In the last 5 years, most of the molecules that control mitochondrial Ca2+ homeostasis have been finally identified. Mitochondrial Ca2+ uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca2+ accumulation inside mitochondrial matrix upon increases in cytosolic Ca2+. Conversely, Ca2+ release is under the control of the Na+/Ca2+ exchanger, encoded by the gene, and of a H+/Ca2+ antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca2+ across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca2+ homeostasis and the methods used to investigate the dynamics of Ca2+ concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca2+ handling and their pathophysiological role.

Keyword(s): Ca2+ signalingMCU complexNCLX

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL. 1.  et al. 2010. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. PNAS 107:436–41 [Google Scholar]
  2. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE. 2.  et al. 2010. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–96 [Google Scholar]
  3. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. 3.  2011. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–40 [Google Scholar]
  4. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA. 4.  et al. 2011. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–45 [Google Scholar]
  5. Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G. 5.  et al. 2013. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32:2362–76 [Google Scholar]
  6. Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L. 6.  et al. 2013. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLOS ONE 8e55785 [Google Scholar]
  7. Mallilankaraman K, Cardenas C, Doonan PJ, Chandramoorthy HC, Irrinki KM. 7.  et al. 2012. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 14:1336–43 [Google Scholar]
  8. Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ. 8.  et al. 2013. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–82 [Google Scholar]
  9. Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S. 9.  et al. 2014. SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol. Biol. Cell 25:936–47 [Google Scholar]
  10. Deluca HF, Engstrom GW. 10.  1961. Calcium uptake by rat kidney mitochondria. PNAS 47:1744–50 [Google Scholar]
  11. Vasington F, Murphy JV. 11.  1962. Ca2+ uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J. Biol. Chem. 237:2670–77 [Google Scholar]
  12. MacLennan DH, Wong TS. 12.  1971. Isolation of a calcium sequestering protein from sarcoplasmic reticulum. PNAS 68:1231–35 [Google Scholar]
  13. Brand MD, Chen CH, Lehninger AL. 13.  1976. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J. Biol. Chem. 251:968–74 [Google Scholar]
  14. Pozzan T, Bragadin M, Azzone GF. 14.  1977. Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry 16:5618–25 [Google Scholar]
  15. Rossi CS, Vasington FD, Carafoli E. 15.  1973. The effect of ruthenium red on the uptake and release of Ca2+ by mitochondria. Biochem. Biophys. Res. Commun. 50:846–52 [Google Scholar]
  16. Pozzan T, Azzone GF. 16.  1976. The coupling of electrical ion fluxes in rat liver mitochondria. FEBS Lett. 72:62–66 [Google Scholar]
  17. Crompton M, Kunzi M, Carafoli E. 17.  1977. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur. J. Biochem. 79:549–58 [Google Scholar]
  18. Nicholls DG. 18.  1978. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem. J. 176:463–74 [Google Scholar]
  19. Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P. 19.  2012. The pathophysiology of LETM1. J. Gen. Physiol. 139:445–54 [Google Scholar]
  20. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE. 20.  et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–66 [Google Scholar]
  21. Rizzuto R, Brini M, Murgia M, Pozzan T. 21.  1993. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–47 [Google Scholar]
  22. Rizzuto R, Bernardi P, Pozzan T. 22.  2000. Mitochondria as all-round players of the calcium game. J. Physiol. 529:Pt 137–47 [Google Scholar]
  23. Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T. 23.  1999. Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–99 [Google Scholar]
