About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hoppe W, Schramm HJ, Sturm M, Hunsmann M, Gaßmann J. 1.  1976. Three-dimensional electron microscopy of individual biological objects. Parts I, II, and III. Z. Naturforsch. 31:645–1390 [Google Scholar]
  2. Lucić V, Förster F, Baumeister W. 2.  2005. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–65 [Google Scholar]
  3. Orlova EV, Saibil HR. 3.  2011. Structural analysis of macromolecular assemblies by electron microscopy. Chem. Rev. 111:7710–48 [Google Scholar]
  4. Cheng Y, Walz T. 4.  2009. The advent of near-atomic resolution in single-particle electron microscopy. Annu. Rev. Biochem. 78:723–42 [Google Scholar]
  5. Grigorieff N, Harrison SC. 5.  2011. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr. Opin. Struct. Biol. 21:265–73 [Google Scholar]
  6. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn A. 6.  et al. 2000. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33:307–69 [Google Scholar]
  7. Frank J, Verschoor A, Boublik M. 7.  1981. Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214:1353–55 [Google Scholar]
  8. Harauz G, Boekema E, van Heel M. 8.  1988. Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol. 164:35–49 [Google Scholar]
  9. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 9.  2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–33 [Google Scholar]
  10. Bai X, Fernandez IS, McMullan G, Scheres SHW. 10.  2012. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2:e00461 [Google Scholar]
  11. Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache J-P. 11.  et al. 2009. Structural insight into nascent polypeptide chain–mediated translational stalling. Science 326:1412–15 [Google Scholar]
  12. Penczek PA, Kimmel M, Spahn CMT. 12.  2011. Identifying conformational states of macromolecules by eigenanalysis of resampled cryo-EM images. Structure 19:1582–90 [Google Scholar]
  13. De Rosier DJ, Klug A. 13.  1968. Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–34 [Google Scholar]
  14. Crowther RA, Amos LA, Finch JT, De Rosier DJ, Klug A. 14.  1970. Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421–25 [Google Scholar]
  15. Crowther RA, De Rosier DJ, Klug A. 15.  1970. A reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 317:319–40 [Google Scholar]
  16. Pauling L, Corey RB. 16.  1953. A proposed structure for the nucleic acids. PNAS 39:84–97 [Google Scholar]
  17. Klug A. 17.  2010. From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopy. Annu. Rev. Biochem. 79:1–35 [Google Scholar]
  18. Scheres SHW. 18.  2012. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415:406–18 [Google Scholar]
  19. Scheres SHW. 19.  2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:519–30 [Google Scholar]
  20. Chen JZ, Grigorieff N. 20.  2007. SIGNATURE: a single-particle selection system for molecular electron microscopy. J. Struct. Biol. 157:168–73 [Google Scholar]
  21. Glaeser RM. 21.  2004. Historical background: Why is it important to improve automated particle selection methods?. J. Struct. Biol. 145:15–18 [Google Scholar]
  22. Langlois R, Pallesen J, Frank J. 22.  2011. Reference-free particle selection enhanced with semi-supervised machine learning for cryo–electron microscopy. J. Struct. Biol. 175:353–61 [Google Scholar]
  23. Sorzano CO, Recarte E, Alcorlo M, Bilbao-Castro JR, San-Martín C. 23.  et al. 2009. Automatic particle selection from electron micrographs using machine learning techniques. J. Struct. Biol. 167:252–60 [Google Scholar]
  24. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B. 24.  2009. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166:205–13 [Google Scholar]
  25. Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C. 25.  et al. 2004. Automatic particle selection: results of a comparative study. J. Struct. Biol. 145:3–14 [Google Scholar]
  26. Brenner S, Horne RW. 26.  1959. A negative staining method for high-resolution electron microscopy of viruses. Biochem. Biophys. Acta 34:103–10 [Google Scholar]
  27. Brignole EJ, Smith S, Asturias FJ. 27.  2009. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat. Struct. Mol. Biol. 16:190–97 [Google Scholar]
  28. Radermacher M, Wagenknecht T, Verschoor A, Frank J. 28.  1987. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146:113–36 [Google Scholar]
  29. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J. 29.  et al. 1988. Cryo–electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228 [Google Scholar]
  30. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH. 30.  2010. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–82 [Google Scholar]
  31. Liao M, Cao E, Julius D, Cheng Y. 31.  2013. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–12 [Google Scholar]
