The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF. 1.  et al. 2007. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet. 23:113–18 [Google Scholar]
  2. Lim WA, Pawson T. 2.  2010. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142:661–67 [Google Scholar]
  3. Hubbard SR, Till JH. 3.  2000. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69:373–98 [Google Scholar]
  4. Avraham R, Yarden Y. 4.  2011. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12:104–17 [Google Scholar]
  5. Endres NF, Engel K, Das R, Kovacs E, Kuriyan J. 5.  2011. Regulation of the catalytic activity of the EGF receptor. Curr. Opin. Struct. Biol. 21:777–84 [Google Scholar]
  6. Lemmon MA, Schlessinger J, Ferguson KM. 6.  2014. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 6:a020768 [Google Scholar]
  7. Arteaga CL, Engelman JA. 7.  2014. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25:282–303 [Google Scholar]
  8. Downward J, Yarden Y, Mayes E, Scrace G, Totty N. 8.  et al. 1984. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–27 [Google Scholar]
  9. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A. 9.  et al. 1984. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–25 [Google Scholar]
  10. Sharma SV, Bell DW, Settleman J, Haber DA. 10.  2007. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7:169–81 [Google Scholar]
  11. Westphal M, Meima L, Szonyi E, Lofgren J, Meissner H. 11.  et al. 1997. Heregulins and the ErbB-2/3/4 receptors in gliomas. J. Neuro-Oncol. 35:335–46 [Google Scholar]
  12. Harari D, Yarden Y. 12.  2000. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19:6102–14 [Google Scholar]
  13. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB. 13.  et al. 2003. Structure of the extracellular region of HER2 alone and in complex with the herceptin Fab. Nature 421:756–60 [Google Scholar]
  14. Lemmon MA, Schlessinger J. 14.  2010. Cell signaling by receptor tyrosine kinases. Cell 141:1117–34 [Google Scholar]
  15. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 15.  2002. The protein kinase complement of the human genome. Science 298:1912–34 [Google Scholar]
  16. Richter DJ, King N. 16.  2013. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47:509–37 [Google Scholar]
  17. Nichols SA, Dirks W, Pearse JS, King N. 17.  2006. Early evolution of animal cell signaling and adhesion genes. PNAS 103:12451–56 [Google Scholar]
  18. Yokoyama N, Miller WT. 18.  2003. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, autophosphorylation, and interaction with Hck. J. Biol. Chem. 278:47713–23 [Google Scholar]
  19. Kang JS, Liu C, Derynck R. 19.  2009. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol. 19:385–94 [Google Scholar]
  20. Massague J. 20.  2012. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13:616–30 [Google Scholar]
  21. Hanks SK, Hunter T. 21.  1995. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9:576–96 [Google Scholar]
  22. Stein RA, Staros JV. 22.  2006. Insights into the evolution of the ErbB receptor family and their ligands from sequence analysis. BMC Evol. Biol. 6:79 [Google Scholar]
  23. Lynch M, Conery JS. 23.  2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151–55 [Google Scholar]
  24. Yarden Y, Sliwkowski MX. 24.  2001. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2:127–37 [Google Scholar]
  25. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. 25.  2009. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. PNAS 106:21608–13 [Google Scholar]
  26. Berger MB, Mendrola JM, Lemmon MA. 26.  2004. ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett. 569:332–36 [Google Scholar]
  27. Pines G, Huang PH, Zwang Y, White FM, Yarden Y. 27.  2010. EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene 29:5850–60 [Google Scholar]
  28. Yarden Y, Schlessinger J. 28.  1987. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26:1434–42 [Google Scholar]
  29. Yarden Y, Schlessinger J. 29.  1987. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26:1443–51 [Google Scholar]
