1932

Abstract

DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034010
2015-06-02
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034010.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034010&mimeType=html&fmt=ahah

Literature Cited

  1. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. 1.  2006. DNA Repair and Mutagenesis Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  2. Barnes DE, Lindahl T. 2.  2004. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38:445–76 [Google Scholar]
  3. Wells RD, Ashizawa T. 3.  2006. Genetic Instabilities and Neurological Diseases Boston: Elsevier766, 2nd ed.. [Google Scholar]
  4. Sinden RR. 4.  1994. DNA Structure and Function San Diego: Academic [Google Scholar]
  5. Wells RD. 5.  2009. Discovery of the role of non-B DNA structures in mutagenesis and human genomic disorders. J. Biol. Chem. 284:8997–9009 [Google Scholar]
  6. Choi J, Majima T. 6.  2011. Conformational changes of non-B DNA. Chem. Soc. Rev. 40:5893–909 [Google Scholar]
  7. Schoeffler AJ, Berger JM. 7.  2008. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 41:41–101 [Google Scholar]
  8. Wells RD. 8.  2007. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32:271–78 [Google Scholar]
  9. Bacolla A, Wells RD. 9.  2009. Non-B DNA conformations as determinants of mutagenesis and human disease. Mol. Carcinog. 48:273–85 [Google Scholar]
  10. Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. 10.  2010. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu. Rev. Genet. 44:445–77 [Google Scholar]
  11. van Holde K, Zlatanova J. 11.  1994. Unusual DNA structures, chromatin and transcription. Bioessays 16:59–68 [Google Scholar]
  12. Dai X, Rothman-Denes LB. 12.  1999. DNA structure and transcription. Curr. Opin. Microbiol. 2:126–30 [Google Scholar]
  13. Mirkin EV, Mirkin SM. 13.  2007. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 71:13–35 [Google Scholar]
  14. Orr HT, Zoghbi HY. 14.  2007. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30:575–621 [Google Scholar]
  15. Lopez Castel A, Cleary JD, Pearson CE. 15.  2010. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11:165–70 [Google Scholar]
  16. Nelson DL, Orr HT, Warren ST. 16.  2013. The unstable repeats—three evolving faces of neurological disease. Neuron 77:825–43 [Google Scholar]
  17. Polak U, McIvor E, Dent SY, Wells RD, Napierala M. 17.  2013. Expanded complexity of unstable repeat diseases. Biofactors 39:164–75 [Google Scholar]
  18. Lohi H, Young EJ, Fitzmaurice SN, Rusbridge C, Chan EM. 18.  et al. 2005. Expanded repeat in canine epilepsy. Science 307:81 [Google Scholar]
  19. Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D. 19.  2009. A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science 323:1060–63 [Google Scholar]
  20. Cleary JD, Pearson CE. 20.  2003. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet. Genome Res. 100:25–55 [Google Scholar]
  21. McMurray CT. 21.  2010. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11:786–99 [Google Scholar]
  22. Hoffner G, Djian P. 22.  2014. Monomeric, oligomeric and polymeric proteins in Huntington disease and other diseases of polyglutamine expansion. Brain Sci. 4:91–122 [Google Scholar]
  23. Delot E, King LM, Briggs MD, Wilcox WR, Cohn DH. 23.  1999. Trinucleotide expansion mutations in the cartilage oligomeric matrix protein (COMP) gene. Hum. Mol. Genet. 8:123–28 [Google Scholar]
  24. Kumari D, Lokanga R, Yudkin D, Zhao XN, Usdin K. 24.  2012. Chromatin changes in the development and pathology of the fragile X–associated disorders and Friedreich ataxia. Biochim. Biophys. Acta 1819:802–10 [Google Scholar]
  25. Fiszer A, Krzyzosiak WJ. 25.  2013. RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J. Mol. Med. 91:683–91 [Google Scholar]
