Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hynes RO. 1.  2012. The evolution of metazoan extracellular matrix. J. Cell Biol. 196:671–79 [Google Scholar]
  2. Keren H, Lev-Maor G, Ast G. 2.  2010. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11:345–55 [Google Scholar]
  3. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. 3.  2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40:1413–15 [Google Scholar]
  4. Barash Y, Calarco JA, Gao W, Pan Q, Wang X. 4.  et al. 2010. Deciphering the splicing code. Nature 465:53–59 [Google Scholar]
  5. Liang XH, Haritan A, Uliel S, Michaeli S. 5.  2003. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot. Cell 2:830–40 [Google Scholar]
  6. Howe KJ, Kane CM, Ares M Jr. 6.  2003. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9:993–1006 [Google Scholar]
  7. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. 7.  2013. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14:153–65 [Google Scholar]
  8. Ast G. 8.  2004. How did alternative splicing evolve?. Nat. Rev. Genet. 5:773–82 [Google Scholar]
  9. Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C. 9.  et al. 2012. Defining the roles and interactions of PTB. Biochem. Soc. Trans. 40:815–20 [Google Scholar]
  10. Jelen N, Ule J, Zivin M, Darnell RB. 10.  2007. Evolution of Nova-dependent splicing regulation in the brain. PLOS Genet. 3:1838–47 [Google Scholar]
  11. Lee JA, Tang ZZ, Black DL. 11.  2009. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev. 23:2284–93 [Google Scholar]
  12. Ule J, Stefani G, Mele A, Ruggiu M, Wang X. 12.  et al. 2006. An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–86 [Google Scholar]
  13. Chasin LA. 13.  2007. Searching for splicing motifs. Adv. Exp. Med. Biol. 623:85–106 [Google Scholar]
  14. Liu Q, Pante N, Misteli T, Elsagga M, Crisp M. 14.  et al. 2007. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178:785–98 [Google Scholar]
  15. Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. 15.  2007. hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623:123–47 [Google Scholar]
  16. Berget SM. 16.  1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–14 [Google Scholar]
  17. Ardehali MB, Lis JT. 17.  2009. Tracking rates of transcription and splicing in vivo. Nat. Struct. Mol. Biol. 16:1123–24 [Google Scholar]
  18. Amit M, Donyo M, Hollander D, Goren A, Kim E. 18.  et al. 2012. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 1:543–56 [Google Scholar]
  19. Eperon LP, Graham IR, Griffiths AD, Eperon IC. 19.  1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase?. Cell 54:393–401 [Google Scholar]
  20. Cramer P, Caceres JF, Cazalla D, Kadener S, Muro AF. 20.  et al. 1999. Coupling of transcription with alternative splicing: RNA Pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4:251–58 [Google Scholar]
  21. Cramer P, Pesce CG, Baralle FE, Kornblihtt AR. 21.  1997. Functional association between promoter structure and transcript alternative splicing. PNAS 94:11456–60 [Google Scholar]
  22. Beyer AL, Osheim YN. 22.  1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2:754–65 [Google Scholar]
  23. Ameur A, Zaghlool A, Halvardson J, Wetterbom A, Gyllensten U. 23.  et al. 2011. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18:1435–40 [Google Scholar]
  24. Carrillo Oesterreich F, Preibisch S, Neugebauer KM. 24.  2010. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40:571–81 [Google Scholar]
  25. Khodor YL, Rodriguez J, Abruzzi KC, Tang CH, Marr MT 2nd, Rosbash M. 25.  2011. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25:2502–12 [Google Scholar]
  26. Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S. 26.  et al. 2012. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22:1616–25 [Google Scholar]
  27. Pandya-Jones A, Black DL. 27.  2009. Co-transcriptional splicing of constitutive and alternative exons. RNA 15:1896–908 [Google Scholar]
  28. Tardiff DF, Lacadie SA, Rosbash M. 28.  2006. A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol. Cell 24:917–29 [Google Scholar]
  29. Görnemann J, Kotovic KM, Hujer K, Neugebauer KM. 29.  2005. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19:53–63 [Google Scholar]
  30. Lacadie SA, Rosbash M. 30.  2005. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA: 5′ss base pairing in yeast. Mol. Cell 19:65–75 [Google Scholar]
  31. Listerman I, Sapra AK, Neugebauer KM. 31.  2006. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13:815–22 [Google Scholar]
  32. Wada Y, Ohta Y, Xu M, Tsutsumi S, Minami T. 32.  et al. 2009. A wave of nascent transcription on activated human genes. PNAS 106:18357–61 [Google Scholar]
  33. Bhatt DM, Pandya-Jones A, Tong AJ, Barozzi I, Lissner MM. 33.  et al. 2012. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150:279–90 [Google Scholar]
  34. Singh J, Padgett RA. 34.  2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16:1128–33 [Google Scholar]