  30. Honegger AM, Kris RM, Ullrich A, Schlessinger J. 30.  1989. Evidence that autophosphorylation of solubilized receptors for epidermal growth factor is mediated by intermolecular cross-phosphorylation. PNAS 86:925–29 [Google Scholar]
  31. Vecchi M, Baulida J, Carpenter G. 31.  1996. Selective cleavage of the heregulin receptor ErbB-4 by protein kinase C activation. J. Biol. Chem. 271:18989–95 [Google Scholar]
  32. Cheng QC, Tikhomirov O, Zhou W, Carpenter G. 32.  2003. Ectodomain cleavage of ErbB-4: characterization of the cleavage site and m80 fragment. J. Biol. Chem. 278:38421–27 [Google Scholar]
  33. Leahy DJ. 33.  2004. Structure and function of the epidermal growth factor (EGF/ErbB) family of receptors. Adv. Protein Chem. 68:1–27 [Google Scholar]
  34. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE. 34.  et al. 2002. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell 110:763–73 [Google Scholar]
  35. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M. 35.  et al. 2002. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–87 [Google Scholar]
  36. Lu C, Mi LZ, Grey MJ, Zhu J, Graef E. 36.  et al. 2010. Structural evidence for loose linkage between ligand binding and kinase activation in the epidermal growth factor receptor. Mol. Cell. Biol. 30:5432–43 [Google Scholar]
  37. Liu P, Cleveland TE 4th, Bouyain S, Byrne PO, Longo PA, Leahy DJ. 37.  2012. A single ligand is sufficient to activate EGFR dimers. PNAS 109:10861–66 [Google Scholar]
  38. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA. 38.  2003. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell 11:507–17 [Google Scholar]
  39. Cho HS, Leahy DJ. 39.  2002. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297:1330–33 [Google Scholar]
  40. Bouyain S, Longo PA, Li S, Ferguson KM, Leahy DJ. 40.  2005. The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. PNAS 102:15024–29 [Google Scholar]
  41. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE. 41.  et al. 2003. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell 11:495–505 [Google Scholar]
  42. Alvarado D, Klein DE, Lemmon MA. 42.  2009. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Nature 461:287–91 [Google Scholar]
  43. Smith KD, Davies MJ, Bailey D, Renouf DV, Hounsell EF. 43.  1996. Analysis of the glycosylation patterns of the extracellular domain of the epidermal growth factor receptor expressed in Chinese hamster ovary fibroblasts. Growth Factors 13:121–32 [Google Scholar]
  44. Sato C, Kim JH, Abe Y, Saito K, Yokoyama S, Kohda D. 44.  2000. Characterization of the N-oligosaccharides attached to the atypical Asn–X–Cys sequence of recombinant human epidermal growth factor receptor. J. Biochem. 127:65–72 [Google Scholar]
  45. Zhen Y, Caprioli RM, Staros JV. 45.  2003. Characterization of glycosylation sites of the epidermal growth factor receptor. Biochemistry 42:5478–92 [Google Scholar]
  46. Gamou S, Shimizu N. 46.  1988. Glycosylation of the epidermal growth factor receptor and its relationship to membrane transport and ligand binding. J. Biochem. 104:388–96 [Google Scholar]
  47. Tsuda T, Ikeda Y, Taniguchi N. 47.  2000. The Asn-420-linked sugar chain in human epidermal growth factor receptor suppresses ligand-independent spontaneous oligomerization. Possible role of a specific sugar chain in controllable receptor activation. J. Biol. Chem. 275:21988–94 [Google Scholar]
  48. Whitson KB, Whitson SR, Red-Brewer ML, McCoy AJ, Vitali AA. 48.  et al. 2005. Functional effects of glycosylation at Asn-579 of the epidermal growth factor receptor. Biochemistry 44:14920–31 [Google Scholar]
  49. Fernandes H, Cohen S, Bishayee S. 49.  2001. Glycosylation-induced conformational modification positively regulates receptor–receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvIII/δEGFR) expressed in cancer cells. J. Biol. Chem. 276:5375–83 [Google Scholar]
  50. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. 50.  2004. Insights into ErbB signaling from the structure of the ErbB2–pertuzumab complex. Cancer Cell 5:317–28 [Google Scholar]
