Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein–like probes, including near-infrared fluorescence, independence of oxygen, small size, and photosensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. van der Horst MA, Hellingwerf KJ. 1.  2004. Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc. Chem. Res 37:13–20 [Google Scholar]
  2. Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ. 2.  2012. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol. Plant 5:533–44 [Google Scholar]
  3. Rockwell NC, Lagarias JC. 3.  2010. A brief history of phytochromes. ChemPhysChem 11:1172–80 [Google Scholar]
  4. Losi A, Gärtner W. 4.  2012. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu. Rev. Plant Biol. 63:49–72 [Google Scholar]
  5. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T. 5.  et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64 [Google Scholar]
  6. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S. 6.  et al. 2011. The microbial opsin family of optogenetic tools. Cell 147:1446–57 [Google Scholar]
  7. Looger LL. 7.  2012. Running in reverse: rhodopsins sense voltage. Nat. Methods 9:43–44 [Google Scholar]
  8. Gomelsky M, Klug G. 8.  2002. BLUF: A novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem. Sci. 27:497–500 [Google Scholar]
  9. Selby CP, Sancar A. 9.  2012. The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. Biochemistry 51:167–71 [Google Scholar]
  10. Ulijasz AT, Vierstra RD. 10.  2011. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. Curr. Opin. Plant Biol. 14:498–506 [Google Scholar]
  11. Bellini D, Papiz MZ. 11.  2012. Structure of bacteriophytochrome and light-stimulated protomer swapping with a gene repressor. Structure 20:1436–46 [Google Scholar]
  12. Tarutina M, Ryjenkov DA, Gomelsky M. 12.  2006. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J. Biol. Chem. 281:34751–58 [Google Scholar]
  13. Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC. 13.  et al. 2014. Eukaryotic algal phytochromes span the visible spectrum. PNAS 111:3871–76 [Google Scholar]
  14. Giraud E, Verméglio A. 14.  2008. Bacteriophytochromes in anoxygenic photosynthetic bacteria. Photosynth. Res. 97:141–53 [Google Scholar]
  15. Auldridge ME, Forest KT. 15.  2011. Bacterial phytochromes: more than meets the light. Crit. Rev. Biochem. Mol. Biol. 46:67–88 [Google Scholar]
  16. Piatkevich KD, Subach FV, Verkhusha VV. 16.  2013. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 42:3441–52Provides in-depth analysis and perspectives on the use of bacterial phytochromes for engineering of NIR optical tools including fluorescent proteins, biosensors, and optogenetic tools. [Google Scholar]
  17. Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD. 17.  2014. Crystal structure of the photosensing module from red/far-red light–absorbing plant phytochrome. PNAS 111:10179–84 [Google Scholar]
  18. Takala H, Björling A, Berntsson O, Lehtivuori H, Niebling S. 18.  et al. 2014. Signal amplification and transduction in phytochrome photosensors. Nature 509:245–48 [Google Scholar]
  19. Shcherbakova DM, Subach OM, Verkhusha VV. 19.  2012. Red fluorescent proteins: advanced imaging applications and future design. Angew. Chem. Int. Ed. 51:10724–38 [Google Scholar]
  20. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR. 20.  2000. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–10 [Google Scholar]
  21. Drepper T, Eggert T, Circolone F, Heck A, Krauss U. 21.  et al. 2007. Reporter proteins for in vivo fluorescence without oxygen. Nat. Biotechnol. 25:443–45 [Google Scholar]
  22. Walter J, Hausmann S, Drepper T, Puls M, Eggert T, Dihné M. 22.  2012. Flavin mononucleotide-based fluorescent proteins function in mammalian cells without oxygen requirement. PLOS ONE 7:e43921 [Google Scholar]