  32. Wolf M, Garcea RL, Grigorieff N, Harrison SC. 32.  2010. Subunit interactions in bovine papillomavirus. PNAS 107:6298–303 [Google Scholar]
  33. Taylor KA, Glaeser RM. 33.  2008. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J. Struct. Biol. 163:214–23 [Google Scholar]
  34. Kastner B, Fischer N, Golas MM, Sander B, Dube P. 34.  et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5:53–55 [Google Scholar]
  35. Kelly DF, Dukovski D, Walz T. 35.  2008. Monolayer purification: a rapid method for isolating protein complexes for single-particle electron microscopy. PNAS 105:4703–8 [Google Scholar]
  36. Uzgiris EE, Kornberg RD. 36.  1983. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen–antibody–complement complexes. Nature 301:125–29 [Google Scholar]
  37. Taylor DW, Kelly DF, Cheng A, Taylor KA. 37.  2007. On the freezing and identification of lipid monolayer 2-D arrays for cryoelectron microscopy. J. Struct. Biol. 160:305–12 [Google Scholar]
  38. Baker LA, Rubinstein JL. 38.  2010. Radiation damage in electron cryomicroscopy. Methods Enzymol. 481:371–88 [Google Scholar]
  39. Baker ML, Zhang J, Ludtke SJ, Chiu W. 39.  2010. Cryo-EM of macromolecular assemblies at near-atomic resolution. Nat. Protoc. 5:1697–708 [Google Scholar]
  40. Glaeser RM, Typke D, Tiemeijer PC, Pulokas J, Cheng A. 40.  2011. Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J. Struct. Biol. 174:1–10 [Google Scholar]
  41. Hayward SB, Glaeser RM. 41.  1979. Radiation damage of purple membrane at low temperature. Ultramicroscopy 4:201–10 [Google Scholar]
  42. Unwin P, Henderson R. 42.  1975. Molecular-structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94:425–40 [Google Scholar]
  43. Zhang X, Zhou ZH. 43.  2011. Limiting factors in atomic resolution cryo electron microscopy: no simple tricks. J. Struct. Biol. 175:253–63 [Google Scholar]
  44. Frank J, Penczek PA. 44.  1995. On the correction of the contrast transfer function in biological electron microscopy. Optik 98:125–29 [Google Scholar]
  45. Penczek PA. 45.  2010. Image restoration in cryo–electron microscopy. Methods Enzymol. 482:35–72 [Google Scholar]
  46. Mindell JA, Grigorieff N. 46.  2003. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142:334–47 [Google Scholar]
  47. Penczek PA, Radermacher M, Frank J. 47.  1992. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40:33–53 [Google Scholar]
  48. Yang Z, Fang J, Chittuluru J, Asturias FJ, Penczek PA. 48.  2012. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20:237–47 [Google Scholar]
  49. Sigworth FJ. 49.  1998. A maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122:328–39 [Google Scholar]
  50. Scheres SHW, Valle M, Nuñez R, Sorzano CO, Marabini R. 50.  et al. 2005. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348:139–49 [Google Scholar]
  51. van Heel M. 51.  1989. Classification of very large electron microscopial image data sets. Optik 82:114–26 [Google Scholar]
  52. van Heel M, Frank J. 52.  1981. Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6:187–94 [Google Scholar]
  53. van Heel M. 53.  1987. Angular reconstitution—a posteriori assignment of projection directions for 3-D reconstruction. Ultramicroscopy 21:111–23 [Google Scholar]
  54. Elmlund D, Davis R, Elmlund H. 54.  2010. Ab initio structure determination from electron microscopic images of single molecules coexisting in different functional states. Structure 18:777–86 [Google Scholar]
  55. Elmlund D, Elmlund H. 55.  2012. SIMPLE: software for ab initio reconstruction of heterogeneous single particles. J. Struct. Biol. 180:420–27 [Google Scholar]
  56. Jaitly N, Brubaker MA, Rubinstein JL, Lilien RH. 56.  2010. A Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy. Bioinformatics 26:2406–15 [Google Scholar]
  57. Vargas J, Álvarez-Cabrera A-L, Marabini R, Carazo JM, Sorzano COS. 57.  2014. Efficient initial volume determination from electron microscopy images of single particles. Bioinformatics 30:2891–98 [Google Scholar]
  58. Penczek PA, Grassucci RA, Frank J. 58.  1994. The ribosome at improved resolution—new techniques for merging and orientation refinement in 3D cryoelectron microscopy of biological particles. Ultramicroscopy 53:251–70 [Google Scholar]
  59. Grigorieff N. 59.  2007. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157:117–25 [Google Scholar]
  60. Rosenthal PB, Henderson R. 60.  2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–45 [Google Scholar]
  61. Scheres SHW, Gao H, Valle M, Herman GT, Eggermont PPB. 61.  et al. 2007. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4:27–29 [Google Scholar]
  62. Zhang W, Kimmel M, Spahn CM, Penczek PA. 62.  2008. Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770–76 [Google Scholar]
