1932

Abstract

The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-033917
2015-06-02
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-033917.html?itemId=/content/journals/10.1146/annurev-biochem-060614-033917&mimeType=html&fmt=ahah

Literature Cited

  1. Nomura M. 1.  1970. Bacterial ribosome. Bacteriol. Rev. 34:228–77 [Google Scholar]
  2. Nierhaus KH. 2.  1991. The assembly of prokaryotic ribosomes. Biochimie 73:739–55 [Google Scholar]
  3. Woolford JL Jr, Baserga SJ. 3.  2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–81 [Google Scholar]
  4. Kressler D, Hurt E, Bassler J. 4.  2010. Driving ribosome assembly. Biochim. Biophys. Acta 1803:673–83 [Google Scholar]
  5. Tafforeau L, Zorbas C, Langhendries JL, Mullineux ST, Stamatopoulou V. 5.  et al. 2013. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol. Cell 51:539–51 [Google Scholar]
  6. Lestrade L, Weber MJ. 6.  2006. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res. 34:D158–62 [Google Scholar]
  7. Piekna-Przbylska D, Decatur W, Fournier MJ. 7.  2007. New bioinformatic tools for analysis of nucleotide modifications in eukaryotic rRNA. RNA 13:305–12 [Google Scholar]
  8. Lafontaine DL. 8.  2010. A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes. Trends Biochem. Sci. 35:267–77 [Google Scholar]
  9. Teng T, Thomas G, Mercer CA. 9.  2013. Growth control and ribosomopathies. Curr. Opin. Genet. Dev. 23:63–71 [Google Scholar]
  10. Amsterdam A, Burgess S, Golling G, Chen W, Sun Z. 10.  et al. 1999. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13:2713–24 [Google Scholar]
  11. Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M. 11.  et al. 2007. The ribosomal protein genes and minute loci of Drosophila melanogaster. Genome Biol. 8:R216 [Google Scholar]
  12. Steffen KK, McCormick MA, Pham KM, Mackay VL, Delaney JR. 12.  et al. 2012. Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191:107–18 [Google Scholar]
  13. Terzian T, Box N. 13.  2013. Genetics of ribosomal proteins: “curiouser and curiouser.”. PLOS Genet. 9:e1003300 [Google Scholar]
  14. Freed EF, Bleichert F, Dutca LM, Baserga SJ. 14.  2010. When ribosomes go bad: diseases of ribosome biogenesis. Mol. Biosyst. 6:481–93 [Google Scholar]
  15. Narla A, Ebert BL. 15.  2010. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115:3196–205 [Google Scholar]
  16. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 16.  2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30 [Google Scholar]
  17. Mizushima S, Nomura M. 17.  1970. Assembly mapping of 30S ribosomal proteins in E. coli. Nature 226:1214–18 [Google Scholar]
  18. Nierhaus KH, Dohme F. 18.  1974. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. PNAS 71:4713–17 [Google Scholar]
  19. Tanaka K, Teraoka H, Tamaki M, Otaka E, Osawa S. 19.  1968. Erythromycin-resistant mutant of Escherichia coli with altered ribosomal protein component. Science 162:576–78 [Google Scholar]
  20. Tenson T, Mankin A. 20.  2006. Antibiotics and the ribosome. Mol. Microbiol. 59:1664–77 [Google Scholar]
  21. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F. 21.  2003. Ribosome assembly in eukaryotes. Gene 313:17–42 [Google Scholar]
  22. Venema J, Tollervey D. 22.  1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33:261–311 [Google Scholar]
  23. Henras AK, Soudet J, Gérus M, Lebaron S, Caizergues-Ferrer M. 23.  et al. 2008. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell. Mol. Life Sci. 65:2334–59 [Google Scholar]
  24. Eichler DC, Craig N. 24.  1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49:197–239 [Google Scholar]
  25. Ohmayer U, Gamalinda M, Sauert M, Ossowski J, Pöll G. 25.  et al. 2013. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae.. PLOS ONE 8:e68412 [Google Scholar]
