1932

Abstract

About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034226
2015-06-02
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034226.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034226&mimeType=html&fmt=ahah

Literature Cited

  1. Hoppe W, Schramm HJ, Sturm M, Hunsmann M, Gaßmann J. 1.  1976. Three-dimensional electron microscopy of individual biological objects. Parts I, II, and III. Z. Naturforsch. 31:645–1390 [Google Scholar]
  2. Lucić V, Förster F, Baumeister W. 2.  2005. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–65 [Google Scholar]
  3. Orlova EV, Saibil HR. 3.  2011. Structural analysis of macromolecular assemblies by electron microscopy. Chem. Rev. 111:7710–48 [Google Scholar]
  4. Cheng Y, Walz T. 4.  2009. The advent of near-atomic resolution in single-particle electron microscopy. Annu. Rev. Biochem. 78:723–42 [Google Scholar]
  5. Grigorieff N, Harrison SC. 5.  2011. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr. Opin. Struct. Biol. 21:265–73 [Google Scholar]
  6. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn A. 6.  et al. 2000. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33:307–69 [Google Scholar]
  7. Frank J, Verschoor A, Boublik M. 7.  1981. Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214:1353–55 [Google Scholar]
  8. Harauz G, Boekema E, van Heel M. 8.  1988. Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol. 164:35–49 [Google Scholar]
  9. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 9.  2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–33 [Google Scholar]
  10. Bai X, Fernandez IS, McMullan G, Scheres SHW. 10.  2012. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2:e00461 [Google Scholar]
  11. Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache J-P. 11.  et al. 2009. Structural insight into nascent polypeptide chain–mediated translational stalling. Science 326:1412–15 [Google Scholar]
  12. Penczek PA, Kimmel M, Spahn CMT. 12.  2011. Identifying conformational states of macromolecules by eigenanalysis of resampled cryo-EM images. Structure 19:1582–90 [Google Scholar]
  13. De Rosier DJ, Klug A. 13.  1968. Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–34 [Google Scholar]
  14. Crowther RA, Amos LA, Finch JT, De Rosier DJ, Klug A. 14.  1970. Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421–25 [Google Scholar]
  15. Crowther RA, De Rosier DJ, Klug A. 15.  1970. A reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 317:319–40 [Google Scholar]
  16. Pauling L, Corey RB. 16.  1953. A proposed structure for the nucleic acids. PNAS 39:84–97 [Google Scholar]
  17. Klug A. 17.  2010. From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopy. Annu. Rev. Biochem. 79:1–35 [Google Scholar]
  18. Scheres SHW. 18.  2012. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415:406–18 [Google Scholar]
  19. Scheres SHW. 19.  2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:519–30 [Google Scholar]
  20. Chen JZ, Grigorieff N. 20.  2007. SIGNATURE: a single-particle selection system for molecular electron microscopy. J. Struct. Biol. 157:168–73 [Google Scholar]
  21. Glaeser RM. 21.  2004. Historical background: Why is it important to improve automated particle selection methods?. J. Struct. Biol. 145:15–18 [Google Scholar]
  22. Langlois R, Pallesen J, Frank J. 22.  2011. Reference-free particle selection enhanced with semi-supervised machine learning for cryo–electron microscopy. J. Struct. Biol. 175:353–61 [Google Scholar]
  23. Sorzano CO, Recarte E, Alcorlo M, Bilbao-Castro JR, San-Martín C. 23.  et al. 2009. Automatic particle selection from electron micrographs using machine learning techniques. J. Struct. Biol. 167:252–60 [Google Scholar]
  24. Voss NR, Yoshioka CK, Radermacher M, Potter CS, Carragher B. 24.  2009. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166:205–13 [Google Scholar]
  25. Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C. 25.  et al. 2004. Automatic particle selection: results of a comparative study. J. Struct. Biol. 145:3–14 [Google Scholar]
  26. Brenner S, Horne RW. 26.  1959. A negative staining method for high-resolution electron microscopy of viruses. Biochem. Biophys. Acta 34:103–10 [Google Scholar]
  27. Brignole EJ, Smith S, Asturias FJ. 27.  2009. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat. Struct. Mol. Biol. 16:190–97 [Google Scholar]
  28. Radermacher M, Wagenknecht T, Verschoor A, Frank J. 28.  1987. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146:113–36 [Google Scholar]
  29. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J. 29.  et al. 1988. Cryo–electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228 [Google Scholar]
  30. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH. 30.  2010. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–82 [Google Scholar]