  26. Cleary JD, Ranum LP. 26.  2013. Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22:R45–51 [Google Scholar]
  27. Wells RD, Dere R, Hebert ML, Napierala M, Son LS. 27.  2005. Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res. 33:3785–98 [Google Scholar]
  28. Iyer RR, Pluciennik A, Burdett V, Modrich PL. 28.  2006. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106:302–23 [Google Scholar]
  29. Modrich P. 29.  2006. Mechanisms in eukaryotic mismatch repair. J. Biol. Chem. 281:30305–9 [Google Scholar]
  30. Jiricny J. 30.  2013. Postreplicative mismatch repair. Cold Spring Harb. Perspect. Biol. 5:a012633 [Google Scholar]
  31. Hsieh P, Yamane K. 31.  2008. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech. Ageing Dev. 129:391–407 [Google Scholar]
  32. Kunkel TA. 32.  2009. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 74:91–101 [Google Scholar]
  33. Gupta S, Gellert M, Yang W. 33.  2012. Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat. Struct. Mol. Biol. 19:72–78 [Google Scholar]
  34. Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS. 34.  2007. Structure of the human MutSα DNA lesion recognition complex. Mol. Cell 26:579–92 [Google Scholar]
  35. Drummond JT, Genschel J, Wolf E, Modrich P. 35.  1997. DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSα/hMutSβ ratio and reduces the efficiency of base–base mismatch repair. PNAS 94:10144–49 [Google Scholar]
  36. Marra G, Iaccarino I, Lettieri T, Roscilli G, Delmastro P, Jiricny J. 36.  1998. Mismatch repair deficiency associated with overexpression of the MSH3 gene. PNAS 95:8568–73 [Google Scholar]
  37. Jiricny J. 37.  1998. Replication errors: cha(lle)nging the genome. EMBO J. 17:6427–36 [Google Scholar]
  38. Peña-Diaz J, Jiricny J. 38.  2010. PCNA and MutLα: partners in crime in triplet repeat expansion?. PNAS 107:16409–10 [Google Scholar]
  39. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P. 39.  2010. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. PNAS 107:16066–71 [Google Scholar]
  40. Pluciennik A, Burdett V, Baitinger C, Iyer RR, Shi K, Modrich P. 40.  2013. Extrahelical (CAG)/(CTG) triplet repeat elements support proliferating cell nuclear antigen loading and MutLα endonuclease activation. PNAS 110:12277–82 [Google Scholar]
  41. Kadyrov FA, Dzantiev L, Constantin N, Modrich P. 41.  2006. Endonucleolytic function of MutLα in human mismatch repair. Cell 126:297–308 [Google Scholar]
  42. Genschel J, Bazemore LR, Modrich P. 42.  2002. Human exonuclease I is required for 5′ and 3′ mismatch repair. J. Biol. Chem. 277:13302–11 [Google Scholar]
  43. Genschel J, Modrich P. 43.  2003. Mechanism of 5′-directed excision in human mismatch repair. Mol. Cell 12:1077–86 [Google Scholar]
  44. Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, Modrich P. 44.  2009. A possible mechanism for exonuclease 1–independent eukaryotic mismatch repair. PNAS 106:8495–500 [Google Scholar]
  45. Di Noia JM, Neuberger MS. 45.  2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76:1–22 [Google Scholar]
  46. Chahwan R, Edelmann W, Scharff MD, Roa S. 46.  2012. AIDing antibody diversity by error-prone mismatch repair. Semin. Immunol. 24:293–300 [Google Scholar]
  47. Stavnezer J, Guikema JE, Schrader CE. 47.  2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26:261–92 [Google Scholar]
  48. Slean MM, Panigrahi GB, Ranum LP, Pearson CE. 48.  2008. Mutagenic roles of DNA “repair” proteins in antibody diversity and disease-associated trinucleotide repeat instability. DNA Repair 7:1135–54 [Google Scholar]
  49. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E. 49.  et al. 2013. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLOS Genet. 9:e1003930 [Google Scholar]
  50. McMurray CT. 50.  2008. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair 7:1121–34 [Google Scholar]