  24. Rizzuto R, Pozzan T. 24.  2006. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86:369–408 [Google Scholar]
  25. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibáñez I, Albillos A. 25.  et al. 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2:57–61 [Google Scholar]
  26. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. 26.  1996. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J. Biol. Chem. 271:2185–92 [Google Scholar]
  27. Biden TJ, Prentki M, Irvine RF, Berridge MJ, Wollheim CB. 27.  1984. Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochem. J. 223:467–73 [Google Scholar]
  28. Bernardi P. 28.  1999. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79:1127–55 [Google Scholar]
  29. Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG. 29.  1991. Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am. J. Physiol. 261:H1123–34 [Google Scholar]
  30. Pozzan T, Rudolf R. 30.  2009. Measurements of mitochondrial calcium in vivo. Biochim. Biophys. Acta 1787:1317–23 [Google Scholar]
  31. Rudolf R, Mongillo M, Rizzuto R, Pozzan T. 31.  2003. Looking forward to seeing calcium. Nat. Rev. Mol. Cell Biol. 4:579–86 [Google Scholar]
  32. Zacharias DA, Baird GS, Tsien RY. 32.  2000. Recent advances in technology for measuring and manipulating cell signals. Curr. Opin. Neurobiol. 10:416–21 [Google Scholar]
  33. Granatiero V, Patron M, Tosatto A, Merli G, Rizzuto R. 33.  2014. The use of aequorin and its variants for Ca2+ measurements. Cold Spring Harb. Protoc. 2014:9–16 [Google Scholar]
  34. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. 34.  2008. Chemical calcium indicators. Methods 46:143–51 [Google Scholar]
  35. Kotlikoff MI. 35.  2007. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol. 578:55–67 [Google Scholar]
  36. Simpson AW. 36.  2006. Fluorescent measurement of [Ca2+]c: basic practical considerations. Methods Mol. Biol. 312:3–36 [Google Scholar]
  37. Demaurex N. 37.  2005. Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins. Cell Calcium 38:213–22 [Google Scholar]
  38. Gerasimenko O, Tepikin A. 38.  2005. How to measure Ca2+ in cellular organelles?. Cell Calcium 38:201–11 [Google Scholar]
  39. Petersen OH, Michalak M, Verkhratsky A. 39.  2005. Calcium signalling: past, present and future. Cell Calcium 38:161–69 [Google Scholar]
  40. Rizzuto R, Simpson AW, Brini M, Pozzan T. 40.  1992. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–27 [Google Scholar]
  41. Filippin L, Abad MC, Gastaldello S, Magalhães PJ, Sandonà D, Pozzan T. 41.  2005. Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 37:129–36 [Google Scholar]
  42. Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M. 42.  et al. 1996. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. PNAS 93:5489–94 [Google Scholar]
  43. Nunez L, Senovilla L, Sanz-Blasco S, Chamero P, Alonso MT. 43.  et al. 2007. Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons. J. Physiol. 580:385–95 [Google Scholar]
  44. Manjarres IM, Chamero P, Domingo B, Molina F, Llopis J. 44.  et al. 2008. Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflügers Arch. 455:961–70 [Google Scholar]
  45. Brandenburger Y, Arrighi J-F, Rossier MF, Maturana A, Vallotton MB, Capponi AM. 45.  1999. Measurement of perimitochondrial Ca2+ concentration in bovine adrenal glomerulosa cells with aequorin targeted to the outer mitochondrial membrane. Biochem. J. 341:745–53 [Google Scholar]
  46. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A. 46.  et al. 2010. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol. Cell 38:280–90 [Google Scholar]
  47. Csordas G, Varnai P, Golenar T, Roy S, Purkins G. 47.  et al. 2010. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39:121–32 [Google Scholar]
  48. Pendin D, Greotti E, Pozzan T. 48.  2014. The elusive importance of being a mitochondrial Ca2+ uniporter. Cell Calcium 55:139–45 [Google Scholar]
  49. Marchi S, Pinton P. 49.  2014. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol. 592:829–39 [Google Scholar]
  50. Kamer KJ, Sancak Y, Mootha VK. 50.  2014. The uniporter: from newly identified parts to function. Biochem. Biophys. Res. Commun. 449:370–72 [Google Scholar]