  31. Liao M, Cao E, Julius D, Cheng Y. 31.  2013. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–12 [Google Scholar]
  32. Wolf M, Garcea RL, Grigorieff N, Harrison SC. 32.  2010. Subunit interactions in bovine papillomavirus. PNAS 107:6298–303 [Google Scholar]
  33. Taylor KA, Glaeser RM. 33.  2008. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J. Struct. Biol. 163:214–23 [Google Scholar]
  34. Kastner B, Fischer N, Golas MM, Sander B, Dube P. 34.  et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5:53–55 [Google Scholar]
  35. Kelly DF, Dukovski D, Walz T. 35.  2008. Monolayer purification: a rapid method for isolating protein complexes for single-particle electron microscopy. PNAS 105:4703–8 [Google Scholar]
  36. Uzgiris EE, Kornberg RD. 36.  1983. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen–antibody–complement complexes. Nature 301:125–29 [Google Scholar]
  37. Taylor DW, Kelly DF, Cheng A, Taylor KA. 37.  2007. On the freezing and identification of lipid monolayer 2-D arrays for cryoelectron microscopy. J. Struct. Biol. 160:305–12 [Google Scholar]
  38. Baker LA, Rubinstein JL. 38.  2010. Radiation damage in electron cryomicroscopy. Methods Enzymol. 481:371–88 [Google Scholar]
  39. Baker ML, Zhang J, Ludtke SJ, Chiu W. 39.  2010. Cryo-EM of macromolecular assemblies at near-atomic resolution. Nat. Protoc. 5:1697–708 [Google Scholar]
  40. Glaeser RM, Typke D, Tiemeijer PC, Pulokas J, Cheng A. 40.  2011. Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J. Struct. Biol. 174:1–10 [Google Scholar]
  41. Hayward SB, Glaeser RM. 41.  1979. Radiation damage of purple membrane at low temperature. Ultramicroscopy 4:201–10 [Google Scholar]
  42. Unwin P, Henderson R. 42.  1975. Molecular-structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94:425–40 [Google Scholar]
  43. Zhang X, Zhou ZH. 43.  2011. Limiting factors in atomic resolution cryo electron microscopy: no simple tricks. J. Struct. Biol. 175:253–63 [Google Scholar]
  44. Frank J, Penczek PA. 44.  1995. On the correction of the contrast transfer function in biological electron microscopy. Optik 98:125–29 [Google Scholar]
  45. Penczek PA. 45.  2010. Image restoration in cryo–electron microscopy. Methods Enzymol. 482:35–72 [Google Scholar]
  46. Mindell JA, Grigorieff N. 46.  2003. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142:334–47 [Google Scholar]
  47. Penczek PA, Radermacher M, Frank J. 47.  1992. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40:33–53 [Google Scholar]
  48. Yang Z, Fang J, Chittuluru J, Asturias FJ, Penczek PA. 48.  2012. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20:237–47 [Google Scholar]
  49. Sigworth FJ. 49.  1998. A maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122:328–39 [Google Scholar]
  50. Scheres SHW, Valle M, Nuñez R, Sorzano CO, Marabini R. 50.  et al. 2005. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348:139–49 [Google Scholar]
  51. van Heel M. 51.  1989. Classification of very large electron microscopial image data sets. Optik 82:114–26 [Google Scholar]
  52. van Heel M, Frank J. 52.  1981. Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy 6:187–94 [Google Scholar]
  53. van Heel M. 53.  1987. Angular reconstitution—a posteriori assignment of projection directions for 3-D reconstruction. Ultramicroscopy 21:111–23 [Google Scholar]
  54. Elmlund D, Davis R, Elmlund H. 54.  2010. Ab initio structure determination from electron microscopic images of single molecules coexisting in different functional states. Structure 18:777–86 [Google Scholar]
  55. Elmlund D, Elmlund H. 55.  2012. SIMPLE: software for ab initio reconstruction of heterogeneous single particles. J. Struct. Biol. 180:420–27 [Google Scholar]
  56. Jaitly N, Brubaker MA, Rubinstein JL, Lilien RH. 56.  2010. A Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy. Bioinformatics 26:2406–15 [Google Scholar]
  57. Vargas J, Álvarez-Cabrera A-L, Marabini R, Carazo JM, Sorzano COS. 57.  2014. Efficient initial volume determination from electron microscopy images of single particles. Bioinformatics 30:2891–98 [Google Scholar]
  58. Penczek PA, Grassucci RA, Frank J. 58.  1994. The ribosome at improved resolution—new techniques for merging and orientation refinement in 3D cryoelectron microscopy of biological particles. Ultramicroscopy 53:251–70 [Google Scholar]
  59. Grigorieff N. 59.  2007. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157:117–25 [Google Scholar]
  60. Rosenthal PB, Henderson R. 60.  2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–45 [Google Scholar]
  61. Scheres SHW, Gao H, Valle M, Herman GT, Eggermont PPB. 61.  et al. 2007. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4:27–29 [Google Scholar]
  62. Zhang W, Kimmel M, Spahn CM, Penczek PA. 62.  2008. Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770–76 [Google Scholar]