  26. Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford JL Jr. 26.  2013. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res. 41:1965–83 [Google Scholar]
  27. Ferreira-Cerca S, Pöll G, Gleizes PE, Tschochner H, Milkereit P. 27.  2005. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol. Cell 20:263–75 [Google Scholar]
  28. Ferreira-Cerca S, Pöll G, Kuhn H, Neueder A, Jakob S. 28.  et al. 2007. Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol. Cell 28:446–57 [Google Scholar]
  29. Pöll G, Braun T, Jakovljevic J, Neueder A, Jakob S. 29.  et al. 2009. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLOS ONE 4:e8249 [Google Scholar]
  30. Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M. 30.  2008. The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14:1918–29 [Google Scholar]
  31. Jakovljevic J, Ohmayer U, Gamalinda M, Talkish J, Alexander L. 31.  et al. 2012. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA 18:1805–22 [Google Scholar]
  32. Schäfer T, Maco B, Petfalski E, Tollervey D, Bottcher B. 32.  et al. 2006. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 441:651–55 [Google Scholar]
  33. Zhang J, Harnpicharnchai P, Jakovljevic J, Tang L, Guo Y. 33.  et al. 2007. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 21:2580–92 [Google Scholar]
  34. Sahasranaman A, Dembowski J, Strahler J, Andrews P, Maddock J, Woolford JL Jr. 34.  2011. Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing. EMBO J. 30:4020–32 [Google Scholar]
  35. Lo KY, Li Z, Bussiere C, Bresson S, Marcotte EM, Johnson AW. 35.  2010. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39:196–208 [Google Scholar]
  36. Talkish J, May G, Lin Y, Woolford JL Jr, McManus CJ. 36.  2014. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–20 [Google Scholar]
  37. Bradatsch B, Leidig C, Granneman S, Gnädig M, Tollervey D. 37.  et al. 2012. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat. Struct. Mol. Biol. 19:1234–41 [Google Scholar]
  38. Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M. 38.  et al. 2013. Structures of the human and Drosophila 80S ribosome. Nature 497:80–85 [Google Scholar]
  39. Manuell AL, Yamaguchi K, Haynes PA, Milligan RA, Mayfield SP. 39.  2005. Composition and structure of the 80S ribosome from the green alga Chlamydomonas reinhardtii: 80S ribosomes are conserved in plants and animals. J. Mol. Biol. 351:266–79 [Google Scholar]
  40. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova GZ, Yusupov MM. 40.  2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–29 [Google Scholar]
  41. Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. 41.  2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–48 [Google Scholar]
  42. Chandramouli P, Topf M, Menetret JF, Eswar N, Cannone JJ. 42.  et al. 2008. Structure of the mammalian 80S ribosome at 8.7 Å resolution. Structure 16:535–48 [Google Scholar]
  43. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. 43.  2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–36 [Google Scholar]
  44. Armache JP, Jarasch A, Anger AM, Villa E, Becker T. 44.  et al. 2010. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. PNAS 107:19748–53 [Google Scholar]
  45. Yusupova GZ, Yusupov MM. 45.  2014. High-resolution structure of the eukaryotic 80S ribosome. Annu. Rev. Biochem. 83:467–86 [Google Scholar]
  46. Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S. 46.  et al. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–42 [Google Scholar]
  47. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 47.  2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20 [Google Scholar]
  48. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. 48.  et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96 [Google Scholar]