  51. Jaworski A, Rosche WA, Gellibolian R, Kang S, Shimizu M. 51.  et al. 1995. Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. PNAS 92:11019–23 [Google Scholar]
  52. Parniewski P, Jaworski A, Wells RD, Bowater RP. 52.  2000. Length of CTG·CAG repeats determines the influence of mismatch repair on genetic instability. J. Mol. Biol. 299:865–74 [Google Scholar]
  53. Schmidt KH, Abbott CM, Leach DR. 53.  2000. Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli. Mol. Microbiol. 35:463–71 [Google Scholar]
  54. Schumacher S, Fuchs RP, Bichara M. 54.  1998. Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited. J. Mol. Biol. 279:1101–10 [Google Scholar]
  55. Wells RD, Parniewski P, Pluciennik A, Bacolla A, Gellibolian R, Jaworski A. 55.  1998. Small slipped register genetic instabilities in Escherichia coli in triplet repeat sequences associated with hereditary neurological diseases. J. Biol. Chem. 273:19532–41 [Google Scholar]
  56. Manley K, Shirley TL, Flaherty L, Messer A. 56.  1999. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23:471–73 [Google Scholar]
  57. Kovtun IV, McMurray CT. 57.  2001. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 27:407–11 [Google Scholar]
  58. van den Broek WJ, Nelen MR, Wansink DG, Coerwinkel MM, te Riele H. 58.  et al. 2002. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11:191–98 [Google Scholar]
  59. Wheeler VC, Lebel LA, Vrbanac V, Teed A, te Riele H, MacDonald ME. 59.  2003. Mismatch repair gene Msh2 modifies the timing of early disease in HdhQ111 striatum. Hum. Mol. Genet. 12:273–81 [Google Scholar]
  60. Savouret C, Brisson E, Essers J, Kanaar R, Pastink A. 60.  et al. 2003. CTG repeat instability and size variation timing in DNA repair–deficient mice. EMBO J. 22:2264–73 [Google Scholar]
  61. Savouret C, Garcia-Cordier C, Megret J, te Riele H, Junien C, Gourdon G. 61.  2004. MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol. Cell. Biol. 24:629–37 [Google Scholar]
  62. Gomes-Pereira M, Fortune MT, Ingram L, McAbney JP, Monckton DG. 62.  2004. Pms2 is a genetic enhancer of trinucleotide CAG·CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13:1815–25 [Google Scholar]
  63. Owen BA, Yang Z, Lai M, Gajec M, Badger JD III. 63.  et al. 2005. (CAG)n-hairpin DNA binds to Msh2–Msh3 and changes properties of mismatch recognition. Nat. Struct. Mol. Biol. 12:663–70 [Google Scholar]
  64. Foiry L, Dong L, Savouret C, Hubert L, te Riele H. 64.  et al. 2006. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum. Genet. 119:520–26 [Google Scholar]
  65. Dragileva E, Hendricks A, Teed A, Gillis T, Lopez ET. 65.  et al. 2009. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 33:37–47 [Google Scholar]
  66. Tome S, Holt I, Edelmann W, Morris GE, Munnich A. 66.  et al. 2009. MSH2 ATPase domain mutation affects CTG·CAG repeat instability in transgenic mice. PLOS Genet. 5:e1000482 [Google Scholar]
  67. Yoon SR, Dubeau L, de Young M, Wexler NS, Arnheim N. 67.  2003. Huntington disease expansion mutations in humans can occur before meiosis is completed. PNAS 100:8834–38 [Google Scholar]
  68. Fortune MT, Vassilopoulos C, Coolbaugh MI, Siciliano MJ, Monckton DG. 68.  2000. Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum. Mol. Genet. 9:439–45 [Google Scholar]
  69. Gonitel R, Moffitt H, Sathasivam K, Woodman B, Detloff PJ. 69.  et al. 2008. DNA instability in postmitotic neurons. PNAS 105:3467–72 [Google Scholar]
  70. Wildenberg J, Meselson M. 70.  1975. Mismatch repair in heteroduplex DNA. PNAS 72:2202–6 [Google Scholar]
  71. Hombauer H, Srivatsan A, Putnam CD, Kolodner RD. 71.  2011. Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science 334:1713–16 [Google Scholar]
  72. Pluciennik A, Burdett V, Lukianova O, O'Donnell M, Modrich P. 72.  2009. Involvement of the β clamp in methyl-directed mismatch repair in vitro. J. Biol. Chem. 284:32782–91 [Google Scholar]