  51. Foskett JK, Philipson B. 51.  2015. The mitochondrial Ca2+ uniporter complex. J. Mol. Cell. Cardiol. 78:3–8 [Google Scholar]
  52. Ahuja M, Muallem S. 52.  2014. The gatekeepers of mitochondrial calcium influx: MICU1 and MICU2. EMBO Rep. 15:205–6 [Google Scholar]
  53. Bick AG, Calvo SE, Mootha VK. 53.  2012. Evolutionary diversity of the mitochondrial calcium uniporter. Science 336:886 [Google Scholar]
  54. Cheng Y, Perocchi F. 54.  2015. ProtPhylo: Identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling. Nucleic Acids Res. 43:W160–8 [Google Scholar]
  55. Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK. 55.  et al. 2012. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30:1143–48 [Google Scholar]
  56. Chaudhuri D, Sancak Y, Mootha VK, Clapham DE. 56.  2013. MCU encodes the pore conducting mitochondrial calcium currents. eLife 2:e00704 [Google Scholar]
  57. Drago I, De Stefani D, Rizzuto R, Pozzan T. 57.  2012. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. PNAS 109:12986–91 [Google Scholar]
  58. Tarasov AI, Semplici F, Ravier MA, Bellomo EA, Pullen TJ. 58.  et al. 2012. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLOS ONE 7:e39722 [Google Scholar]
  59. Alam MR, Groschner LN, Parichatikanond W, Kuo L, Bondarenko AI. 59.  et al. 2012. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J. Biol. Chem. 287:34445–54 [Google Scholar]
  60. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N. 60.  et al. 2013. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat. Commun. 4:2034 [Google Scholar]
  61. Curry MC, Peters AA, Kenny PA, Roberts-Thomson SJ, Monteith GR. 61.  2013. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun. 434:695–700 [Google Scholar]
  62. Hall DD, Wu Y, Domann FE, Spitz DR, Anderson ME. 62.  2014. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival. PLOS ONE 9:e96866 [Google Scholar]
  63. Pan X, Liu J, Nguyen T, Liu C, Sun J. 63.  et al. 2013. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15:1464–72 [Google Scholar]
  64. Kirichok Y, Krapivinsky G, Clapham DE. 64.  2004. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–64 [Google Scholar]
  65. Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S. 65.  et al. 2009. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119:2435–43 [Google Scholar]
  66. Fieni F, Lee SB, Jan YN, Kirichok Y. 66.  2012. Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat. Commun. 3:1317 [Google Scholar]
  67. Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J. 67.  et al. 2008. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am. J. Hum. Genet. 83:193–99 [Google Scholar]
  68. Jeanguenin L, Alcon C, Duby G, Boeglin M, Cherel I. 68.  et al. 2011. AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. Plant J. 67:570–82 [Google Scholar]
  69. Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Kruger M, Mann M. 69.  2011. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J. Proteome Res. 10:5275–84 [Google Scholar]
  70. Patron M, Checchetto V, Raffaello A, Teardo E, Vecellio Reane D. 70.  et al. 2014. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 53:726–37 [Google Scholar]
  71. Kovacs-Bogdan E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A. 71.  et al. 2014. Reconstitution of the mitochondrial calcium uniporter in yeast. PNAS 111:8985–90 [Google Scholar]
  72. Hung V, Zou P, Rhee HW, Udeshi ND, Cracan V. 72.  et al. 2014. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55:332–41 [Google Scholar]
  73. Mallilankaraman K, Doonan P, Cardenas C, Chandramoorthy HC, Muller M. 73.  et al. 2012. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151:630–44 [Google Scholar]
  74. Csordás G, Golenár T, Seifert EL, Kamer KJ, Sancak Y. 74.  et al. 2013. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 17:6976–87 [Google Scholar]
  75. Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA. 75.  2015. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab. 21:109–16 [Google Scholar]
  76. Bassi MT, Manzoni M, Bresciani R, Pizzo MT, Della Monica A. 76.  et al. 2005. Cellular expression and alternative splicing of SLC25A23, a member of the mitochondrial Ca2+-dependent solute carrier gene family. Gene 345:173–82 [Google Scholar]