  49. Clemons WM Jr, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V. 49.  1999. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400:833–40 [Google Scholar]
  50. Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova GZ, Yusupov MM. 50.  2012. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19:560–67 [Google Scholar]
  51. Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N. 51.  2012. Atomic structures of the eukaryotic ribosome. Trends Biochem. Sci. 37:189–98 [Google Scholar]
  52. Meskauskas A, Dinman JD. 52.  2001. Ribosomal protein L5 helps anchor peptidyl-tRNA to the P-site in Saccharomyces cerevisiae. RNA 7:1084–96 [Google Scholar]
  53. Meskauskas A, Dinman JD. 53.  2007. Ribosomal protein L3: gatekeeper to the A site. Mol. Cell 25:877–88 [Google Scholar]
  54. Sulima SO, Gulay SP, Anjos M, Patchett S, Meskauskas A. 54.  et al. 2014. Eukaryotic rpL10 drives ribosomal rotation. Nucleic Acids Res. 42:2049–63 [Google Scholar]
  55. Loc'h J, Blaud M, Rety S, Lebaron S, Deschamps P. 55.  et al. 2014. RNA mimicry by the Fap7 adenylate kinase in ribosome biogenesis. PLOS Biol. 12:e1001860 [Google Scholar]
  56. Leidig C, Thoms M, Holdermann I, Bradatsch B, Berninghausen O. 56.  et al. 2014. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun. 5:3491 [Google Scholar]
  57. Strunk BS, Loucks CR, Su M, Vashisth H, Cheng S. 57.  et al. 2011. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333:1449–53 [Google Scholar]
  58. Talkington MW, Siuzdak G, Williamson JR. 58.  2005. An assembly landscape for the 30S ribosomal subunit. Nature 438:628–32 [Google Scholar]
  59. Sykes MT, Williamson JR. 59.  2009. A complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38:197–215 [Google Scholar]
  60. Kim H, Abeysirigunawarden SC, Chen K, Mayerle M, Ragunathan K. 60.  et al. 2014. Protein-guided RNA dynamics during early ribosome assembly. Nature 506:334–38 [Google Scholar]
  61. Chen SS, Williamson JR. 61.  2013. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J. Mol. Biol. 425:767–79 [Google Scholar]
  62. Woodson SA. 62.  2008. RNA folding and ribosome assembly. Curr. Opin. Chem. Biol. 12:667–73 [Google Scholar]
  63. Woodson SA. 63.  2012. RNA folding pathways and the self-assembly of ribosomes. Acc. Chem. Res. 44:1312–19 [Google Scholar]
  64. Bange G, Murat G, Sinning I, Hurt E, Kressler D. 64.  2013. New twist to nuclear import: when two travel together. Commun. Integr. Biol. 6:e24792 [Google Scholar]
  65. Rout MP, Blobel G, Aitchison JD. 65.  1997. A distinct nuclear import pathway used by ribosomal proteins. Cell 89:715–25 [Google Scholar]
  66. Jakel S, Mingot JM, Schwarzmaier P, Hartmann E, Gorlich D. 66.  2002. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21:377–86 [Google Scholar]
  67. Kressler D, Bange G, Ogawa Y, Stjepanovic G, Bradatsch B. 67.  et al. 2012. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science 338:666–71 [Google Scholar]
  68. Iouk TL, Aitchison JD, Maguire S, Wozniak RW. 68.  2001. Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome synthesis. Mol. Cell. Biol. 21:1260–71 [Google Scholar]
  69. Schaper S, Fromont-Racine M, Linder P, de la Cruz J, Namade A, Yaniv M. 69.  2001. A yeast homolog of chromatin assembly factor 1 is involved in early ribosome assembly. Curr. Biol. 11:1885–90 [Google Scholar]
  70. Kressler D, Linder P, de la Cruz J. 70.  1999. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:7897–912 [Google Scholar]
  71. Baudin-Baillieu A, Tollervey D, Cullin C, Lacroute F. 71.  1997. Functional analysis of Rrp7p, an essential yeast protein involved in pre-rRNA processing and ribosome assembly. Mol. Cell. Biol. 17:5023–32 [Google Scholar]
  72. West M, Hedges JB, Chen A, Johnson AW. 72.  2005. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol. Cell. Biol. 25:3802–13 [Google Scholar]