  35. Veloso A, Kirkconnell KS, Magnuson B, Biewen B, Paulsen MT. 35.  et al. 2014. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24:896–905 [Google Scholar]
  36. Jonkers I, Kwak H, Lis JT. 36.  2014. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3:e02407 [Google Scholar]
  37. Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM. 37.  et al. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:796–806 [Google Scholar]
  38. Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A. 38.  et al. 2007. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol. 179:291–304 [Google Scholar]
  39. Schmidt U, Basyuk E, Robert MC, Yoshida M, Villemin JP. 39.  et al. 2011. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J. Cell Biol. 193:819–29 [Google Scholar]
  40. Martin RM, Rino J, Carvalho C, Kirchhausen T, Carmo-Fonseca M. 40.  2013. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep. 4:1144–55 [Google Scholar]
  41. Vargas DY, Shah K, Batish M, Levandoski M, Sinha S. 41.  et al. 2011. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147:1054–65 [Google Scholar]
  42. Pagani F, Stuani C, Zuccato E, Kornblihtt AR, Baralle FE. 42.  2003. Promoter architecture modulates CFTR exon 9 skipping. J. Biol. Chem. 278:1511–17 [Google Scholar]
  43. Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR. 43.  2002. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 277:43110–14 [Google Scholar]
  44. Auboeuf D, Honig A, Berget SM, O'Malley BW. 44.  2002. Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298:416–19 [Google Scholar]
  45. Auboeuf D, Dowhan DH, Kang YK, Larkin K, Lee JW. 45.  et al. 2004. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. PNAS 101:2270–74 [Google Scholar]
  46. Auboeuf D, Dowhan DH, Li X, Larkin K, Ko L. 46.  et al. 2004. CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol. Cell. Biol. 24:442–53 [Google Scholar]
  47. Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. 47.  2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 6:307–16 [Google Scholar]
  48. Guillouf C, Gallais I, Moreau-Gachelin F. 48.  2006. Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner. J. Biol. Chem. 281:19145–55 [Google Scholar]
  49. Sánchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C. 49.  2006. Human transcription elongation factor CA150 localizes to splicing factor–rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol. Cell. Biol. 26:4998–5014 [Google Scholar]
  50. Pearson JL, Robinson TJ, Muñoz MJ, Kornblihtt AR, Garcia-Blanco MA. 50.  2008. Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J. Biol. Chem. 283:7949–61 [Google Scholar]
  51. Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. 51.  2011. Y-box-binding protein 1 (YB-1) and its functions. Biochem. Biokhimiia 76:1402–33 [Google Scholar]
  52. Das R, Yu J, Zhang Z, Gygi MP, Krainer AR. 52.  et al. 2007. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26:867–81 [Google Scholar]
  53. Misteli T, Spector DL. 53.  1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3:697–705 [Google Scholar]
  54. Dower K, Rosbash M. 54.  2002. T7 RNA polymerase–directed transcripts are processed in yeast and link 3′ end formation to mRNA nuclear export. RNA 8:686–97 [Google Scholar]
  55. McCracken S, Rosonina E, Fong N, Sikes M, Beyer A. 55.  et al. 1998. Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing. Cold Spring Harb. Symp. Quant. Biol. 63:301–9 [Google Scholar]
  56. Sisodia SS, Sollner-Webb B, Cleveland DW. 56.  1987. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol. Cell. Biol. 7:3602–12 [Google Scholar]
  57. Smale ST, Tjian R. 57.  1985. Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase I promoters. Mol. Cell. Biol. 5:352–62 [Google Scholar]
  58. McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G. 58.  et al. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–61 [Google Scholar]
  59. Das R, Dufu K, Romney B, Feldt M, Elenko M, Reed R. 59.  2006. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev. 20:1100–9 [Google Scholar]
  60. Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ. 60.  2006. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLOS Biol. 4:e147 [Google Scholar]
  61. Lazarev D, Manley JL. 61.  2007. Concurrent splicing and transcription are not sufficient to enhance splicing efficiency. RNA 13:1546–57 [Google Scholar]
  62. Romano M, Marcucci R, Baralle FE. 62.  2001. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene. Nucleic Acids Res. 29:886–94 [Google Scholar]
  63. Fededa JP, Petrillo E, Gelfand MS, Neverov AD, Kadener S. 63.  et al. 2005. A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol. Cell 19:393–404 [Google Scholar]
  64. Lenasi T, Peterlin BM, Dovc P. 64.  2006. Distal regulation of alternative splicing by splicing enhancer in equine β-casein intron 1. RNA 12:498–507 [Google Scholar]
  65. Ares M Jr, Grate L, Pauling MH. 65.  1999. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA 5:1138–39 [Google Scholar]