  51. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. 51.  2005. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–11 [Google Scholar]
  52. Baselga J, Albanell J, Molina MA, Arribas J. 52.  2001. Mechanism of action of trastuzumab and scientific update. Semin. Oncol. 28:4–11 [Google Scholar]
  53. Vecchi M, Carpenter G. 53.  1997. Constitutive proteolysis of the ErbB-4 receptor tyrosine kinase by a unique, sequential mechanism. J. Cell Biol. 139:995–1003 [Google Scholar]
  54. Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J. 54.  1999. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 59:1196–201 [Google Scholar]
  55. Clynes RA, Towers TL, Presta LG, Ravetch JV. 55.  2000. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6:443–46 [Google Scholar]
  56. Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PMP, Ferguson KM. 56.  2013. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure 21:1214–24 [Google Scholar]
  57. Hackel BJ, Neil JR, White FM, Wittrup KD. 57.  2012. Epidermal growth factor receptor downregulation by small heterodimeric binding proteins. Protein Eng. Des. Sel. 25:47–57 [Google Scholar]
  58. Chen CH, Chernis GA, Hoang VQ, Landgraf R. 58.  2003. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor 3. PNAS 100:9226–31 [Google Scholar]
  59. Zhang Q, Park E, Kani K, Landgraf R. 59.  2012. Functional isolation of activated and unilaterally phosphorylated heterodimers of ERBB2 and ERBB3 as scaffolds in ligand-dependent signaling. PNAS 109:13237–42 [Google Scholar]
  60. Stamos J, Sliwkowski MX, Eigenbrot C. 60.  2002. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277:46265–72 [Google Scholar]
  61. Hubbard SR. 61.  1997. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16:5572–81 [Google Scholar]
  62. Hubbard SR, Wei L, Ellis L, Hendrickson WA. 62.  1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746–54 [Google Scholar]
  63. Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A. 63.  et al. 2004. A unique structure for epidermal growth factor receptor bound to GW572016 (lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64:6652–59 [Google Scholar]
  64. Gajiwala KS, Feng J, Ferre R, Ryan K, Brodsky O. 64.  et al. 2013. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 21:209–19 [Google Scholar]
  65. Park JH, Liu Y, Lemmon MA, Radhakrishnan R. 65.  2012. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J. 448:417–23 [Google Scholar]
  66. Gotoh N, Tojo A, Hino M, Yazaki Y, Shibuya M. 66.  1992. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 186:768–74 [Google Scholar]
  67. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. 67.  2006. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125:1137–49 [Google Scholar]
  68. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. 68.  2011. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell 42:9–22 [Google Scholar]
  69. Collier TS, Diraviyam K, Monsey J, Shen W, Sept D, Bose R. 69.  2013. Carboxyl group footprinting mass spectrometry and molecular dynamics identify key interactions in the HER2–HER3 receptor tyrosine kinase interface. J. Biol. Chem. 288:25254–64 [Google Scholar]
  70. Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R. 70.  et al. 2008. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 16:460–67 [Google Scholar]
  71. Aertgeerts K, Skene R, Yano J, Sang BC, Zou H. 71.  et al. 2011. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J. Biol. Chem. 286:18756–65 [Google Scholar]
  72. Groenen LC, Walker F, Burgess AW, Treutlein HR. 72.  1997. A model for the activation of the epidermal growth factor receptor kinase involvement of an asymmetric dimer?. Biochemistry 36:3826–36 [Google Scholar]
  73. Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J. 73.  2007. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450:741–44 [Google Scholar]