  77. Rueda CB, Llorente-Folch I, Amigo I, Contreras L, Gonzalez-Sanchez P. 77.  et al. 2014. Ca2+ regulation of mitochondrial function in neurons. Biochim. Biophys. Acta 1837:1617–24 [Google Scholar]
  78. Bragadin M, Pozzan T, Azzone GF. 78.  1979. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18:5972–78 [Google Scholar]
  79. Corry B, Allen TW, Kuyucak S, Chung SH. 79.  2001. Mechanisms of permeation and selectivity in calcium channels. Biophys. J. 80:195–214 [Google Scholar]
  80. Joiner ML, Koval OM, Li J, He BJ, Allamargot C. 80.  et al. 2012. CaMKII determines mitochondrial stress responses in heart. Nature 491:269–73 [Google Scholar]
  81. Lee Y, Min CK, Kim TG, Song HK, Lim Y. 81.  et al. 2015. Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. EMBO Rep. 16:1318–33 [Google Scholar]
  82. Wang L, Yang X, Li S, Wang Z, Liu Y. 82.  et al. 2014. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J. 33:594–604 [Google Scholar]
  83. Rizzuto R, Duchen MR, Pozzan T. 83.  2004. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci. Signal Transduct. Knowl. Environ. 2004:re1 [Google Scholar]
  84. Shanmughapriya S, Rajan S, Hoffman NE, Zhang X, Guo S. 84.  et al. 2015. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci. Signal. 8:ra23 [Google Scholar]
  85. Shaywitz AJ, Greenberg ME. 85.  1999. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68:821–61 [Google Scholar]
  86. Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G. 86.  et al. 2003. Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–27 [Google Scholar]
  87. Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S. 87.  et al. 2013. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23:58–63 [Google Scholar]
  88. Marchi S, Pinton P. 88.  2013. Mitochondrial calcium uniporter, MiRNA and cancer: live and let die. Commun. Integr. Biol. 6:e23818 [Google Scholar]
  89. Lanza G, Ferracin M, Gafa R, Veronese A, Spizzo R. 89.  et al. 2007. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 6:54 [Google Scholar]
  90. Sparagna GC, Gunter KK, Sheu SS, Gunter TE. 90.  1995. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J. Biol. Chem. 270:27510–15 [Google Scholar]
  91. Buntinas L, Gunter KK, Sparagna GC, Gunter TE. 91.  2001. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim. Biophys. Acta 1504:248–61 [Google Scholar]
  92. Bondarenko AI, Jean-Quartier C, Malli R, Graier WF. 92.  2013. Characterization of distinct single-channel properties of Ca2+ inward currents in mitochondria. Pflügers Arch. 465:997–1010 [Google Scholar]
  93. Wei AC, Liu T, Winslow RL, O'Rourke B. 93.  2012. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. J. Gen. Physiol. 139:465–78 [Google Scholar]
  94. Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS. 94.  2001. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 276:21482–88 [Google Scholar]
  95. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF. 95.  2007. Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat. Cell Biol. 9:445–52 [Google Scholar]
  96. Jiang D, Zhao L, Clapham DE. 96.  2009. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–47 [Google Scholar]
  97. Nowikovsky K, Bernardi P. 97.  2014. LETM1 in mitochondrial cation transport. Front. Physiol. 5:83 [Google Scholar]
  98. Brookes PS, Parker N, Buckingham JA, Vidal-Puig A, Halestrap AP. 98.  et al. 2008. UCPs—unlikely calcium porters. Nat. Cell Biol. 10:1235–37; author reply 1237–40 [Google Scholar]
  99. Tsai MF, Jiang D, Zhao L, Clapham D, Miller C. 99.  2014. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. J. Gen. Physiol. 143:67–73 [Google Scholar]
  100. McQuibban AG, Joza N, Megighian A, Scorzeto M, Zanini D. 100.  et al. 2010. A Drosophila mutant of LETM1, a candidate gene for seizures in Wolf-Hirschhorn syndrome. Hum. Mol. Genet. 19:987–1000 [Google Scholar]
  101. Paucek P, Jaburek M. 101.  2004. Kinetics and ion specificity of Na+/Ca2+ exchange mediated by the reconstituted beef heart mitochondrial Na+/Ca2+ antiporter. Biochim. Biophys. Acta 1659:83–91 [Google Scholar]