  66. Reed R, Hurt E. 66.  2002. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–31 [Google Scholar]
  67. Moore MJ, Proudfoot NJ. 67.  2009. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700 [Google Scholar]
  68. Fong YW, Zhou Q. 68.  2001. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414:929–33 [Google Scholar]
  69. Kwek KY, Murphy S, Furger A, Thomas B, O'Gorman W. 69.  et al. 2002. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat. Struct. Biol. 9:800–5 [Google Scholar]
  70. Furger A, O'Sullivan JM, Binnie A, Lee BA, Proudfoot NJ. 70.  2002. Promoter proximal splice sites enhance transcription. Genes Dev. 16:2792–99 [Google Scholar]
  71. Spiluttini B, Gu B, Belagal P, Smirnova AS, Nguyen VT. 71.  et al. 2010. Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells. J. Cell Sci. 123:2085–93 [Google Scholar]
  72. Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein EM. 72.  et al. 2011. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLOS Biol. 9:e1000573 [Google Scholar]
  73. Core LJ, Lis JT. 73.  2008. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science 319:1791–92 [Google Scholar]
  74. Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. 74.  2013. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499:360–63 [Google Scholar]
  75. Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. 75.  2008. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15:819–26 [Google Scholar]
  76. Ji X, Zhou Y, Pandit S, Huang J, Li H. 76.  et al. 2013. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153:855–68 [Google Scholar]
  77. Alexander RD, Innocente SA, Barrass JD, Beggs JD. 77.  2010. Splicing-dependent RNA polymerase pausing in yeast. Mol. Cell 40:582–93 [Google Scholar]
  78. Chathoth KT, Barrass JD, Webb S, Beggs JD. 78.  2014. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 53:779–90 [Google Scholar]
  79. Muñoz MJ, de la Mata M, Kornblihtt AR. 79.  2010. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem. Sci. 35:497–504 [Google Scholar]
  80. Gerber HP, Hagmann M, Seipel K, Georgiev O, West MA. 80.  et al. 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660–62 [Google Scholar]
  81. McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G. 81.  et al. 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:3306–18 [Google Scholar]
  82. Buratowski S. 82.  2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36:541–46 [Google Scholar]
  83. Egloff S, Dienstbier M, Murphy S. 83.  2012. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 28:333–41 [Google Scholar]
  84. Heidemann M, Hintermair C, Voss K, Eick D. 84.  2013. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta 1829:55–62 [Google Scholar]
  85. Hsin JP, Manley JL. 85.  2012. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26:2119–37 [Google Scholar]
  86. Fabrega C, Shen V, Shuman S, Lima CD. 86.  2003. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell 11:1549–61 [Google Scholar]
  87. Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E. 87.  et al. 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517–22 [Google Scholar]
  88. Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K. 88.  et al. 2007. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–79 [Google Scholar]
  89. Hsin JP, Sheth A, Manley JL. 89.  2011. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334:683–86 [Google Scholar]
  90. Rosonina E, Blencowe BJ. 90.  2004. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA 10:581–89 [Google Scholar]
  91. de la Mata M, Kornblihtt AR. 91.  2006. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat. Struct. Mol. Biol. 13:973–80 [Google Scholar]
  92. Huang Y, Li W, Yao X, Lin QJ, Yin JW. 92.  et al. 2012. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol. Cell 45:459–69 [Google Scholar]
  93. Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW. 93.  1998. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26:5568–72 [Google Scholar]
  94. Nogues G, Muñoz MJ, Kornblihtt AR. 94.  2003. Influence of polymerase II processivity on alternative splicing depends on splice site strength. J. Biol. Chem. 278:52166–71 [Google Scholar]
  95. Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG. 95.  et al. 2011. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21:390–401 [Google Scholar]
  96. Kadener S, Cramer P, Nogues G, Cazalla D, de la Mata M. 96.  et al. 2001. Antagonistic effects of T-Ag and VP16 reveal a role for RNA Pol II elongation on alternative splicing. EMBO J. 20:5759–68 [Google Scholar]
  97. Schor IE, Rascovan N, Pelisch F, Alló M, Kornblihtt AR. 97.  2009. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. PNAS 106:4325–30 [Google Scholar]
  98. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B. 98.  et al. 2011. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479:74–79 [Google Scholar]