  23. Wingen M, Potzkei J, Endres S, Casini G, Rupprecht C. 23.  et al. 2014. The photophysics of LOV-based fluorescent proteins—new tools for cell biology. Photochem. Photobiol. Sci. 13:875–83 [Google Scholar]
  24. Chapman S, Faulkner C, Kaiserli E, Garcia-Mata C, Savenkov EI. 24.  et al. 2008. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. PNAS 105:20038–43 [Google Scholar]
  25. Christie JM, Hitomi K, Arvai AS, Hartfield KA, Mettlen M. 25.  et al. 2012. Structural tuning of the fluorscent protein iLOV for improved photostability. J. Biol. Chem. 287:22295–304Describes advanced LOV-based fluorescent protein phiLOV 2.1 engineered using extensive structural and biochemical analyses. [Google Scholar]
  26. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB. 26.  et al. 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLOS Biol. 9:e1001041Explores the photosensitizer properties of LOV-derived proteins to develop an FP serving as the singlet oxygen generator (miniSOG), which allowed correlative light and electron microscopy and chromophore-assisted light inactivation. [Google Scholar]
  27. Ruiz-González R, Cortajarena AL, Mejias SH, Agut M, Nonell S, Flors C. 27.  2013. Singlet oxygen generation by the genetically encoded tag miniSOG. J. Am. Chem. Soc. 135:9564–67 [Google Scholar]
  28. Lin JY, Sann SB, Zhou K, Nabavi S, Proulx CD. 28.  et al. 2013. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79:241–53 [Google Scholar]
  29. Qi YB, Garren EJ, Shu X, Tsien RY, Jin Y. 29.  2012. Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. PNAS 109:7499–504 [Google Scholar]
  30. Ryumina AP, Serebrovskaya EO, Shirmanova MV, Snopova LB, Kuznetsova MM. 30.  et al. 2013. Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochim. Biophys. Acta 1830:5059–67 [Google Scholar]
  31. Losi A, Gärtner W, Raffelberg S, Cella Zanacchi F, Bianchini P. 31.  et al. 2013. A photochromic bacterial photoreceptor with potential for super-resolution microscopy. Photochem. Photobiol. Sci. 12:231–35 [Google Scholar]
  32. Weissleder R. 32.  2001. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–17 [Google Scholar]
  33. Auldridge ME, Satyshur KA, Anstrom DM, Forest KT. 33.  2012. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287:7000–9 [Google Scholar]
  34. Toh KC, Stojković EA, van Stokkum IH, Moffat K, Kennis JT. 34.  2011. Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Phys. Chem. Chem. Phys. 13:11985–97 [Google Scholar]
  35. Sun YF, Xu JG, Tang K, Miao D, Gärtner W. 35.  et al. 2014. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin. Photochem. Photobiol. Sci. 13:757–63 [Google Scholar]
  36. Yang X, Kuk J, Moffat K. 36.  2008. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. PNAS 105:14715–20 [Google Scholar]
  37. Fischer AJ, Lagarias JC. 37.  2004. Harnessing phytochrome's glowing potential. PNAS 101:17334–39 [Google Scholar]
  38. Fischer AJ, Rockwell NC, Jang AY, Ernst LA, Waggoner AS. 38.  et al. 2005. Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes. Biochemistry 44:15203–15 [Google Scholar]
  39. Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V. 39.  et al. 2009. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–7 [Google Scholar]
  40. Yu D, Gustafson WC, Han C, Lafaye C, Noirclerc-Savoye M. 40.  et al. 2014. An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging. Nat. Commun. 5:3626 [Google Scholar]
  41. Lehtivuori H, Rissanen I, Takala H, Bamford J, Tkachenko NV, Ihalainen JA. 41.  2013. Fluorescence properties of the chromophore-binding domain of bacteriophytochrome from Deinococcus radiodurans. J. Phys. Chem. B 117:11049–57 [Google Scholar]
  42. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV. 42.  2011. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29:757–61 [Google Scholar]