  102. Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C. 102.  1974. The release of calcium from heart mitochondria by sodium. J. Mol. Cell. Cardiol. 6:361–71 [Google Scholar]
  103. Sekler I. 103.  2015. Standing of giants shoulders the story of the mitochondrial Na+Ca2+ exchanger. Biochem. Biophys. Res. Commun. 460:50–52 [Google Scholar]
  104. Nita II, Hershfinkel M, Lewis EC, Sekler I. 104.  2015. A crosstalk between Na+ channels, Na+/K+ pump and mitochondrial Na+ transporters controls glucose-dependent cytosolic and mitochondrial Na+ signals. Cell Calcium 57:69–75 [Google Scholar]
  105. Nita II, Hershfinkel M, Kantor C, Rutter GA, Lewis EC, Sekler I. 105.  2014. Pancreatic β-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria. FASEB J. 28:3301–12 [Google Scholar]
  106. Takeuchi A, Kim B, Matsuoka S. 106.  2013. The mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes. Sci. Rep. 3:2766 [Google Scholar]
  107. Parnis J, Montana V, Delgado-Martinez I, Matyash V, Parpura V. 107.  et al. 2013. Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes. J. Neurosci. 33:7206–19 [Google Scholar]
  108. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. 108.  2012. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:686–90 [Google Scholar]
  109. Marinelli F, Almagor L, Hiller R, Giladi M, Khananshvili D, Faraldo-Gomez JD. 109.  2014. Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. PNAS 111:E5354–62 [Google Scholar]
  110. Arslan P, Di Virgilio F, Beltrame M, Tsien RY, Pozzan T. 110.  1985. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260:2719–27 [Google Scholar]
  111. Plesner L, Plesner IW. 111.  1991. Kinetics of oligomycin inhibition and activation of Na+/K+-ATPase. Biochim. Biophys. Acta 1076:421–26 [Google Scholar]
  112. Robinson JD. 112.  1971. Effects of oligomycin on the (Na+ + K+)-dependent adenosine triphosphatase. Mol. Pharmacol. 7:238–46 [Google Scholar]
  113. Ruiz A, Alberdi E, Matute C. 113.  2014. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis. 5:e1156 [Google Scholar]
  114. Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M. 114.  et al. 2006. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–60 [Google Scholar]
  115. McCormack JG, Halestrap AP, Denton RM. 115.  1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70:391–425 [Google Scholar]
  116. Denton RM, Randle PJ, Martin BR. 116.  1972. Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem. J. 128:161–63 [Google Scholar]
  117. Rutter GA, Denton RM. 117.  1988. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem. J. 252:181–89 [Google Scholar]
  118. Denton RM. 118.  2009. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787:1309–16 [Google Scholar]
  119. Spat A, Hunyady L. 119.  2004. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol. Rev. 84:489–539 [Google Scholar]
  120. Maechler P, Wollheim CB. 120.  1999. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature 402:685–89 [Google Scholar]
  121. Wollheim CB, Maechler P. 121.  2015. β cell glutamate receptor antagonists: Novel oral antidiabetic drugs?. Nat. Med. 21:310–11 [Google Scholar]
  122. Rasola A, Bernardi P. 122.  2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50:222–33 [Google Scholar]
  123. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F. 123.  et al. 2013. Dimers of mitochondrial ATP synthase form the permeability transition pore. PNAS 110:5887–92 [Google Scholar]
  124. Bernardi P, Di Lisa F, Fogolari F, Lippe G. 124.  2015. From ATP to PTP and back: a dual function for the mitochondrial ATP synthase. Circ. Res. 116:1850–62 [Google Scholar]
  125. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M. 125.  et al. 2013. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–83 [Google Scholar]
  126. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G. 126.  et al. 2015. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34:1475–86 [Google Scholar]
  127. Chinopoulos C, Szabadkai G. 127.  2014. What makes you can also break you, part III: Mitochondrial permeability transition pore formation by an uncoupling channel within the c-subunit ring of the F1FO ATP synthase?. Front. Oncol. 4:235 [Google Scholar]