  74. Bae JH, Boggon TJ, Tome F, Mandiyan V, Lax I, Schlessinger J. 74.  2010. Asymmetric receptor contact is required for tyrosine autophosphorylation of fibroblast growth factor receptor in living cells. PNAS 107:2866–71 [Google Scholar]
  75. Hu J, Stites EC, Yu H, Germino EA, Meharena HS. 75.  et al. 2013. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 154:1036–46 [Google Scholar]
  76. Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. 76.  2013. Transitions to catalytically inactive conformations in EGFR kinase. PNAS 110:7270–75 [Google Scholar]
  77. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. 77.  2010. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. PNAS 107:7692–97 [Google Scholar]
  78. Steinkamp MP, Low-Nam ST, Yang S, Lidke KA, Lidke DS, Wilson BS. 78.  2014. ErbB3 is an active tyrosine kinase capable of homo- and heterointeractions. Mol. Cell. Biol. 34:965–77 [Google Scholar]
  79. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H. 79.  et al. 2007. Structures of lung cancer–derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–27 [Google Scholar]
  80. Carey KD, Garton AJ, Romero MS, Kahler J, Thomson S. 80.  et al. 2006. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res. 66:8163–71 [Google Scholar]
  81. Shan Y, Eastwood MP, Zhang X, Kim ET, Arkhipov A. 81.  et al. 2012. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell 149:860–70 [Google Scholar]
  82. Sutto L, Gervasio FL. 82.  2013. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase. PNAS 110:10616–21 [Google Scholar]
  83. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H. 83.  et al. 2008. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. PNAS 105:2070–75 [Google Scholar]
  84. Red-Brewer M, Yun CH, Lai D, Lemmon MA, Eck MJ, Pao W. 84.  2013. Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. PNAS 110:e3595–604 [Google Scholar]
  85. Huse M, Chen YG, Massague J, Kuriyan J. 85.  1999. Crystal structure of the cytoplasmic domain of the type I TGFβ receptor in complex with FKBP12. Cell 96:425–36 [Google Scholar]
  86. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. 86.  2001. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:745–57 [Google Scholar]
  87. Griffith J, Black J, Faerman C, Swenson L, Wynn M. 87.  et al. 2004. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol. Cell 13:169–78 [Google Scholar]
  88. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML. 88.  et al. 2004. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem. 279:31655–63 [Google Scholar]
  89. Thiel KW, Carpenter G. 89.  2007. Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. PNAS 104:19238–43 [Google Scholar]
  90. Red-Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A. 90.  et al. 2009. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34:641–51 [Google Scholar]
  91. Jura N, Endres NF, Engel K, Deindl S, Das R. 91.  et al. 2009. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–307 [Google Scholar]
  92. Wood ER, Shewchuk LM, Ellis B, Brignola P, Brashear RL. 92.  et al. 2008. 6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases. PNAS 105:2773–78 [Google Scholar]
  93. He L, Hristova K. 93.  2012. Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. Sci. Rep. 2:854 [Google Scholar]
  94. Scheck RA, Lowder MA, Appelbaum JS, Schepartz A. 94.  2012. Bipartite tetracysteine display reveals allosteric control of ligand-specific EGFR activation. ACS Chem. Biol. 7:1367–76 [Google Scholar]
  95. McLaughlin S, Smith SO, Hayman MJ, Murray D. 95.  2005. An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family. J. Gen. Physiol. 126:41–53 [Google Scholar]
  96. Hunter T, Ling N, Cooper JA. 96.  1984. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature 311:480–83 [Google Scholar]
  97. Hobert ME, Kil SJ, Medof ME, Carlin CR. 97.  1997. The cytoplasmic juxtamembrane domain of the epidermal growth factor receptor contains a novel autonomous basolateral sorting determinant. J. Biol. Chem. 272:32901–9 [Google Scholar]
  98. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN. 98.  et al. 2008. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J. Biol. Chem. 283:6950–56 [Google Scholar]