  73. Rodriguez GP, Romanova NV, Bao G, Rouf NC, Kow YW, Crouse GF. 73.  2012. Mismatch repair-dependent mutagenesis in nondividing cells. PNAS 109:6153–58 [Google Scholar]
  74. Peña-Diaz J, Bregenhorn S, Ghodgaonkar M, Follonier C, Artola-Boran M. 74.  et al. 2012. Noncanonical mismatch repair as a source of genomic instability in human cells. Mol. Cell 47:669–80 [Google Scholar]
  75. Lokanga RA, Zhao XN, Usdin K. 75.  2014. The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model. Hum. Mutat. 35:129–36 [Google Scholar]
  76. Bourn RL, De Biase I, Pinto RM, Sandi C, Al-Mahdawi S. 76.  et al. 2012. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues. PLOS ONE 7:e47085 [Google Scholar]
  77. Ezzatizadeh V, Sandi C, Sandi M, Anjomani-Virmouni S, Al-Mahdawi S, Pook MA. 77.  2014. MutLα heterodimers modify the molecular phenotype of Friedreich ataxia. PLOS ONE 9:e100523 [Google Scholar]
  78. Ezzatizadeh V, Pinto RM, Sandi C, Sandi M, Al-Mahdawi S. 78.  et al. 2012. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model. Neurobiol. Dis. 46:165–71 [Google Scholar]
  79. Lin Y, Dion V, Wilson JH. 79.  2006. Transcription promotes contraction of CAG repeat tracts in human cells. Nat. Struct. Mol. Biol. 13:179–80 [Google Scholar]
  80. Gannon AM, Frizzell A, Healy E, Lahue RS. 80.  2012. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells. Nucleic Acids Res. 40:10324–33 [Google Scholar]
  81. Momcilovic O, Knobloch L, Fornsaglio J, Varum S, Easley C, Schatten G. 81.  2010. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLOS ONE 5:e13410 [Google Scholar]
  82. Fan J, Robert C, Jang YY, Liu H, Sharkis S. 82.  et al. 2011. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining. Mutat. Res. 713:8–17 [Google Scholar]
  83. Tichy ED, Liang L, Deng L, Tischfield J, Schwemberger S. 83.  et al. 2011. Mismatch and base excision repair proficiency in murine embryonic stem cells. DNA Repair 10:445–51 [Google Scholar]
  84. Seriola A, Spits C, Simard JP, Hilven P, Haentjens P. 84.  et al. 2011. Huntington's and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum. Mol. Genet. 20:176–85 [Google Scholar]
  85. Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM. 85.  2013. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient–derived induced pluripotent stem cells. Hum. Mol. Genet. 22:5276–87 [Google Scholar]
  86. Ku S, Soragni E, Campau E, Thomas EA, Altun G. 86.  et al. 2010. Friedreich's ataxia induced pluripotent stem cells model intergenerational GAA·TTC triplet repeat instability. Cell Stem Cell 7:631–37 [Google Scholar]
  87. Halabi A, Ditch S, Wang J, Grabczyk E. 87.  2012. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells. J. Biol. Chem. 287:29958–67 [Google Scholar]
  88. Burnett R, Melander C, Puckett JW, Son LS, Wells RD. 88.  et al. 2006. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA·TTC repeats in Friedreich's ataxia. PNAS 103:11497–502 [Google Scholar]
  89. Du J, Campau E, Soragni E, Ku S, Puckett JW. 89.  et al. 2012. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J. Biol. Chem. 287:29861–72 [Google Scholar]
  90. Kornberg A, Bertsch LL, Jackson JF, Khorana HG. 90.  1964. Enzymatic synthesis of deoxyribonucleic acid. XVI. Oligonucleotides as templates and the mechanism of their replication. PNAS 51:315–23 [Google Scholar]
  91. Wells RD, Jacob TM, Narang SA, Khorana HG. 91.  1967. Studies on polynucleotides. LXIX. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: DNA-like polymers containing repeating trinucleotide sequences. J. Mol. Biol. 27:237–63 [Google Scholar]
  92. Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A. 92.  et al. 1966. Frameshift mutations and the genetic code. Cold Spring Harb. Symp. Quant. Biol. 31:77–84 [Google Scholar]