  73. Eisinger DP, Dick FA, Denke E, Trumpower BL. 73.  1997. SQT1, which encodes an essential WD domain protein of Saccharomyces cerevisiae, suppresses dominant-negative mutations of the ribosomal protein gene QSR1. Mol. Cell. Biol. 17:5146–55 [Google Scholar]
  74. Koch B, Mitterer V, Niederhauser J, Stanborough T, Murat G. 74.  et al. 2012. Yar1 protects the ribosomal protein Rps3 from aggregation. J. Biol. Chem. 287:21806–15 [Google Scholar]
  75. Holzer S, Ban N, Klinge S. 75.  2013. Crystal structure of the yeast ribosomal protein rpS3 in complex with its chaperone Yar1. J. Mol. Biol. 425:4154–60 [Google Scholar]
  76. Ghalei H, Schaub FX, Doherty JR, Noguchi Y, Roush WR. 76.  et al. 2014. Hrr25/CK1d-directed release of Ltv1 from pre-40S ribosomes is necessary for risobome assembly and cellular growth. J. Cell Biol. 208745–59 [Google Scholar]
  77. Karbstein K. 77.  2010. Chaperoning ribosome assembly. J. Cell Biol. 189:11–12 [Google Scholar]
  78. Koplin A, Preissler S, Ilina Y, Koch M, Scior A. 78.  et al. 2010. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide–associated complex on ribosomes. J. Cell Biol. 189:57–68 [Google Scholar]
  79. Lacombe T, García-Gómez JJ, de la Cruz J, Roser D, Hurt E. 79.  et al. 2009. Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Mol. Microbiol. 72:69–84 [Google Scholar]
  80. Catic A, Sun ZY, Ratner DM, Misaghi S, Spooner E. 80.  et al. 2007. Sequence and structure evolved separately in ribosomal ubiquitin variant. EMBO J. 26:3474–83 [Google Scholar]
  81. Fernández-Pervida A, Kressler D, de la Cruz J. 81.  2015. Processing of preribosomal RNA in Saccharomyces cerevisiae.. Wiley Interdiscip. Rev. RNA 6191–209 [Google Scholar]
  82. Udem SA, Warner JR. 82.  1972. Ribosomal RNA synthesis in Saccharomyces cerevisiae. J. Mol. Biol. 65:227–42 [Google Scholar]
  83. García-Gómez JJ, Babiano R, Lebaron S, Froment C, Monsarrat B. 83.  et al. 2011. Nop6, a component of 90S pre-ribosomal particles, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae. RNA Biol. 8:112–24 [Google Scholar]
  84. Liang XH, Fournier MJ. 84.  2006. The helicase Has1p is required for snoRNA release from pre-rRNA. Mol. Cell Biol. 26:7437–50 [Google Scholar]
  85. Delprato A, Al Kadri Y, Perebaskine N, Monfoulet C, Henry Y. 85.  et al. 2014. Crucial role of the Rcl1p–Bms1p interaction for yeast pre-ribosomal RNA processing. Nucleic Acids Res. 42:10161–72 [Google Scholar]
  86. Sardana R, Zhu J, Gill M, Johnson AW. 86.  2014. Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-box RNA helicase Ecm16. Mol. Cell. Biol. 34:2208–20 [Google Scholar]
  87. Kos M, Tollervey D. 87.  2010. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol. Cell 37:809–20 [Google Scholar]
  88. Axt K, French SL, Beyer AL, Tollervey D. 88.  2014. Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage. PLOS ONE 9:e85703 [Google Scholar]
  89. Osheim YN, French SL, Keck KM, Champion EA, Spasov K. 89.  et al. 2004. Pre-18S ribosomal RNA is structurally conmpacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae.. Mol. Cell 16:934–54 [Google Scholar]
  90. Karbstein K. 90.  2011. Inside the 40S ribosome assembly machinery. Curr. Opin. Chem. Biol. 15:657–63 [Google Scholar]
  91. Mulder AM, Yoshioka C, Beck AH, Bunner AE, Milligan RA. 91.  et al. 2010. Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 330:673–77 [Google Scholar]
  92. Dutca LM, Culver GM. 92.  2008. Assembly of the 5′ and 3′ minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J. Mol. Biol. 376:92–108 [Google Scholar]
  93. O'Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE. 93.  2010. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J. Cell Biol. 190:853–66 [Google Scholar]