  99. Mineev KS, Bocharov EV, Pustovalova YE, Bocharova OV, Chupin VV, Arseniev AS. 99.  2010. Spatial structure of the transmembrane domain heterodimer of ErbB1 and ErbB2 receptor tyrosine kinases. J. Mol. Biol. 400:231–43 [Google Scholar]
  100. Lemmon MA, Treutlein HR, Adams PD, Brunger AT, Engelman DM. 100.  1994. A dimerization motif for transmembrane α-helices. Nat. Struct. Biol. 1:157–63 [Google Scholar]
  101. Russ WP, Engelman DM. 101.  2000. The GxxxG motif: a framework for transmembrane helix–helix association. J. Mol. Biol. 296:911–19 [Google Scholar]
  102. Mendrola JM, Berger MB, King MC, Lemmon MA. 102.  2002. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J. Biol. Chem. 277:4704–12 [Google Scholar]
  103. Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E. 103.  et al. 2013. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152:543–56 [Google Scholar]
  104. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP. 104.  et al. 2013. Architecture and membrane interactions of the EGF receptor. Cell 152:557–69 [Google Scholar]
  105. Fleishman SJ, Schlessinger J, Ben-Tal N. 105.  2002. A putative molecular-activation switch in the transmembrane domain of ErbB2. PNAS 99:15937–40 [Google Scholar]
  106. Gerber D, Sal-Man N, Shai Y. 106.  2004. Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J. Biol. Chem. 279:21177–82 [Google Scholar]
  107. Escher C, Cymer F, Schneider D. 107.  2009. Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J. Mol. Biol. 389:10–16 [Google Scholar]
  108. Moriki T, Maruyama H, Maruyama IN. 108.  2001. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J. Mol. Biol. 311:1011–26 [Google Scholar]
  109. Bell CA, Tynan JA, Hart KC, Meyer AN, Robertson SC, Donoghue DJ. 109.  2000. Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase. Mol. Biol. Cell 11:3589–99 [Google Scholar]
  110. King AC, Cuatrecasas P. 110.  1982. Resolution of high and low affinity epidermal growth factor receptors. Inhibition of high affinity component by low temperature, cycloheximide, and phorbol esters. J. Biol. Chem. 257:3053–60 [Google Scholar]
  111. Mayawala K, Vlachos DG, Edwards JS. 111.  2005. Heterogeneities in EGF receptor density at the cell surface can lead to concave up scatchard plot of EGF binding. FEBS Lett. 579:3043–47 [Google Scholar]
  112. den Hartigh JC, van Bergen en Henegouwen PMP, Verkleij AJ, Boonstra J. 112.  1992. The EGF receptor is an actin-binding protein. J. Cell Biol. 119:349–55 [Google Scholar]
  113. Macdonald JL, Pike LJ. 113.  2008. Heterogeneity in EGF-binding affinities arises from negative cooperativity in an aggregating system. PNAS 105:112–17 [Google Scholar]
  114. Adak S, DeAndrade D, Pike LJ. 114.  2011. The tethering arm of the EGF receptor is required for negative cooperativity and signal transduction. J. Biol. Chem. 286:1545–55 [Google Scholar]
  115. Macdonald-Obermann JL, Pike LJ. 115.  2009. The intracellular juxtamembrane domain of the epidermal growth factor (EGF) receptor is responsible for the allosteric regulation of EGF binding. J. Biol. Chem. 284:13570–76 [Google Scholar]
  116. Adak S, Yang KS, Macdonald-Obermann J, Pike LJ. 116.  2011. The membrane-proximal intracellular domain of the epidermal growth factor receptor underlies negative cooperativity in ligand binding. J. Biol. Chem. 286:45146–55 [Google Scholar]
  117. Yang KS, Ilagan MX, Piwnica-Worms D, Pike LJ. 117.  2009. Luciferase fragment complementation imaging of conformational changes in the epidermal growth factor receptor. J. Biol. Chem. 284:7474–82 [Google Scholar]
  118. Macdonald-Obermann JL, Piwnica-Worms D, Pike LJ. 118.  2012. Mechanics of EGF receptor/ErbB2 kinase activation revealed by luciferase fragment complementation imaging. PNAS 109:137–42 [Google Scholar]
  119. Li Y, Macdonald-Obermann J, Westfall C, Piwnica-Worms D, Pike LJ. 119.  2012. Quantitation of the effect of ErbB2 on epidermal growth factor receptor binding and dimerization. J. Biol. Chem. 287:31116–25 [Google Scholar]