  93. Sinden RR, Wells RD. 93.  1992. DNA structure, mutations, and human genetic disease. Curr. Opin. Biotechnol. 3:612–22 [Google Scholar]
  94. Bacolla A, Gellibolian R, Shimizu M, Amirhaeri S, Kang S. 94.  et al. 1997. Flexible DNA: genetically unstable CTG·CAG and CGG·CCG from human hereditary neuromuscular disease genes. J. Biol. Chem. 272:16783–92 [Google Scholar]
  95. Trinh TQ, Sinden RR. 95.  1991. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352:544–47 [Google Scholar]
  96. Kang S, Jaworski A, Ohshima K, Wells RD. 96.  1995. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat. Genet. 10:213–18 [Google Scholar]
  97. Bowater RP, Rosche WA, Jaworski A, Sinden RR, Wells RD. 97.  1996. Relationship between Escherichia coli growth and deletions of CTG·CAG triplet repeats in plasmids. J. Mol. Biol. 264:82–96 [Google Scholar]
  98. Ito W, Goto J, Kanazawa I, Kurosawa Y. 98.  1997. Instability of regions containing expanded CAG repeats during replication in Escherichia coli probed by labeled oligonucleotides. Biochem. Biophys. Res. Commun. 240:471–77 [Google Scholar]
  99. Freudenreich CH, Kantrow SM, Zakian VA. 99.  1998. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853–56 [Google Scholar]
  100. Hirst MC, White PJ. 100.  1998. Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure. Nucleic Acids Res. 26:2353–58 [Google Scholar]
  101. Ohshima K, Montermini L, Wells RD, Pandolfo M. 101.  1998. Inhibitory effects of expanded GAA·TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273:14588–95 [Google Scholar]
  102. Miret JJ, Pessoa-Brandão L, Lahue RS. 102.  1998. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. PNAS 95:12438–43 [Google Scholar]
  103. Shimizu M, Gellibolian R, Oostra BA, Wells RD. 103.  1996. Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. J. Mol. Biol. 258:614–26 [Google Scholar]
  104. Freudenreich CH, Stavenhagen JB, Zakian VA. 104.  1997. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17:2090–98 [Google Scholar]
  105. Cleary JD, Nichol K, Wang YH, Pearson CE. 105.  2002. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat. Genet. 31:37–46 [Google Scholar]
  106. Maurer DJ, O'Callaghan BL, Livingston DM. 106.  1996. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:6617–22 [Google Scholar]
  107. Pearson CE, Sinden RR. 107.  1996. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry 35:5041–53 [Google Scholar]
  108. Pearson CE, Wang YH, Griffith JD, Sinden RR. 108.  1998. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n·(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26:816–23 [Google Scholar]
  109. Petruska J, Hartenstine MJ, Goodman MF. 109.  1998. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J. Biol. Chem. 273:5204–10 [Google Scholar]
  110. Ohshima K, Wells RD. 110.  1997. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes. J. Biol. Chem. 272:16798–806 [Google Scholar]
  111. Wu MJ, Chow LW, Hsieh M. 111.  1998. Amplification of GAA/TTC triplet repeat in vitro: preferential expansion of (TTC)n strand. Biochim. Biophys. Acta 1407:155–62 [Google Scholar]
  112. Chen X, Mariappan SV, Moyzis RK, Bradbury EM, Gupta G. 112.  1998. Hairpin induced slippage and hyper-methylation of the fragile X DNA triplets. J. Biomol. Struct. Dyn. 15:745–56 [Google Scholar]
  113. Axford MM, Wang YH, Nakamori M, Zannis-Hadjopoulos M, Thornton CA, Pearson CE. 113.  2013. Detection of slipped-DNAs at the trinucleotide repeats of the myotonic dystrophy type I disease locus in patient tissues. PLOS Genet. 9:e1003866 [Google Scholar]
  114. Pearson CE, Sinden RR. 114.  1998. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 8:321–30 [Google Scholar]
  115. Mitas M. 115.  1997. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 25:2245–54 [Google Scholar]
  116. Kovtun IV, Goellner G, McMurray CT. 116.  2001. Structural features of trinucleotide repeats associated with DNA expansion. Biochem. Cell Biol. 79:325–36 [Google Scholar]