  94. Adilakshmi T, Bellur DL, Woodson SA. 94.  2008. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 455:1268–72 [Google Scholar]
  95. Holmes KL, Culver GM. 95.  2004. Mapping structural differences between 30S ribosomal subunit assembly intermediates. Nat. Struct. Mol. Biol. 11:179–86 [Google Scholar]
  96. Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. 96.  2013. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol. Cell 52:506–16 [Google Scholar]
  97. Strunk BS, Novak MN, Young CL, Karbstein K. 97.  2012. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150:111–21 [Google Scholar]
  98. Lebaron S, Schneider C, van Nues RW, Swiatkowska A, Walsh D. 98.  et al. 2012. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 19:744–53 [Google Scholar]
  99. García-Gómez JJ, Fernández-Pevida A, Lebaron S, Rosado IV, Tollervey D. 99.  et al. 2014. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3. PLOS Genet. 10:e1004205 [Google Scholar]
  100. Turowski TW, Lebaron S, Zheng E, Peil L, Dudnakova T. 100.  et al. 2014. Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Res. 42:12189–99 [Google Scholar]
  101. Ferriera-Cerca S, Kiburu I, Thompson E, Laronde N, Hurt E. 101.  2014. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 42:8635–47 [Google Scholar]
  102. Hector RD, Burlacu E, Aitken S, Bihan TL, Tuijtel M. 102.  et al. 2014. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res. 42:12138–54 [Google Scholar]
  103. Schütz S, Fischer U, Altvater M, Nerurkar P, Pena C. 103.  et al. 2014. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. eLife 3:e03473 [Google Scholar]
  104. Gamalinda M, Ohmayer U, Jakovljevic J, Kumcuoglu B, Woolford J. 104.  et al. 2014. A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. Genes Dev. 28:198–210 [Google Scholar]
  105. Dez C, Froment C, Noaillac-Depeyre J, Monsarrat B, Caizergues-Ferrer M, Henry Y. 105.  2004. Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol. Cell. Biol. 24:6324–37 [Google Scholar]
  106. Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. 106.  2012. Yeast ribosomal protein L40 assembles late into precursor 60S ribosomes and is required for their cytoplasmic maturation. J. Biol. Chem. 287:38390–407 [Google Scholar]
  107. Babiano R, Gamalinda M, Woolford JL Jr, de la Cruz J. 107.  2012. Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol. Cell. Biol. 32:3228–41 [Google Scholar]
  108. Babiano R, de la Cruz J. 108.  2010. Ribosomal protein L35 is required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res. 38:5177–92 [Google Scholar]
  109. van Beekvelt CA, de Graaff–Vincent M, Faber AW, van't Riet J, Venema J, Raué HA. 109.  2001. All three functional domains of the large ribosomal subunit protein L25 are required for both early and late pre-rRNA processing steps in Saccharomyces cerevisiae. Nucleic Acids Res. 29:5001–8 [Google Scholar]
  110. Martín-Marcos P, Hinnebusch AG, Tamame M. 110.  2007. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation. Mol. Cell. Biol. 27:5968–85 [Google Scholar]
  111. Rotenberg M, Moritz M, Woolford JL Jr. 111.  1988. Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polysomes. Genes Dev. 2:160–72 [Google Scholar]
  112. Rosado IV, Kressler D, de la Cruz J. 112.  2007. Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis. Nucleic Acids Res. 35:4203–13 [Google Scholar]
  113. Lebreton A, Rousselle JC, Lenormand P, Namane A, Jacquier A. 113.  et al. 2008. 60S ribosomal subunit assembly dynamics defined by semi-quantitative mass spectrometry of purified complexes. Nucleic Acids Res. 36:4988–99 [Google Scholar]
  114. Lebaron S, Segerstolpe A, French SL, Dudnakova T, de Lima Alves F. 114.  et al. 2013. Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Mol. Cell 52:707–19 [Google Scholar]