  120. Macdonald-Obermann JL, Pike LJ. 120.  2014. Different EGF receptor ligands show distinct kinetics and biased or partial agonism for homodimer and heterodimer formation. J. Biol. Chem. 289:26178–88 [Google Scholar]
  121. Alvarado D, Klein DE, Lemmon MA. 121.  2010. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell 142:568–79 [Google Scholar]
  122. Tynan CJ, Roberts SK, Rolfe DJ, Clarke DT, Loeffler HH. 122.  et al. 2011. Human epidermal growth factor receptor (EGFR) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Mol. Cell. Biol. 31:2241–52 [Google Scholar]
  123. Arkhipov A, Shan Y, Kim ET, Shaw DE. 123.  2014. Membrane interaction of bound ligands contributes to the negative binding cooperativity of the EGF receptor. PLOS Comput. Biol. 10:e1003742 [Google Scholar]
  124. Arkhipov A, Shan Y, Kim ET, Dror RO, Shaw DE. 124.  2013. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. eLife 2:e00708 [Google Scholar]
  125. Qiu C, Tarrant MK, Boronina T, Longo PA, Kavran JM. 125.  et al. 2009. In vitro enzymatic characterization of near full length EGFR in activated and inhibited states. Biochemistry 48:6624–32 [Google Scholar]
  126. Mi LZ, Grey MJ, Nishida N, Walz T, Lu C, Springer TA. 126.  2008. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs. Biochemistry 47:10314–23 [Google Scholar]
  127. Wang Z, Longo PA, Tarrant MK, Kim K, Head S. 127.  et al. 2011. Mechanistic insights into the activation of oncogenic forms of EGF receptor. Nat. Struct. Mol. Biol. 18:1388–93 [Google Scholar]
  128. Mi LZ, Lu C, Li Z, Nishida N, Walz T, Springer TA. 128.  2011. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor. Nat. Struct. Mol. Biol. 18:984–89 [Google Scholar]
  129. Lu C, Mi LZ, Schürpf T, Walz T, Springer TA. 129.  2012. Mechanisms for kinase-mediated dimerization of the epidermal growth factor receptor. J. Biol. Chem. 287:38244–53 [Google Scholar]
  130. Gadella TW Jr, Jovin TM. 130.  1995. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol. 129:1543–58 [Google Scholar]
  131. Martin-Fernandez M, Clarke DT, Tobin MJ, Jones SV, Jones GR. 131.  2002. Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling. Biophys. J. 82:2415–27 [Google Scholar]
  132. Sako Y, Minoghchi S, Yanagida T. 132.  2000. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2:168–72 [Google Scholar]
  133. Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, van Bergen en Henegouwen PMP. 133.  et al. 2011. ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat. Struct. Mol. Biol. 18:1244–49 [Google Scholar]
  134. Nagy P, Claus J, Jovin TM, Arndt-Jovin DJ. 134.  2010. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis. PNAS 107:16524–29 [Google Scholar]
  135. Saffarian S, Li Y, Elson EL, Pike LJ. 135.  2007. Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis. Biophys. J. 93:1021–31 [Google Scholar]
  136. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I. 136.  2010. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464:783–87 [Google Scholar]
  137. Clayton AH, Walker F, Orchard SG, Henderson C, Fuchs D. 137.  et al. 2005. Ligand-induced dimer–tetramer transition during the activation of the cell surface epidermal growth factor receptor A multidimensional microscopy analysis. J. Biol. Chem. 280:30392–99 [Google Scholar]
  138. Clayton AH, Orchard SG, Nice EC, Posner RG, Burgess AW. 138.  2008. Predominance of activated EGFR higher-order oligomers on the cell surface. Growth Factors 26:316–24 [Google Scholar]
  139. Kozer N, Barua D, Henderson C, Nice EC, Burgess AW. 139.  et al. 2014. Recruitment of the adaptor protein Grb2 to EGFR tetramers. Biochemistry 53:2594–604 [Google Scholar]
  140. Gómez A, Volff JN, Hornung U, Schartl M, Wellbrock C. 140.  2004. Identification of a second egfr gene in Xiphophorus uncovers an expansion of the epidermal growth factor receptor family in fish. Mol. Biol. Evol. 21:266–75 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error