81 [Google Scholar]
  88. Lin C, Rinker S, Wang X, Liu Y, Seeman NC, Yan H. 88.  2008. In vivo cloning of artificial DNA nanostructures. Proc. Natl. Acad. Sci. USA 105:17626–31 [Google Scholar]
  89. Freier SM, Altmann KH. 89.  1997. The ups and downs of nucleic acid stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25:4429–43 [Google Scholar]
  90. Egholm M, Buchardt O, Nielsen PE, Berg RH. 90.  1992. Peptide nucleic-acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J. Am. Chem. Soc. 114:1895–97 [Google Scholar]
  91. Seeman NC. 91.  1998. DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27:225–48 [Google Scholar]
  92. Paukstelis P, Nowakowski J, Birktoft JJ, Seeman NC. 92.  2004. The crystal structure of a continuous three-dimensional DNA lattice. Chem. Biol. 11:1119–26 [Google Scholar]
  93. Chen Y, Mao C. 93.  2004. Putting a brake on an autonomous DNA nanomotor. J. Am. Chem. Soc. 126:8626–27 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060308-102244
Loading
/content/journals/10.1146/annurev-biochem-060308-102244
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error