  99. Oberdoerffer S. 99.  2012. A conserved role for intragenic DNA methylation in alternative pre-mRNA splicing. Transcription 3:106–9 [Google Scholar]
  100. Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB. 100.  et al. 2005. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. PNAS 102:17551–58 [Google Scholar]
  101. Maunakea AK, Chepelev I, Cui K, Zhao K. 101.  2013. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 23:1256–69 [Google Scholar]
  102. Close P, East P, Dirac-Svejstrup AB, Hartmann H, Heron M. 102.  et al. 2012. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature 484:386–89 [Google Scholar]
  103. Chen Y, Chafin D, Price DH, Greenleaf AL. 103.  1996. Drosophila RNA polymerase II mutants that affect transcription elongation. J. Biol. Chem. 271:5993–99 [Google Scholar]
  104. de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M. 104.  et al. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12:525–32 [Google Scholar]
  105. Montes M, Cloutier A, Sánchez-Hernández N, Michelle L, Lemieux B. 105.  et al. 2012. TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription. Mol. Cell. Biol. 32:751–62 [Google Scholar]
  106. de la Mata M, Lafaille C, Kornblihtt AR. 106.  2010. First come, first served revisited: Factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 16:904–12 [Google Scholar]
  107. Dutertre M, Sanchez G, De Cian MC, Barbier J, Dardenne E. 107.  et al. 2010. Cotranscriptional exon skipping in the genotoxic stress response. Nat. Struct. Mol. Biol. 17:1358–66 [Google Scholar]
  108. Solier S, Barb J, Zeeberg BR, Varma S, Ryan MC. 108.  et al. 2010. Genome-wide analysis of novel splice variants induced by topoisomerase I poisoning shows preferential occurrence in genes encoding splicing factors. Cancer Res. 70:8055–65 [Google Scholar]
  109. Dujardin G, Buratti E, Charlet-Berguerand N, Martins de Araujo M, Mbopda A. 109.  et al. 2010. CELF proteins regulate CFTR pre-mRNA splicing: essential role of the divergent domain of ETR-3. Nucleic Acids Res. 38:7273–85 [Google Scholar]
  110. Dujardin G, Lafaille C, de la Mata M, Marasco LE, Muñoz MJ. 110.  et al. 2014. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54:683–90 [Google Scholar]
  111. Fong N, Kim H, Zhou Y, Ji X, Qiu J. 111.  et al. 2014. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28:2663–76 [Google Scholar]
  112. Krainer AR, Maniatis T, Ruskin B, Green MR. 112.  1984. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993–1005 [Google Scholar]
  113. Padgett RA, Hardy SF, Sharp PA. 113.  1983. Splicing of adenovirus RNA in a cell-free transcription system. PNAS 80:5230–34 [Google Scholar]
  114. Hernandez N, Keller W. 114.  1983. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell 35:89–99 [Google Scholar]
  115. Huranova M, Ivani I, Benda A, Poser I, Brody Y. 115.  et al. 2010. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 191:75–86 [Google Scholar]
  116. Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS. 116.  et al. 2014. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res. 24:241–50 [Google Scholar]
  117. Zraly CB, Dingwall AK. 117.  2012. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit. Nucleic Acids Res. 40:5975–87 [Google Scholar]
  118. Zhou HL, Luo G, Wise JA, Lou H. 118.  2014. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res. 42:701–13 [Google Scholar]
  119. Spies N, Nielsen CB, Padgett RA, Burge CB. 119.  2009. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36:245–54 [Google Scholar]
  120. Schwartz S, Meshorer E, Ast G. 120.  2009. Chromatin organization marks exon–intron structure. Nat. Struct. Mol. Biol. 16:990–95 [Google Scholar]
  121. Huang H, Yu S, Liu H, Sun X. 121.  2012. Nucleosome organization in sequences of alternative events in human genome. Biosystems 109:214–19 [Google Scholar]
  122. Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M. 122.  et al. 2009. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16:996–1001 [Google Scholar]
  123. Chen W, Luo L, Zhang L. 123.  2010. The organization of nucleosomes around splice sites. Nucleic Acids Res. 38:2788–98 [Google Scholar]
  124. Gelfman S, Burstein D, Penn O, Savchenko A, Amit M. 124.  et al. 2012. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res. 22:35–50 [Google Scholar]
  125. Schwartz S, Ast G. 125.  2010. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J. 29:1629–36 [Google Scholar]
  126. Izban MG, Luse DS. 126.  1991. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5:683–96 [Google Scholar]
  127. Petesch SJ, Lis JT. 127.  2012. Overcoming the nucleosome barrier during transcript elongation. Trends Genet. 28:285–94 [Google Scholar]
  128. Schor IE, Lleres D, Risso GJ, Pawellek A, Ule J. 128.  et al. 2012. Perturbation of chromatin structure globally affects localization and recruitment of splicing factors. PLOS ONE 7:e48084 [Google Scholar]
  129. Keren-Shaul H, Lev-Maor G, Ast G. 129.  2013. Pre-mRNA splicing is a determinant of nucleosome organization. PLOS ONE 8:e53506 [Google Scholar]