  115. Rosado IV, Dez C, Lebaron S, Caizergues-Ferrer M, Henry Y, de la Cruz J. 115.  2007. Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 27:1207–21 [Google Scholar]
  116. Allmang C, Tollervey D. 116.  1998. The role of the 3′ external transcribed spacer in yeast pre-rRNA processing. J. Mol. Biol. 278:67–78 [Google Scholar]
  117. Shajani Z, Sykes MT, Williamson JR. 117.  2011. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80:501–26 [Google Scholar]
  118. Li N, Chen Y, Guo Q, Zhang Y, Yuan Y. 118.  et al. 2013. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Nucleic Acids Res. 41:7073–83 [Google Scholar]
  119. Jomaa A, Jain N, Davis JH, Williamson JR, Britton RA, Ortega J. 119.  2014. Functional domains of the 50S subunit mature late in the assembly process. Nucleic Acids Res. 42:3419–35 [Google Scholar]
  120. Granneman S, Petfalski E, Tollervey D. 120.  2011. A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease. EMBO J. 30:4006–19 [Google Scholar]
  121. Dembowski JA, Kuo B, Woolford JL Jr. 121.  2013. Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits. Nucleic Acids Res. 41:7889–904 [Google Scholar]
  122. Talkish J, Campbell IW, Sahasranaman A, Jakovljevic J, Woolford JL Jr. 122.  2014. Ribosome assembly factors Pwp1 and Nop12 are important for folding of 5.8S rRNA during ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 34:1863–77 [Google Scholar]
  123. Saveanu C, Bienvenu D, Namane A, Gleizes PE, Gas N. 123.  et al. 2001. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J. 20:6475–84 [Google Scholar]
  124. Lebreton A, Saveanu C, Decourty L, Jacquier A, Fromont-Racine M. 124.  2006. Nsa2 is an unstable, conserved factor required for the maturation of 27 SB pre-rRNAs. J. Biol. Chem. 281:27099–108 [Google Scholar]
  125. Matsuo Y, Granneman S, Thoms M, Manikas RG, Tollervey D, Hurt E. 125.  2014. Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505:112–16 [Google Scholar]
  126. Bassler J, Kallas M, Pertschy B, Ulbrich C, Thoms M, Hurt E. 126.  2010. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol. Cell 38:712–21 [Google Scholar]
  127. Yao W, Roser D, Kohler A, Bradatsch B, Bassler J, Hurt E. 127.  2007. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67–Mtr2. Mol. Cell 26:51–62 [Google Scholar]
  128. Rodríguez-Mateos M, García-Gómez JJ, Francisco-Velilla R, Remacha M, de la Cruz J, Ballesta JPG. 128.  2009. Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res. 37:7519–32 [Google Scholar]
  129. DeLabre ML, Kessl J, Karamanou S, Trumpower BL. 129.  2002. RPL29 codes for a non-essential protein of the 60S ribosomal subunit in Saccharomyces cerevisiae and exhibits synthetic lethality with mutations in genes for proteins required for subunit coupling. Biochim. Biophys. Acta 1574:255–61 [Google Scholar]
  130. Eisinger DP, Dick FA, Trumpower BL. 130.  1997. Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol. Cell. Biol. 17:5136–45 [Google Scholar]
  131. Panse VG, Johnson AW. 131.  2010. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 35:260–66 [Google Scholar]
  132. Kappel L, Loibl M, Zisser G, Klein I, Fruhmann G. 132.  et al. 2012. Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation. J. Cell Biol. 199:771–82 [Google Scholar]
  133. Saveanu C, Namane A, Gleizes PE, Lebreton A, Rousselle JC. 133.  et al. 2003. Sequential protein association with nascent 60S ribosomal particles. Mol. Cell. Biol. 23:4449–60 [Google Scholar]
  134. Lebreton A, Saveanu C, Decourty L, Rain JC, Jacquier A, Fromont-Racine M. 134.  2006. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol. 173:349–60 [Google Scholar]
  135. Demoinet E, Jacquier A, Lutfalla G, Fromont-Racine M. 135.  2007. The Hsp40 chaperone Jjj1 is required for the nucleo-cytoplasmic recycling of preribosomal factors in Saccharomyces cerevisiae. RNA 13:1570–81 [Google Scholar]