  117. Usdin K, Grabczyk E. 117.  2000. DNA repeat expansions and human disease. Cell. Mol. Life Sci. 57:914–31 [Google Scholar]
  118. Suen IS, Rhodes JN, Christy M, McEwen B, Gray DM, Mitas M. 118.  1999. Structural properties of Friedreich's ataxia d(GAA) repeats. Biochim. Biophys. Acta 1444:14–24 [Google Scholar]
  119. Heidenfelder BL, Makhov AM, Topal MD. 119.  2003. Hairpin formation in Friedreich's ataxia triplet repeat expansion. J. Biol. Chem. 278:2425–31 [Google Scholar]
  120. Volker J, Makube N, Plum GE, Klump HH, Breslauer KJ. 120.  2002. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases. PNAS 99:14700–5 [Google Scholar]
  121. Levinson G, Gutman GA. 121.  1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4:203–21 [Google Scholar]
  122. Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT. 122.  2007. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447:447–52 [Google Scholar]
  123. Pearson CE, Ewel A, Acharya S, Fishel RA, Sinden RR. 123.  1997. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6:1117–23 [Google Scholar]
  124. Drummond JT, Li GM, Longley MJ, Modrich P. 124.  1995. Isolation of an hMSH2–p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268:1909–12 [Google Scholar]
  125. Palombo F, Gallinari P, Iaccarino I, Lettieri T, Hughes M. 125.  et al. 1995. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268:1912–14 [Google Scholar]
  126. Habraken Y, Sung P, Prakash L, Prakash S. 126.  1996. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6:1185–87 [Google Scholar]
  127. Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, Jiricny J. 127.  1996. hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6:1181–84 [Google Scholar]
  128. Genschel J, Littman SJ, Drummond JT, Modrich P. 128.  1998. Isolation of MutSβ from human cells and comparison of the mismatch repair specificities of MutSβ and MutSα. J. Biol. Chem. 273:19895–901 [Google Scholar]
  129. Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S. 129.  et al. 1996. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. PNAS 93:13629–34 [Google Scholar]
  130. Panigrahi GB, Lau R, Montgomery SE, Leonard MR, Pearson CE. 130.  2005. Slipped (CTG) ·(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nat. Struct. Mol. Biol. 12:654–62 [Google Scholar]
  131. Panigrahi GB, Slean MM, Simard JP, Gileadi O, Pearson CE. 131.  2010. Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSβ, but clustered slip-outs are poorly repaired. PNAS 107:12593–98 [Google Scholar]
  132. Panigrahi GB, Slean MM, Simard JP, Pearson CE. 132.  2012. Human mismatch repair protein hMutLα is required to repair short slipped DNAs of trinucleotide repeats. J. Biol. Chem. 287:41844–50 [Google Scholar]
  133. Tian L, Hou C, Tian K, Holcomb NC, Gu L, Li GM. 133.  2009. Mismatch recognition protein MutSβ does not hijack (CAG)n hairpin repair in vitro. J. Biol. Chem. 284:20452–56 [Google Scholar]
  134. Hou C, Chan NL, Gu L, Li GM. 134.  2009. Incision-dependent and error-free repair of (CAG)n/(CTG)n hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16:869–75 [Google Scholar]
  135. Zhang T, Huang J, Gu L, Li GM. 135.  2012. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats. DNA Repair 11:201–9 [Google Scholar]
  136. Weiss U, Wilson JH. 136.  1987. Repair of single-stranded loops in heteroduplex DNA transfected into mammalian cells. PNAS 84:1619–23 [Google Scholar]
  137. Weiss U, Wilson JH. 137.  1989. Effects of nicks on repair of single-stranded loops in heteroduplex DNA in mammalian cells. Somat. Cell Mol. Genet. 15:13–18 [Google Scholar]
  138. Littman SJ, Fang WH, Modrich P. 138.  1999. Repair of large insertion/deletion heterologies in human nuclear extracts is directed by a 5′ single-strand break and is independent of the mismatch repair system. J. Biol. Chem 274:7474–81 [Google Scholar]