  130. Beckmann JS, Trifonov EN. 130.  1991. Splice junctions follow a 205-base ladder. PNAS 88:2380–83 [Google Scholar]
  131. De Conti L, Baralle M, Buratti E. 131.  2013. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA 4:49–60 [Google Scholar]
  132. Clapier CR, Cairns BR. 132.  2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304 [Google Scholar]
  133. Mohrmann L, Verrijzer CP. 133.  2005. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681:59–73 [Google Scholar]
  134. Bouazoune K, Brehm A. 134.  2006. ATP-dependent chromatin remodeling complexes in Drosophila. Chromosome Res 14:433–49 [Google Scholar]
  135. Zentner GE, Tsukiyama T, Henikoff S. 135.  2013. ISWI and CHD chromatin remodelers bind promoters but act in gene bodies. PLOS Genet. 9:e1003317 [Google Scholar]
  136. Batsché E, Yaniv M, Muchardt C. 136.  2006. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13:22–29 [Google Scholar]
  137. Tyagi A, Ryme J, Brodin D, Östlund Farrants AK, Visa N. 137.  2009. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLOS Genet. 5:e1000470 [Google Scholar]
  138. Subtil-Rodríguez A, Reyes JC. 138.  2011. To cross or not to cross the nucleosome, that is the elongation question. RNA Biol. 8:389–93 [Google Scholar]
  139. Cavellan E, Asp P, Percipalle P, Farrants AK. 139.  2006. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J. Biol. Chem. 281:16264–71 [Google Scholar]
  140. Yu S, Waldholm J, Bohm S, Visa N. 140.  2014. Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster. RNA Biol. 11:134–45 [Google Scholar]
  141. Murawska M, Brehm A. 141.  2011. CHD chromatin remodelers and the transcription cycle. Transcription 2:244–53 [Google Scholar]
  142. Tai HH, Geisterfer M, Bell JC, Moniwa M, Davie JR. 142.  et al. 2003. CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins. Biochem. Biophys. Res. Commun. 308:170–76 [Google Scholar]
  143. Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H. 143.  et al. 2007. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28:665–76 [Google Scholar]
  144. Hnilicova J, Hozeifi S, Duskova E, Icha J, Tomankova T, Stanek D. 144.  2011. Histone deacetylase activity modulates alternative splicing. PLOS ONE 6:e16727 [Google Scholar]
  145. Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ. 145.  2011. Impact of chromatin structure on sequence variability in the human genome. Nat. Struct. Mol. Biol. 18:510–15 [Google Scholar]
  146. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. 146.  2009. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 5:401–8 [Google Scholar]
  147. Mehler MF. 147.  2008. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 86:305–41 [Google Scholar]
  148. Graff J, Mansuy IM. 148.  2009. Epigenetic dysregulation in cognitive disorders. Eur. J. Neurosci. 30:1–8 [Google Scholar]
  149. Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. 149.  2007. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J. 13:9–16 [Google Scholar]
  150. Cao F, Townsend EC, Karatas H, Xu J, Li L. 150.  et al. 2014. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell 53:247–61 [Google Scholar]
  151. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. 151.  2010. Histone modification levels are predictive for gene expression. PNAS 107:2926–31 [Google Scholar]
  152. Hodges E, Smith AD, Kendall J, Xuan Z, Ravi K. 152.  et al. 2009. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res. 19:1593–605 [Google Scholar]
  153. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H. 153.  et al. 2010. Relationship between nucleosome positioning and DNA methylation. Nature 466:388–92 [Google Scholar]
  154. Hon GC, Hawkins RD, Ren B. 154.  2009. Predictive chromatin signatures in the mammalian genome. Hum. Mol. Genet. 18:R195–201 [Google Scholar]
  155. Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K. 155.  et al. 2010. Complex exon–intron marking by histone modifications is not determined solely by nucleosome distribution. PLOS ONE 5:e12339 [Google Scholar]
  156. Fuchs G, Hollander D, Voichek Y, Ast G, Oren M. 156.  2014. Co-transcriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res 24:1572–83 [Google Scholar]
  157. Zhou HL, Hinman MN, Barron VA, Geng C, Zhou G. 157.  et al. 2011. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. PNAS 108:E627–35 [Google Scholar]
  158. Khan DH, Gonzalez C, Cooper C, Sun JM, Chen HY. 158.  et al. 2014. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing. Nucleic Acids Res. 42:1656–70 [Google Scholar]
  159. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. 159.  2010. Regulation of alternative splicing by histone modifications. Science 327:996–1000 [Google Scholar]
  160. Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY. 160.  et al. 2010. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat. Struct. Mol. Biol. 17:1114–23 [Google Scholar]