  136. Kemmler S, Occhipinti L, Veisu M, Panse VG. 136.  2009. Yvh1 is required for a late maturation step in the 60S biogenesis pathway. J. Cell Biol. 186:863–80 [Google Scholar]
  137. Lo KY, Li Z, Wang F, Marcotte EM, Johnson AW. 137.  2009. Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0. J. Cell Biol. 186:849–62 [Google Scholar]
  138. Ballesta JPG, Rodriguez-Gabriel MA, Bou G, Briones E, Zambrano R, Remacha M. 138.  1999. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiol. Rev. 23:537–50 [Google Scholar]
  139. Bautista-Santos A, Zinker S. 139.  2014. The P1/P2 protein heterodimers assemble to the ribosomal stalk at the moment when the ribosome is committed to translation but not to the native 60S ribosomal subunit in Saccharomyces cerevisiae. Biochemistry 53:4105–12 [Google Scholar]
  140. Bussiere C, Hashem Y, Arora S, Frank J, Johnson AW. 140.  2012. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J. Cell Biol. 197:747–59 [Google Scholar]
  141. Senger B, Lafontaine DL, Graindorge JS, Gadal O, Camasses A. 141.  et al. 2001. The nucle(ol)ar Tif6 and Efl1 are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8:1363–73 [Google Scholar]
  142. Harnpicharnchai P, Jakovljevic J, Horsey E, Miles T, Roman J. 142.  et al. 2001. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol. Cell 8:505–15 [Google Scholar]
  143. Dunbar DA, Dragon F, Lee SJ, Baserga SJ. 143.  2000. A nucleolar protein related to ribosomal protein L7 is required for an early step in large ribosomal subunit biogenesis. PNAS 97:13027–32 [Google Scholar]
  144. Rodríguez-Mateos M, Abia D, García-Gómez JJ, Morreale A, de la Cruz J. 144.  et al. 2009. The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein. Nucleic Acids Res. 37:3514–21 [Google Scholar]
  145. Lee SJ, Baserga SJ. 145.  1999. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for 18S rRNA processing. Mol. Cell. Biol. 19:5441–52 [Google Scholar]
  146. Venema J, Tollervey D. 146.  1996. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast. EMBO J. 15:5701–14 [Google Scholar]
  147. Karbstein K. 147.  2013. Quality control mechanisms during ribosome maturation. Trends Cell Biol. 23:242–50 [Google Scholar]
  148. Mizuta K, Hashimoto T, Otaka E. 148.  1995. The evolutionary relationships between homologs of ribosomal YL8 protein and YL8-like proteins. Curr. Genet. 28:19–25 [Google Scholar]
  149. Lalo D, Mariotte S, Thuriaux P. 149.  1993. Two distinct yeast proteins are related to the mammalian ribosomal polypeptide L7. Yeast 9:1085–91 [Google Scholar]
  150. Gadal O, Strauss D, Petfalski E, Gleizes PE, Gas N. 150.  et al. 2002. Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. J. Cell Biol. 157:941–51 [Google Scholar]
  151. Babiano R, Badis G, Saveanu C, Namane A, Doyen A. 151.  et al. 2013. Yeast ribosomal protein L7 and its homologue Rlp7 are simultaneously present at distinct sites on pre-60S ribosomal particles. Nucleic Acids Res. 41:9461–70 [Google Scholar]
  152. Dembowski JA, Ramesh M, McManus CJ, Woolford JL Jr. 152.  2013. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae. RNA 19:1639–47 [Google Scholar]
  153. Warner JR. 153.  1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:437–40 [Google Scholar]
  154. Bursac S, Brdovcak MC, Donati G, Volarevic S. 154.  2014. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim. Biophys. Acta 1842:817–30 [Google Scholar]
  155. Golomb L, Volarevic S, Oren M. 155.  2014. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 588:2571–79 [Google Scholar]
  156. Mayer C, Grummt I. 156.  2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–91 [Google Scholar]