  63. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ. 63.  et al. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–89 [Google Scholar]
  64. Nitsch M, Walz J, Typke D, Klumpp M, Essen LO, Baumeister W. 64.  1998. Group II chaperonin in an open conformation examined by electron tomography. Nat. Struct. Biol. 5:855–57 [Google Scholar]
  65. Leschziner AE, Nogales E. 65.  2006. The orthogonal tilt reconstruction method: an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J. Struct. Biol. 153:284–99 [Google Scholar]
  66. Sander B, Golas MM, Lührmann R, Stark H. 66.  2010. An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. Structure 18:667–76 [Google Scholar]
  67. Davis JA, Takagi Y, Kornberg RD, Asturias FA. 67.  2002. Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol. Cell 10:409–15 [Google Scholar]
  68. Brand M, Leurent C, Mallouh V, Tora L, Schultz P. 68.  1999. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286:2151–53 [Google Scholar]
  69. Henderson R, Chen S, Chen JZ, Grigorieff N, Passmore LA. 69.  et al. 2011. Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy. J. Mol. Biol. 413:1028–46 [Google Scholar]
  70. Bracewell RN. 70.  1956. Strip integration in radio astronomy. Aust. J. Phys. 9:198–217 [Google Scholar]
  71. Singer A, Coifman RR, Sigworth FJ, Chester DW, Shkolnisky Y. 71.  2010. Detecting consistent common lines in cryo-EM by voting. J. Struct. Biol. 169:312–22 [Google Scholar]
  72. Elmlund H, Lundqvist J, Al-Karadaghi S, Hansson M, Hebert H, Lindahl M. 72.  2008. A new cryo-EM single-particle ab initio reconstruction method visualizes secondary structure elements in an ATP-fuelled AAA+ motor. J. Mol. Biol. 375:934–47 [Google Scholar]
  73. Penczek PA, Zhu J, Frank J. 73.  1996. A common-lines based method for determining orientations for N > 3 particle projections simultaneously. Ultramicroscopy 63:205–18 [Google Scholar]
  74. Elmlund H, Elmlund D, Bengio S. 74.  2013. PRIME: probabilistic initial 3D model generation for single-particle cryo–electron microscopy. Structure 21:1299–306 [Google Scholar]
  75. Frank J, Radermacher M, Penczek P, Zhu J, Li Y. 75.  et al. 1996. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116:190–99 [Google Scholar]
  76. Dempster AP, Laird NM, Rubin DB. 76.  1977. Maximum likelihood from incomplete data via EM algorithm. J. R. Stat. Soc. B 39:1–38 [Google Scholar]
  77. Yin ZH, Zheng Y, Doerschuk PC, Natarajan P, Johnson JE. 77.  2003. A statistical approach to computer processing of cryo–electron microscope images: virion classification and 3-D reconstruction. J. Struct. Biol. 144:24–50 [Google Scholar]
  78. Bishop CM. 78.  2006. Pattern Recognition and Machine Learning New York: Springer [Google Scholar]
  79. Yan X, Dryden KA, Tang J, Baker TS. 79.  2007. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J. Struct. Biol. 157:211–25 [Google Scholar]
  80. Liu XG, Jiang W, Jakana J, Chiu W. 80.  2007. Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a multi-path simulated annealing optimization algorithm. J. Struct. Biol. 160:11–27 [Google Scholar]
  81. Sanz-García E, Stewart AB, Belnap DM. 81.  2010. The random-model method enables ab initio 3D reconstruction of asymmetric particles and determination of particle symmetry. J. Struct. Biol. 171:216–22 [Google Scholar]
  82. Henderson R. 82.  2013. Avoiding the pitfalls of single particle cryo–electron microscopy: Einstein from noise. PNAS 110:18037–41 [Google Scholar]
  83. Hohn M, Tang G, Goodyear G, Baldwin PR, Huang Z. 83.  et al. 2007. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157:47–55 [Google Scholar]
  84. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W. 84.  et al. 2007. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157:38–46 [Google Scholar]
  85. Lyumkis D, Brilot AF, Theobald DL, Grigorieff N. 85.  2013. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 183:377–88 [Google Scholar]
  86. Elad N, Clare DK, Saibil HR, Orlova EV. 86.  2008. Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J. Struct. Biol. 162:108–20 [Google Scholar]
  87. Gao HX, Valle M, Ehrenberg M, Frank J. 87.  2004. Dynamics of EF-G interaction with the ribosome explored by classification of a heterogeneous cryo-EM dataset. J. Struct. Biol. 147:283–90 [Google Scholar]
  88. Frank J. 88.  2009. Single-particle reconstruction of biological macromolecules in electron microscopy—30 years. Q. Rev. Biophys. 42:139–58 [Google Scholar]
  89. Fu J, Gao HX, Frank J. 89.  2007. Unsupervised classification of single particles by cluster tracking in multi-dimensional space. J. Struct. Biol. 157:226–39 [Google Scholar]
  90. Shatsky M, Hall RJ, Nogales E, Malik J, Brenner SE. 90.  2010. Automated multi-model reconstruction from single-particle electron microscopy data. J. Struct. Biol. 170:98–108 [Google Scholar]