  161. Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA. 161.  2012. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLOS Genet. 8:e1002717 [Google Scholar]
  162. Loomis RJ, Naoe Y, Parker JB, Savic V, Bozovsky MR. 162.  et al. 2009. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 33:450–61 [Google Scholar]
  163. Guo R, Zheng L, Park JW, Lv R, Chen H. 163.  et al. 2015. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation–decorated chromatin to regulated pre-mRNA processing. Mol. Cell 205:298–310 [Google Scholar]
  164. Park G, Gong Z, Chen J, Kim JE. 164.  2010. Characterization of the DOT1L network: implications of diverse roles for DOT1L. Protein J. 29:213–23 [Google Scholar]
  165. Yuan W, Xie J, Long C, Erdjument-Bromage H, Ding X. 165.  et al. 2009. Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J. Biol. Chem.18;28415701–7 [Google Scholar]
  166. Gunderson FQ, Johnson TL. 166.  2009. Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLOS Genet. 5:e1000682 [Google Scholar]
  167. Zhang Z, Jones A, Joo HY, Zhou D, Cao Y. 167.  et al. 2013. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. Genes Dev. 27:1581–95 [Google Scholar]
  168. Moehle EA, Ryan CJ, Krogan NJ, Kress TL, Guthrie C. 168.  2012. The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLOS Genet. 8:e1003101 [Google Scholar]
  169. Hino K, Hirose T. 169.  2009. [Possible involvement of snoRNA in alternative splicing regulation.]. Tanpakushitsu Kakusan Koso 54:2049–54 (In Japanese) [Google Scholar]
  170. Chandrasekharan MB, Huang F, Sun ZW. 170.  2009. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. PNAS 106:16686–91 [Google Scholar]
  171. Long L, Thelen JP, Furgason M, Haj-Yahya M, Brik A. 171.  et al. 2014. The U4/U6 recycling factor SART3 has histone chaperone activity and associates with USP15 to regulate H2B deubiquitination. J. Biol. Chem. 289:8916–30 [Google Scholar]
  172. Gelfman S, Cohen N, Yearim A, Ast G. 172.  2013. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon–intron structure. Genome Res. 23:789–99 [Google Scholar]
  173. Choi JK. 173.  2010. Contrasting chromatin organization of CpG islands and exons in the human genome. Genome Biol. 11:R70 [Google Scholar]
  174. Laurent L, Wong E, Li G, Huynh T, Tsirigos A. 174.  et al. 2010. Dynamic changes in the human methylome during differentiation. Genome Res. 20:320–31 [Google Scholar]
  175. Sarraf SA, Stancheva I. 175.  2004. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15:595–605 [Google Scholar]
  176. Klose RJ, Bird AP. 176.  2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31:89–97 [Google Scholar]
  177. Boeke J, Ammerpohl O, Kegel S, Moehren U, Renkawitz R. 177.  2000. The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A. J. Biol. Chem. 275:34963–67 [Google Scholar]
  178. Piazza R, Magistroni V, Mogavero A, Andreoni F, Ambrogio C. 178.  et al. 2013. Epigenetic silencing of the proapoptotic gene BIM in anaplastic large cell lymphoma through an MeCP2/SIN3a deacetylating complex. Neoplasia 15:511–22 [Google Scholar]
  179. Long SW, Ooi JY, Yau PM, Jones PL. 179.  2011. A brain-derived MeCP2 complex supports a role for MeCP2 in RNA processing. Biosci. Rep. 31:333–43 [Google Scholar]
  180. Huang L, Fu H, Lin CM, Conner AL, Zhang Y, Aladjem MI. 180.  2011. Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF, MeCP1, and hnRNP C1/C2. Mol. Cell. Biol. 31:3472–84 [Google Scholar]
  181. Mahajan MC, Narlikar GJ, Boyapaty G, Kingston RE, Weissman SM. 181.  2005. Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1, and SWI/SNF form a chromatin remodeling complex at the β-globin locus control region. PNAS 102:15012–17 [Google Scholar]
  182. Zarnack K, König J, Tajnik M, Martincorena I, Eustermann S. 182.  et al. 2013. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152:453–66 [Google Scholar]
  183. Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. 183.  2010. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev. 24:2133–45 [Google Scholar]
  184. Grewal SI, Moazed D. 184.  2003. Heterochromatin and epigenetic control of gene expression. Science 301:798–802 [Google Scholar]
  185. Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A. 185.  et al. 2009. Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLOS Genet. 5:e1000670 [Google Scholar]
  186. Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU. 186.  2004. HP1 is essential for DNA methylation in Neurospora. Mol. Cell 13:427–34 [Google Scholar]
  187. Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O. 187.  et al. 2015. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 101122–34 [Google Scholar]
  188. Salton M, Voss TC, Misteli T. 188.  2014. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res.4213662–73 [Google Scholar]
  189. Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I. 189.  et al. 2009. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16:717–24 [Google Scholar]