  157. Iadevaia V, Zhang Z, Jan E, Proud CG. 157.  2012. mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res. 40:2527–39 [Google Scholar]
  158. van Riggelen J, Yetil A, Felsher DW. 158.  2010. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10:301–9 [Google Scholar]
  159. Armistead J, Triggs-Raine B. 159.  2014. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett. 588:1491–500 [Google Scholar]
  160. McCann KL, Baserga SJ. 160.  2013. Genetics. Mysterious ribosomopathies. Science 341:849–50 [Google Scholar]
  161. Xue S, Barna M. 161.  2012. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell. Biol. 13:355–56 [Google Scholar]
  162. Ruggero D. 162.  2012. Translational control in cancer etiology. Cold Spring Harb. Perspect. Biol. 5:a012336 [Google Scholar]
  163. Sulima SO, Patchett S, Advani VM, De Keersmaecker K, Johnson AW, Dinman JD. 163.  2014. Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis. PNAS 111:5640–45 [Google Scholar]
  164. Loreni F, Mancino M, Biffo S. 164.  2014. Translation factors and ribosomal proteins control tumor onset and progression: how?. Oncogene 33:2145–56 [Google Scholar]
  165. Stumpf CR, Ruggero D. 165.  2011. The cancerous translation apparatus. Curr. Opin. Genet. Dev. 21:474–83 [Google Scholar]
  166. Jakovljevic J, de Mayolo PA, Miles TD, Nguyen TM, Leger-Silvestre I. 166.  et al. 2004. The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol. Cell 14:331–42 [Google Scholar]
  167. Tabb-Massey A, Caffrey JM, Logsden P, Taylor S, Trent JO, Ellis SR. 167.  2003. Ribosomal proteins Rps0 and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3′ end of 18S rRNA. Nucleic Acids Res. 31:6798–805 [Google Scholar]
  168. McIntosh KB, Bhattacharya A, Willis IM, Warner JR. 168.  2011. Eukaryotic cells producing ribosomes deficient in Rpl1 are hypersensitive to defects in the ubiquitin–proteasome system. PLOS ONE 6:e23579 [Google Scholar]
  169. Gamalinda G, Woolford JL Jr. 169.  2014. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly. RNA 20:1725–31 [Google Scholar]
  170. Moritz M, Paulovich AG, Tsay YF, Woolford JL Jr. 170.  1990. Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J. Cell Biol. 111:2261–74 [Google Scholar]
  171. Ford CL, Randal-Whitis L, Ellis SR. 171.  1999. Yeast proteins related to the p40/lamin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. 59:704–10 [Google Scholar]
  172. Bernstein KA, Gallagher JA, Mitchell BM, Granneman S, Baserga SJ. 172.  2004. The small subunit processome is a ribosome assembly intermediate. Eukaryot. Cell 3:1619–26 [Google Scholar]
  173. Deshmukh M, Tsay Y-F, Paulovich AG, Woolford JL Jr. 173.  1993. Yeast ribosomal protein L1 is required for the stability of newly synthesized 5S rRNA and the assembly of 60S ribosomal subunits. Mol. Cell Biol. 13:2835–45 [Google Scholar]
  174. Moritz M, Paulovich AG, Tsay Y-F, Woolford JL Jr. 174.  1990. Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J. Cell Biol 111:2261–74 [Google Scholar]
  175. Baronas-Lowell DM, Warner JR. 175.  1990. Ribosomal protein L30 is dispensable in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 10:5235–43 [Google Scholar]
  176. Vilardell J, Warner JR. 176.  1997. Ribosomal protein L32 of Saccharomyces cerevisiae influences both splicing of its own transcript and the processing of rRNA. Mol. Cell Biol 17:1959–65 [Google Scholar]
  177. Wan K, Yabuki Y, Mizuta K. 177.  2014. Roles of Ebp2 and ribosomal protein L36 in ribosome biogenesis in Saccharomyces cerevisiae.. Curr. Genet. 6131–41 [Google Scholar]
  178. Yu X, Warner JR. 178.  2001. Expression of a micro-protein. J. Biol. Chem. 276:33821–25 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-033917
Loading
/content/journals/10.1146/annurev-biochem-060614-033917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error