  139. Corrette-Bennett SE, Parker BO, Mohlman NL, Lahue RS. 139.  1999. Correction of large mispaired DNA loops by extracts of Saccharomyces cerevisiae. J. Biol. Chem. 274:17605–11 [Google Scholar]
  140. Moore H, Greenwell PW, Liu CP, Arnheim N, Petes TD. 140.  1999. Triplet repeats form secondary structures that escape DNA repair in yeast. PNAS 96:1504–9 [Google Scholar]
  141. Nag DK, White MA, Petes TD. 141.  1989. Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340:318–20 [Google Scholar]
  142. Tian L, Gu L, Li GM. 142.  2009. Distinct nucleotide binding/hydrolysis properties and molar ratio of MutSα and MutSβ determine their differential mismatch binding activities.. J. Biol. Chem. 284:11557–62 [Google Scholar]
  143. Lang WH, Coats JE, Majka J, Hura GL, Lin Y. 143.  et al. 2011. Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops. PNAS 108:e837–44 [Google Scholar]
  144. Wilson T, Guerrette S, Fishel R. 144.  1999. Dissociation of mismatch recognition and ATPase activity by hMSH2–hMSH3. J. Biol. Chem. 274:21659–64 [Google Scholar]
  145. Iyer RR, Pluciennik A, Genschel J, Tsai MS, Beese LS, Modrich P. 145.  2010. MutLα and proliferating cell nuclear antigen share binding sites on MutSβ. J. Biol. Chem. 285:11730–39 [Google Scholar]
  146. Pluciennik A, Modrich P. 146.  2007. Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. PNAS 104:12709–13 [Google Scholar]
  147. Smith GK, Jie J, Fox GE, Gao X. 147.  1995. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes. Nucleic Acids Res. 23:4303–11 [Google Scholar]
  148. Kouchakdjian M, Li BF, Swann PF, Patel DJ. 148.  1988. Pyrimidine·pyrimidine base-pair mismatches in DNA. A nuclear magnetic resonance study of T·T pairing at neutral pH and C·C pairing at acidic pH in dodecanucleotide duplexes. J. Mol. Biol. 202:139–55 [Google Scholar]
  149. Iyer RR, Wells RD. 149.  1999. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication. J. Biol. Chem. 274:3865–77 [Google Scholar]
  150. Hebert ML, Wells RD. 150.  2005. Roles of double-strand breaks, nicks, and gaps in stimulating deletions of CTG·CAG repeats by intramolecular DNA repair. J. Mol. Biol. 353:961–79 [Google Scholar]
  151. Jakupciak JP, Wells RD. 151.  1999. Genetic instabilities in (CTG·CAG) repeats occur by recombination. J. Biol. Chem. 274:23468–79 [Google Scholar]
  152. Jakupciak JP, Wells RD. 152.  2000. Gene conversion (recombination) mediates expansions of CTG·CAG repeats. J. Biol. Chem. 275:40003–13 [Google Scholar]
  153. Pluciennik A, Iyer RR, Napierala M, Larson JE, Filutowicz M, Wells RD. 153.  2002. Long CTG·CAG repeats from myotonic dystrophy are preferred sites for intermolecular recombination. J. Biol. Chem. 277:34074–86 [Google Scholar]
  154. Napierala M, Parniewski P, Pluciennik A, Wells RD. 154.  2002. Long CTG·CAG repeat sequences markedly stimulate intramolecular recombination. J. Biol. Chem. 277:34087–100 [Google Scholar]
  155. Meservy JL, Sargent RG, Iyer RR, Chan F, McKenzie GJ. 155.  et al. 2003. Long CTG tracts from the myotonic dystrophy gene induce deletions and rearrangements during recombination at the APRT locus in CHO cells. Mol. Cell. Biol. 23:3152–62 [Google Scholar]
  156. Kim HM, Narayanan V, Mieczkowski PA, Petes TD, Krasilnikova MM. 156.  et al. 2008. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J. 27:2896–906 [Google Scholar]
  157. Harrington JM, Kolodner RD. 157.  2007. Saccharomyces cerevisiae Msh2–Msh3 acts in repair of base–base mispairs. Mol. Cell. Biol. 27:6546–54 [Google Scholar]
  158. Ranjha L, Anand R, Cejka P. 158.  2014. The Saccharomyces cerevisiae Mlh1–Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions. J. Biol. Chem. 289:5674–86 [Google Scholar]