  190. Saint-André V, Batsché E, Rachez C, Muchardt C. 190.  2011. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 18:337–44 [Google Scholar]
  191. Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L. 191.  et al. 2012. Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 19:998–1004 [Google Scholar]
  192. de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S. 192.  et al. 2011. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat. Struct. Mol. Biol. 18:977–83 [Google Scholar]
  193. Kim S, Kim H, Fong N, Erickson B, Bentley DL. 193.  2011. Pre-mRNA splicing is a determinant of histone H3K36 methylation. PNAS 108:13564–69 [Google Scholar]
  194. Edmunds JW, Mahadevan LC, Clayton AL. 194.  2008. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27:406–20 [Google Scholar]
  195. Luco RF, Alló M, Schor IE, Kornblihtt AR, Misteli T. 195.  2011. Epigenetics in alternative pre-mRNA splicing. Cell 144:16–26 [Google Scholar]
  196. Convertini P, Shen M, Potter PM, Palacios G, Lagisetti C. 196.  et al. 2014. Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res. 42:4947–61 [Google Scholar]
  197. Yuan W, Xie J, Long C, Erdjument-Bromage H, Ding X. 197.  et al. 2009. Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J. Biol. Chem. 284:15701–7 [Google Scholar]
  198. Kalsotra A, Cooper TA. 198.  2011. Functional consequences of developmentally regulated alternative splicing.. Nat. Rev. Genet. 12:715–29 [Google Scholar]
  199. Tollervey JR, Wang Z, Hortobágyi T, Witten JT, Zarnack K. 199.  et al. 2011. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res. 21:1572–82 [Google Scholar]
  200. Witten JT, Ule J. 200.  2011. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27:89–97 [Google Scholar]
  201. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O'Hanlon D. 201.  et al. 2011. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147:132–46 [Google Scholar]
  202. Ungewitter E, Scrable H. 202.  2010. Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev. 24:2408–19 [Google Scholar]
  203. Revil T, Gaffney D, Dias C, Majewski J, Jerome-Majewska LA. 203.  2010. Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics 11:399 [Google Scholar]
  204. Xu X, Yang D, Ding JH, Wang W, Chu PH. 204.  et al. 2005. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120:59–72 [Google Scholar]
  205. Preitner N, Quan J, Nowakowski DW, Hancock ML, Shi J. 205.  et al. 2014. APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158:368–82 [Google Scholar]
  206. Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG. 206.  2011. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144:513–25 [Google Scholar]
  207. Su WL, Modrek B, GuhaThakurta D, Edwards S, Shah JK. 207.  et al. 2008. Exon and junction microarrays detect widespread mouse strain- and sex-bias expression differences. BMC Genomics 9:273 [Google Scholar]
  208. Blekhman R, Marioni JC, Zumbo P, Stephens M, Gilad Y. 208.  2010. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20:180–89 [Google Scholar]
  209. Salz HK. 209.  2011. Sex determination in insects: a binary decision based on alternative splicing. Curr. Opin. Genet. Dev. 21:395–400 [Google Scholar]
  210. Wang GS, Cooper TA. 210.  2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 8:749–61 [Google Scholar]
  211. Baralle D, Lucassen A, Buratti E. 211.  2009. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 10:810–16 [Google Scholar]
  212. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L. 212.  et al. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–76 [Google Scholar]
  213. Merkin J, Russell C, Chen P, Burge CB. 213.  2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–99 [Google Scholar]
  214. Reyes A, Anders S, Weatheritt RJ, Gibson TJ, Steinmetz LM, Huber W. 214.  2013. Drift and conservation of differential exon usage across tissues in primate species. PNAS 110:15377–82 [Google Scholar]
  215. Penalva LO, Sanchez L. 215.  2003. RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol. Mol. Biol. Rev. 67:343–59 [Google Scholar]
  216. Grosso AR, Gomes AQ, Barbosa-Morais NL, Caldeira S, Thorne NP. 216.  et al. 2008. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res. 36:4823–32 [Google Scholar]
  217. Sun H, Wu J, Wickramasinghe P, Pal S, Gupta R. 217.  et al. 2011. Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Nucleic Acids Res. 39:190–201 [Google Scholar]
  218. Pecci A, Viegas LR, Barañao JL, Beato M. 218.  2001. Promoter choice influences alternative splicing and determines the balance of isoforms expressed from the mouse bcl-X gene. J. Biol. Chem. 276:21062–69 [Google Scholar]
  219. Li B, Carey M, Workman JL. 219.  2007. The role of chromatin during transcription. Cell 128:707–19 [Google Scholar]
  220. Schor IE, Fiszbein A, Petrillo E, Kornblihtt AR. 220.  2013. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation. EMBO J. 32:2264–74 [Google Scholar]