  91. Liao HY, Frank J. 91.  2010. Classification by bootstrapping in single particle methods. Proc. IEEE Int. Symp. Biomed. Imaging 2010:169–72 [Google Scholar]
  92. van Heel M, Schatz M. 92.  2005. Fourier shell correlation threshold criteria. J. Struct. Biol. 151:250–62 [Google Scholar]
  93. Stewart A, Grigorieff N. 93.  2004. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102:67–84 [Google Scholar]
  94. Penczek PA. 94.  2010. Resolution measures in molecular electron microscopy. Methods Enzymol. 482:73–100 [Google Scholar]
  95. Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM. 95.  et al. 2013. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single-particle electron cryomicroscopy. Ultramicroscopy 135:24–35 [Google Scholar]
  96. Scheres SH, Chen S. 96.  2012. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9:853–54 [Google Scholar]
  97. Brunger AT. 97.  1992. Free R-value—a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–75 [Google Scholar]
  98. Murakami K, Elmlund H, Kalisman N, Bushnell DA, Adams CM. 98.  et al. 2013. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342:6159 [Google Scholar]
  99. Russo CJ, Passmore LA. 99.  2014. Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs. J. Struct. Biol. 187:112–18 [Google Scholar]
  100. Bammes BE, Rochat RH, Jakana J, Chen DH, Chiu W. 100.  2012. Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J. Struct. Biol. 177:589–601 [Google Scholar]
  101. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC. 101.  et al. 2012. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177:630–37 [Google Scholar]
  102. Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D. 102.  et al. 2012. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–28 [Google Scholar]
  103. Glaeser RM. 103.  2008. Retrospective: radiation damage and its associated “information limitations.”. J. Struct. Biol. 163:271–76 [Google Scholar]
  104. Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N. 104.  1999. Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288:765–86 [Google Scholar]
  105. Ge P, Zhou ZH. 105.  2011. Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. PNAS 108:9637–42 [Google Scholar]
  106. Glaeser RM, Hall RJ. 106.  2011. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys. J. 100:2331–37 [Google Scholar]
  107. Russo CJ, Passmore LA. 107.  2014. Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377 [Google Scholar]
  108. Scheres SHW. 108.  2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665 [Google Scholar]
  109. Cao E, Liao M, Cheng Y, Julius D. 109.  2013. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–18 [Google Scholar]
  110. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M. 110.  1996. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116:17–24 [Google Scholar]
  111. Ludtke SJ, Baldwin PR, Chiu W. 111.  1999. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128:82–97 [Google Scholar]
  112. Penczek PA, Renka R, Schomberg H. 112.  2004. Gridding-based direct Fourier inversion of the three-dimensional X-ray transform. J. Opt. Soc. Am. A 21:499–509 [Google Scholar]
  113. Yang Z, Penczek PA. 113.  2008. Cryo-EM image alignment based on nonuniform fast Fourier transform. Ultramicroscopy 108:959–69 [Google Scholar]
  114. Sindelar CV, Grigorieff N. 114.  2011. An adaptation of the Wiener filter suitable for analyzing images of isolated single particles. J. Struct. Biol. 176:60–74 [Google Scholar]
  115. Sindelar CV, Grigorieff N. 115.  2012. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter. J. Struct. Biol. 180:26–38 [Google Scholar]
  116. Sorzano COS, Marabini R, Velázquez-Muriel J, Bilbao-Castro JR, Scheres SHW. 116.  et al. 2004. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148:194–204 [Google Scholar]
  117. Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D. 117.  et al. 2009. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166:95–102 [Google Scholar]
  118. Sorzano COS, de la Rosa Trevín JM, Otón J, Vega JJ, Cuenca J. 118.  et al. 2013. Semiautomatic, high-throughput, high-resolution protocol for three-dimensional reconstruction of single particles in electron microscopy. Methods Mol. Biol. 950:171–93 [Google Scholar]
  119. de la Rosa Trevín JM, Otón J, Marabini R, Zaldívar A, Vargas J. 119.  et al. 2013. XMIPP 3.0: an improved software suite for image processing in electron microscopy. J. Struct. Biol. 184:321–28 [Google Scholar]
  120. Lyumkis D, Vinterbo S, Potter CS, Carragher B. 120.  2013. Optimod—an automated approach for constructing and optimizing initial models for single-particle electron microscopy. J. Struct. Biol. 184:417–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error