  63. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ. 63.  et al. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–89 [Google Scholar]
  64. Nitsch M, Walz J, Typke D, Klumpp M, Essen LO, Baumeister W. 64.  1998. Group II chaperonin in an open conformation examined by electron tomography. Nat. Struct. Biol. 5:855–57 [Google Scholar]
  65. Leschziner AE, Nogales E. 65.  2006. The orthogonal tilt reconstruction method: an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J. Struct. Biol. 153:284–99 [Google Scholar]
  66. Sander B, Golas MM, Lührmann R, Stark H. 66.  2010. An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. Structure 18:667–76 [Google Scholar]
  67. Davis JA, Takagi Y, Kornberg RD, Asturias FA. 67.  2002. Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol. Cell 10:409–15 [Google Scholar]
  68. Brand M, Leurent C, Mallouh V, Tora L, Schultz P. 68.  1999. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286:2151–53 [Google Scholar]
  69. Henderson R, Chen S, Chen JZ, Grigorieff N, Passmore LA. 69.  et al. 2011. Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy. J. Mol. Biol. 413:1028–46 [Google Scholar]
  70. Bracewell RN. 70.  1956. Strip integration in radio astronomy. Aust. J. Phys. 9:198–217 [Google Scholar]
  71. Singer A, Coifman RR, Sigworth FJ, Chester DW, Shkolnisky Y. 71.  2010. Detecting consistent common lines in cryo-EM by voting. J. Struct. Biol. 169:312–22 [Google Scholar]
  72. Elmlund H, Lundqvist J, Al-Karadaghi S, Hansson M, Hebert H, Lindahl M. 72.  2008. A new cryo-EM single-particle ab initio reconstruction method visualizes secondary structure elements in an ATP-fuelled AAA+ motor. J. Mol. Biol. 375:934–47 [Google Scholar]
  73. Penczek PA, Zhu J, Frank J. 73.  1996. A common-lines based method for determining orientations for N > 3 particle projections simultaneously. Ultramicroscopy 63:205–18 [Google Scholar]
  74. Elmlund H, Elmlund D, Bengio S. 74.  2013. PRIME: probabilistic initial 3D model generation for single-particle cryo–electron microscopy. Structure 21:1299–306 [Google Scholar]
  75. Frank J, Radermacher M, Penczek P, Zhu J, Li Y. 75.  et al. 1996. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116:190–99 [Google Scholar]
  76. Dempster AP, Laird NM, Rubin DB. 76.  1977. Maximum likelihood from incomplete data via EM algorithm. J. R. Stat. Soc. B 39:1–38 [Google Scholar]
  77. Yin ZH, Zheng Y, Doerschuk PC, Natarajan P, Johnson JE. 77.  2003. A statistical approach to computer processing of cryo–electron microscope images: virion classification and 3-D reconstruction. J. Struct. Biol. 144:24–50 [Google Scholar]
  78. Bishop CM. 78.  2006. Pattern Recognition and Machine Learning New York: Springer [Google Scholar]
  79. Yan X, Dryden KA, Tang J, Baker TS. 79.  2007. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. J. Struct. Biol. 157:211–25 [Google Scholar]
  80. Liu XG, Jiang W, Jakana J, Chiu W. 80.  2007. Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a multi-path simulated annealing optimization algorithm. J. Struct. Biol. 160:11–27 [Google Scholar]
  81. Sanz-García E, Stewart AB, Belnap DM. 81.  2010. The random-model method enables ab initio 3D reconstruction of asymmetric particles and determination of particle symmetry. J. Struct. Biol. 171:216–22 [Google Scholar]
  82. Henderson R. 82.  2013. Avoiding the pitfalls of single particle cryo–electron microscopy: Einstein from noise. PNAS 110:18037–41 [Google Scholar]
  83. Hohn M, Tang G, Goodyear G, Baldwin PR, Huang Z. 83.  et al. 2007. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157:47–55 [Google Scholar]
  84. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W. 84.  et al. 2007. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157:38–46 [Google Scholar]
  85. Lyumkis D, Brilot AF, Theobald DL, Grigorieff N. 85.  2013. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 183:377–88 [Google Scholar]
  86. Elad N, Clare DK, Saibil HR, Orlova EV. 86.  2008. Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J. Struct. Biol. 162:108–20 [Google Scholar]
  87. Gao HX, Valle M, Ehrenberg M, Frank J. 87.  2004. Dynamics of EF-G interaction with the ribosome explored by classification of a heterogeneous cryo-EM dataset. J. Struct. Biol. 147:283–90 [Google Scholar]
  88. Frank J. 88.  2009. Single-particle reconstruction of biological macromolecules in electron microscopy—30 years. Q. Rev. Biophys. 42:139–58 [Google Scholar]
  89. Fu J, Gao HX, Frank J. 89.  2007. Unsupervised classification of single particles by cluster tracking in multi-dimensional space. J. Struct. Biol. 157:226–39 [Google Scholar]
  90. Shatsky M, Hall RJ, Nogales E, Malik J, Brenner SE. 90.  2010. Automated multi-model reconstruction from single-particle electron microscopy data. J. Struct. Biol. 170:98–108 [Google Scholar]