  221. Kucharski R, Maleszka J, Foret S, Maleszka R. 221.  2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–30 [Google Scholar]
  222. Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE. 222.  et al. 2012. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. PNAS 109:4968–73 [Google Scholar]
  223. Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H. 223.  et al. 2013. DNase I–hypersensitive exons colocalize with promoters and distal regulatory elements. Nat. Genet. 45:852–59 [Google Scholar]
  224. Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N. 224.  2008. Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells 26:767–74 [Google Scholar]
  225. Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A. 225.  et al. 2010. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. PNAS 107:10514–19 [Google Scholar]
  226. Cheong CY, Lufkin T. 226.  2011. Alternative splicing in self-renewal of embryonic stem cells. Stem Cells Int. 2011:560261 [Google Scholar]
  227. Ohta S, Nishida E, Yamanaka S, Yamamoto T. 227.  2013. Global splicing pattern reversion during somatic cell reprogramming. Cell Rep. 5:357–66 [Google Scholar]
  228. Lu X, Goke J, Sachs F, Jacques PE, Liang H. 228.  et al. 2013. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat. Cell Biol. 15:1141–52 [Google Scholar]
  229. Bittencourt D, Dutertre M, Sanchez G, Barbier J, Gratadou L, Auboeuf D. 229.  2008. Cotranscriptional splicing potentiates the mRNA production from a subset of estradiol-stimulated genes. Mol. Cell. Biol. 28:5811–24 [Google Scholar]
  230. Iwasaki T, Chin WW, Ko L. 230.  2001. Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM). J. Biol. Chem. 276:33375–83 [Google Scholar]
  231. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA. 231.  et al. 2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–22 [Google Scholar]
  232. Hirota T, Lipp JJ, Toh BH, Peters JM. 232.  2005. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–80 [Google Scholar]
  233. Muñoz MJ, Perez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F. 233.  et al. 2009. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137:708–20 [Google Scholar]
  234. Kim E, Magen A, Ast G. 234.  2007. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 35:125–31 [Google Scholar]
  235. Xiao X, Wang Z, Jang M, Burge CB. 235.  2007. Coevolutionary networks of splicing cis-regulatory elements. PNAS 104:18583–88 [Google Scholar]
  236. Xiao X, Wang Z, Jang M, Nutiu R, Wang ET, Burge CB. 236.  2009. Splice site strength-dependent activity and genetic buffering by poly-G runs. Nat. Struct. Mol. Biol. 16:1094–100 [Google Scholar]
  237. Goren A, Ram O, Amit M, Keren H, Lev-Maor G. 237.  et al. 2006. Comparative analysis identifies exonic splicing regulatory sequences—the complex definition of enhancers and silencers. Mol. Cell 22:769–81 [Google Scholar]
  238. Sorek R, Ast G. 238.  2003. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res. 13:1631–37 [Google Scholar]
  239. Xing Y, Lee C. 239.  2006. Alternative splicing and RNA selection pressure—evolutionary consequences for eukaryotic genomes. Nat. Rev. Genet. 7:499–509 [Google Scholar]
  240. Fairbrother WG, Yeh RF, Sharp PA, Burge CB. 240.  2002. Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–13 [Google Scholar]
  241. Sugnet CW, Srinivasan K, Clark TA, O'Brien G, Cline MS. 241.  et al. 2006. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput. Biol. 2:e4 [Google Scholar]
  242. Sorek R, Ast G, Graur D. 242.  2002. Alu-containing exons are alternatively spliced. Genome Res. 12:1060–67 [Google Scholar]
  243. Lev-Maor G, Sorek R, Shomron N, Ast G. 243.  2003. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300:1288–91 [Google Scholar]
  244. Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F. 244.  et al. 2004. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons. Mol. Cell 14:221–31 [Google Scholar]
  245. Magen A, Ast G. 245.  2005. The importance of being divisible by three in alternative splicing. Nucleic Acids Res. 33:5574–82 [Google Scholar]
  246. Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G. 246.  2007. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol. 8:R127 [Google Scholar]
  247. Lev-Maor G, Goren A, Sela N, Kim E, Keren H. 247.  et al. 2007. The “alternative” choice of constitutive exons throughout evolution. PLOS Genet. 3:e203 [Google Scholar]
  248. Koren E, Lev-Maor G, Ast G. 248.  2007. The emergence of alternative 3′ and 5′ splice site exons from constitutive exons. PLOS Comput. Biol. 3:e95 [Google Scholar]
  249. Ram O, Ast G. 249.  2007. SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet. 23:5–7 [Google Scholar]
  250. Hertel KJ. 250.  2008. Combinatorial control of exon recognition. J. Biol. Chem. 283:1211–15 [Google Scholar]
  251. Niu DK. 251.  2008. Exon definition as a potential negative force against intron losses in evolution. Biol. Direct 3:46 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error