  159. Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E. 159.  2014. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease. J. Biol. Chem. 289:5664–73 [Google Scholar]
  160. Maze I, Noh KM, Soshnev AA, Allis CD. 160.  2014. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15:259–71 [Google Scholar]
  161. Wang YH, Amirhaeri S, Kang S, Wells RD, Griffith JD. 161.  1994. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265:669–71 [Google Scholar]
  162. Otten AD, Tapscott SJ. 162.  1995. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. PNAS 92:5465–69 [Google Scholar]
  163. Godde JS, Kass SU, Hirst MC, Wolffe AP. 163.  1996. Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J. Biol. Chem. 271:24325–28 [Google Scholar]
  164. Wang YH, Gellibolian R, Shimizu M, Wells RD, Griffith J. 164.  1996. Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. J. Mol. Biol. 263:511–16 [Google Scholar]
  165. Ruan H, Wang YH. 165.  2008. Friedreich's ataxia GAA·TTC duplex and GAA·GAA·TTC triplex structures exclude nucleosome assembly. J. Mol. Biol. 383:292–300 [Google Scholar]
  166. Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R. 166.  2003. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422:909–13 [Google Scholar]
  167. Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R. 167.  2013. Epigenetic modifications in trinucleotide repeat diseases. Trends Mol. Med. 19:655–63 [Google Scholar]
  168. Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. 168.  2006. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat. Chem. Biol. 2:551–58 [Google Scholar]
  169. Rai M, Soragni E, Jenssen K, Burnett R, Herman D. 169.  et al. 2008. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLOS ONE 3:e1958 [Google Scholar]
  170. Javaid S, Manohar M, Punja N, Mooney A, Ottesen JJ. 170.  et al. 2009. Nucleosome remodeling by hMSH2–hMSH6. Mol. Cell 36:1086–94 [Google Scholar]
  171. Li F, Tian L, Gu L, Li GM. 171.  2009. Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J. Biol. Chem. 284:33056–61 [Google Scholar]
  172. Kadyrova LY, Rodriges Blanko E, Kadyrov FA. 172.  2013. Human CAF-1-dependent nucleosome assembly in a defined system. Cell Cycle 12:3286–97 [Google Scholar]
  173. Schöpf B, Bregenhorn S, Quivy JP, Kadyrov FA, Almouzni G, Jiricny J. 173.  2012. Interplay between mismatch repair and chromatin assembly. PNAS 109:1895–900 [Google Scholar]
  174. Li F, Mao G, Tong D, Huang J, Gu L. 174.  et al. 2013. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153:590–600 [Google Scholar]
  175. Laguri C, Duband-Goulet I, Friedrich N, Axt M, Belin P. 175.  et al. 2008. Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47:6199–207 [Google Scholar]
  176. Debacker K, Frizzell A, Gleeson O, Kirkham-McCarthy L, Mertz T, Lahue RS. 176.  2012. Histone deacetylase complexes promote trinucleotide repeat expansions. PLOS Biol. 10:e1001257 [Google Scholar]
  177. Shibahara K, Stillman B. 177.  1999. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–85 [Google Scholar]
  178. Zhang Z, Shibahara K, Stillman B. 178.  2000. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408:221–25 [Google Scholar]
  179. Plotz G, Welsch C, Giron-Monzon L, Friedhoff P, Albrecht M. 179.  et al. 2006. Mutations in the MutSα interaction interface of MLH1 can abolish DNA mismatch repair. Nucleic Acids Res. 34:6574–86 [Google Scholar]
  180. Kobayashi M, Aida M, Nagaoka H, Begum NA, Kitawaki Y. 180.  et al. 2009. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. PNAS 106:22375–80 [Google Scholar]
  181. Kobayashi M, Sabouri Z, Sabouri S, Kitawaki Y, Pommier Y. 181.  et al. 2011. Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. PNAS 108:19305–10 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034010
Loading
/content/journals/10.1146/annurev-biochem-060614-034010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error