  91. Liao HY, Frank J. 91.  2010. Classification by bootstrapping in single particle methods. Proc. IEEE Int. Symp. Biomed. Imaging 2010:169–72 [Google Scholar]
  92. van Heel M, Schatz M. 92.  2005. Fourier shell correlation threshold criteria. J. Struct. Biol. 151:250–62 [Google Scholar]
  93. Stewart A, Grigorieff N. 93.  2004. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102:67–84 [Google Scholar]
  94. Penczek PA. 94.  2010. Resolution measures in molecular electron microscopy. Methods Enzymol. 482:73–100 [Google Scholar]
  95. Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM. 95.  et al. 2013. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single-particle electron cryomicroscopy. Ultramicroscopy 135:24–35 [Google Scholar]
  96. Scheres SH, Chen S. 96.  2012. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9:853–54 [Google Scholar]
  97. Brunger AT. 97.  1992. Free R-value—a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–75 [Google Scholar]
  98. Murakami K, Elmlund H, Kalisman N, Bushnell DA, Adams CM. 98.  et al. 2013. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342:6159 [Google Scholar]
  99. Russo CJ, Passmore LA. 99.  2014. Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs. J. Struct. Biol. 187:112–18 [Google Scholar]
  100. Bammes BE, Rochat RH, Jakana J, Chen DH, Chiu W. 100.  2012. Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J. Struct. Biol. 177:589–601 [Google Scholar]
  101. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC. 101.  et al. 2012. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177:630–37 [Google Scholar]
  102. Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D. 102.  et al. 2012. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–28 [Google Scholar]
  103. Glaeser RM. 103.  2008. Retrospective: radiation damage and its associated “information limitations.”. J. Struct. Biol. 163:271–76 [Google Scholar]
  104. Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N. 104.  1999. Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288:765–86 [Google Scholar]
  105. Ge P, Zhou ZH. 105.  2011. Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. PNAS 108:9637–42 [Google Scholar]
  106. Glaeser RM, Hall RJ. 106.  2011. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys. J. 100:2331–37 [Google Scholar]
  107. Russo CJ, Passmore LA. 107.  2014. Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377 [Google Scholar]
  108. Scheres SHW. 108.  2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665 [Google Scholar]
  109. Cao E, Liao M, Cheng Y, Julius D. 109.  2013. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–18 [Google Scholar]
  110. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M. 110.  1996. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116:17–24 [Google Scholar]
  111. Ludtke SJ, Baldwin PR, Chiu W. 111.  1999. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128:82–97 [Google Scholar]
  112. Penczek PA, Renka R, Schomberg H. 112.  2004. Gridding-based direct Fourier inversion of the three-dimensional X-ray transform. J. Opt. Soc. Am. A 21:499–509 [Google Scholar]
  113. Yang Z, Penczek PA. 113.  2008. Cryo-EM image alignment based on nonuniform fast Fourier transform. Ultramicroscopy 108:959–69 [Google Scholar]
  114. Sindelar CV, Grigorieff N. 114.  2011. An adaptation of the Wiener filter suitable for analyzing images of isolated single particles. J. Struct. Biol. 176:60–74 [Google Scholar]
  115. Sindelar CV, Grigorieff N. 115.  2012. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter. J. Struct. Biol. 180:26–38 [Google Scholar]
  116. Sorzano COS, Marabini R, Velázquez-Muriel J, Bilbao-Castro JR, Scheres SHW. 116.  et al. 2004. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148:194–204 [Google Scholar]
  117. Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D. 117.  et al. 2009. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166:95–102 [Google Scholar]
  118. Sorzano COS, de la Rosa Trevín JM, Otón J, Vega JJ, Cuenca J. 118.  et al. 2013. Semiautomatic, high-throughput, high-resolution protocol for three-dimensional reconstruction of single particles in electron microscopy. Methods Mol. Biol. 950:171–93 [Google Scholar]
  119. de la Rosa Trevín JM, Otón J, Marabini R, Zaldívar A, Vargas J. 119.  et al. 2013. XMIPP 3.0: an improved software suite for image processing in electron microscopy. J. Struct. Biol. 184:321–28 [Google Scholar]
  120. Lyumkis D, Vinterbo S, Potter CS, Carragher B. 120.  2013. Optimod—an automated approach for constructing and optimizing initial models for single-particle electron microscopy. J. Struct. Biol. 184:417–26 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034226
Loading
/content/journals/10.1146/annurev-biochem-060614-034226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error