  128. Wiederkehr A, Szanda G, Akhmedov D, Mataki C, Heizmann CW. 128.  et al. 2011. Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab. 13:601–11 [Google Scholar]
  129. Katona D, Rajki A, Di Benedetto G, Pozzan T, Spat A. 129.  2015. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion. Mol. Cell. Endocrinol. 412:196–204 [Google Scholar]
  130. Hansford RG, Zorov D. 130.  1998. Role of mitochondrial calcium transport in the control of substrate oxidation. Mol. Cell. Biochem. 184:359–69 [Google Scholar]
  131. Lasorsa FM, Pinton P, Palmieri L, Fiermonte G, Rizzuto R, Palmieri F. 131.  2003. Recombinant expression of the Ca2+-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J. Biol. Chem. 278:38686–92 [Google Scholar]
  132. del Arco A, Satrustegui J. 132.  2004. Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J. Biol. Chem. 279:24701–13 [Google Scholar]
  133. Satrustegui J, Bak LK. 133.  2015. Fluctuations in cytosolic calcium regulate the neuronal malate-aspartate NADH shuttle: implications for neuronal energy metabolism. Neurochem. Res. 40:2425–30 [Google Scholar]
  134. Orrenius S, Zhivotovsky B, Nicotera P. 134.  2003. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4:552–65 [Google Scholar]
  135. Hajnoczky G, Robbgaspers LD, Seitz MB, Thomas AP. 135.  1995. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–24 [Google Scholar]
  136. Pizzo P, Pozzan T. 136.  2007. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol. 17:511–17 [Google Scholar]
  137. Csordás G, Thomas AP, Hajnoczky G. 137.  1999. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 18:96–108 [Google Scholar]
  138. Csordás G, Hajnoczky G. 138.  2001. Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29:249–62 [Google Scholar]
  139. Bano D, Nicotera P. 139.  2007. Ca2+ signals and neuronal death in brain ischemia. Stroke 38:674–76 [Google Scholar]
  140. Werth JL, Thayer SA. 140.  1994. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci. 14:348–56 [Google Scholar]
  141. Svichar N, Kostyuk P, Verkhratsky A. 141.  1997. Mitochondria buffer Ca2+ entry but not intracellular Ca2+ release in mouse DRG neurones. Neuroreport 8:3929–32 [Google Scholar]
  142. Colegrove SL, Albrecht MA, Friel DD. 142.  2000. Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization-evoked [Ca2+]i elevations. J. Gen. Physiol. 115:371–88 [Google Scholar]
  143. Colegrove SL, Albrecht MA, Friel DD. 143.  2000. Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons. J. Gen. Physiol. 115:351–70 [Google Scholar]
  144. Montero M, Alonso MT, Albillos A, Cuchillo-Ibanez I, Olivares R. 144.  et al. 2001. Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation. Eur. J. Neurosci. 13:2247–54 [Google Scholar]
  145. Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV. 145.  et al. 1999. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18:4999–5008 [Google Scholar]
  146. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A. 146.  et al. 2001. Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J. 20:4998–5007 [Google Scholar]
  147. Huser J, Blatter LA, Sheu SS. 147.  2000. Mitochondrial calcium in heart cells: Beat-to-beat oscillations or slow integration of cytosolic transients?. J. Bioenerg. Biomembr. 32:27–33 [Google Scholar]
  148. Pacher P, Thomas AP, Hajnoczky G. 148.  2002. Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. PNAS 99:2380–85 [Google Scholar]
  149. Trollinger DR, Cascio WE, Lemasters JJ. 149.  2000. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca2+-indicating fluorophores. Biophys. J. 79:39–50 [Google Scholar]
  150. Sedova M, Dedkova EN, Blatter LA. 150.  2006. Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes. Am. J. Physiol. Cell Physiol. 291:C840–50 [Google Scholar]
  151. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B. 151.  2006. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ. Res. 99:172–82 [Google Scholar]
  152. Franzini-Armstrong C. 152.  2007. ER-mitochondria communication. How privileged?. Physiology 22:261–68 [Google Scholar]
  153. Landolfi B, Curci S, Debellis L, Pozzan T, Hofer AM. 153.  1998. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells. J. Cell Biol. 142:1235–43 [Google Scholar]
  154. Hajnoczky G, Hager R, Thomas AP. 154.  1999. Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+. J. Biol. Chem. 274:14157–62 [Google Scholar]
  155. Ishii K, Hirose K, Iino M. 155.  2006. Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep. 7:390–96 [Google Scholar]
  156. Sanchez JA, Garcia MC, Sharma VK, Young KC, Matlib MA, Sheu SS. 156.  2001. Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart. J. Physiol. 536:387–96 [Google Scholar]
  157. Duchen MR. 157.  2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Asp. Med. 25:365–451 [Google Scholar]
  158. Hoth M, Fanger CM, Lewis RS. 158.  1997. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137:633–48 [Google Scholar]
  159. Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J. 159.  et al. 2007. T cell activation requires mitochondrial translocation to the immunological synapse. PNAS 104:14418–23 [Google Scholar]
  160. Parekh AB. 160.  2003. Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J. Physiol. 547:333–48 [Google Scholar]
  161. Glitsch MD, Bakowski D, Parekh AB. 161.  2002. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J. 21:6744–54 [Google Scholar]
  162. Logan CV, Szabadkai G, Sharpe JA, Parry DA, Torelli S. 162.  et al. 2014. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet. 46:188–93 [Google Scholar]
  163. Tarasov AI, Semplici F, Li D, Rizzuto R, Ravier MA. 163.  et al. 2013. Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic β cells. Pflügers Arch. 465:543–54 [Google Scholar]
  164. Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T. 164.  2013. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17:965–75 [Google Scholar]
  165. Huang G, Vercesi AE, Docampo R. 165.  2013. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat. Commun. 4:2865 [Google Scholar]
  166. Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R. 166.  et al. 2013. Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. Nat. Commun. 4:2330 [Google Scholar]
  167. Xu S, Chisholm AD. 167.  2014. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev. Cell 31:48–60 [Google Scholar]
  168. Holmstrom KM, Pan X, Liu JC, Menazza S, Liu J. 168.  et al. 2015. Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. J. Mol. Cell. Cardiol. 85:178–82 [Google Scholar]
  169. Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P. 169.  et al. 2015. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 12:23–34 [Google Scholar]
  170. Murphy E, Pan X, Nguyen T, Liu J, Holmstrom KM, Finkel T. 170.  2014. Unresolved questions from the analysis of mice lacking MCU expression. Biochem. Biophys. Res. Commun. 449:384–85 [Google Scholar]
  171. Wu Y, Rasmussen TP, Koval OM, Joiner ML, Hall DD. 171.  et al. 2015. The mitochondrial uniporter controls fight or flight heart rate increases. Nat. Commun. 6:6081 [Google Scholar]
  172. Rasmussen TP, Wu Y, Joiner MA, Koval OM, Wilson NR. 172.  et al. 2015. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. PNAS 112:9129–34 [Google Scholar]
  173. Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ. 173.  et al. 2015. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 12:15–22 [Google Scholar]
  174. Mammucari C, Gherardi G, Zamparo I, Raffaello A, Boncompagni S. 174.  et al. 2015. The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep. 10:1269–79 [Google Scholar]
  175. Meeson AP, Radford N, Shelton JM, Mammen PPA, DiMaio JM. 175.  et al. 2001. Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circ. Res. 88:713–20 [Google Scholar]
  176. Godecke A, Flogel U, Zanger K, Ding ZP, Hirchenhain J. 176.  et al. 1999. Disruption of myoglobin in mice induces multiple compensatory mechanisms. PNAS 96:10495–500 [Google Scholar]
  177. Garry DJ, Ordway GA, Lorenz LN, Radford NB, Chin ER. 177.  et al. 1998. Mice without myoglobin. Nature 395:905–8 [Google Scholar]
  178. De Stefani D, Rizzuto R. 178.  2014. Molecular control of mitochondrial calcium uptake. Biochem. Biophys. Res. Commun. 449:4373–76 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error