  43. Shcherbakova DM, Verkhusha VV. 43.  2013. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10:751–54Reports a series of spectrally distinct NIR FPs, called iRFPs, engineered from bacterial phytochromes, demonstrating their possibilities for noninvasive multicolor imaging in living animals. [Google Scholar]
  44. Jiguet-Jiglaire C, Cayol M, Mathieu S, Jeanneau C, Bouvier-Labit C. 44.  et al. 2014. Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues. J. Biomed. Opt. 19:16019 [Google Scholar]
  45. Sanders TA, Llagostera E, Barna M. 45.  2013. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497:628–32 [Google Scholar]
  46. Zhu B, Wu G, Robinson H, Wilganowski N, Hall MA. 46.  et al. 2013. Tumor margin detection using quantitative NIRF molecular imaging targeting EpCAM validated by far red gene reporter iRFP. Mol. Imaging Biol. 15:560–68 [Google Scholar]
  47. Krumholz A, Shcherbakova DM, Xia J, Wang LV, Verkhusha VV. 47.  2014. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci. Rep. 4:3939 [Google Scholar]
  48. Zhang J, Wu XJ, Wang ZB, Chen Y, Wang X. 48.  et al. 2010. Fused-gene approach to photoswitchable and fluorescent biliproteins. Angew. Chem. Int. Ed. 49:5456–58 [Google Scholar]
  49. Piatkevich KD, Subach FV, Verkhusha VV. 49.  2013. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat. Commun. 4:2153 [Google Scholar]
  50. Potzkei J, Kunze M, Drepper T, Gensch T, Jaeger KE, Büchs J. 50.  2012. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol. 10:28 [Google Scholar]
  51. Gu Z, Zhao M, Sheng Y, Bentolila LA, Tang Y. 51.  2011. Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal. Chem. 83:2324–29 [Google Scholar]
  52. Filonov GS, Verkhusha VV. 52.  2013. A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chem. Biol. 20:1078–86Describes the first NIR reporter for studies of PPIs by bimolecular fluorescence complementation assay, called iSplit, which enabled noninvasive imaging of model interactions in living animals. [Google Scholar]
  53. Tchekanda E, Sivanesan D, Michnick SW. 53.  2014. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat. Methods 11:641–44 [Google Scholar]
  54. Stepanenko OV, Bublikov GS, Stepanenko OV, Shcherbakova DM, Verkhusha VV. 54.  et al. 2014. A knot in the protein structure—probing the near-infrared fluorescent protein iRFP designed from a bacterial phytochrome. FEBS J. 281:2284–98 [Google Scholar]
  55. Strickland D, Yao X, Gawlak G, Rosen MK, Gardner KH, Sosnick TR. 55.  2010. Rationally improving LOV domain–based photoswitches. Nat. Methods 7:623–26 [Google Scholar]
  56. Strickland D, Moffat K, Sosnick TR. 56.  2008. Light-activated DNA binding in a designed allosteric protein. PNAS 105:10709–14 [Google Scholar]
  57. Zoltowski BD, Vaccaro B, Crane BR. 57.  2009. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5:827–34 [Google Scholar]
  58. Wu YI, Wang X, He L, Montell D, Hahn KM. 58.  2011. Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol. 497:393–407 [Google Scholar]
  59. Hahn KM, Kuhlman B. 59.  2010. Hold me tightly LOV. Nat. Methods 7:595 597 [Google Scholar]
  60. Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM. 60.  et al. 2007. Conformational switching in the fungal light sensor Vivid. Science 316:1054–57 [Google Scholar]
  61. Zoltowski BD, Crane BR. 61.  2008. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 47:7012–19 [Google Scholar]
  62. Sawa M, Nusinow DA, Kay SA, Imaizumi T. 62.  2007. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–65 [Google Scholar]
  63. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I. 63.  et al. 2009. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–8 [Google Scholar]
  64. Mills E, Chen X, Pham E, Wong S, Truong K. 64.  2012. Engineering a photoactivated caspase-7 for rapid induction of apoptosis. ACS Synth. Biol. 1:75–82 [Google Scholar]
  65. Lungu OI, Hallett RA, Choi EJ, Aiken MJ, Hahn KM, Kuhlman B. 65.  2012. Designing photoswitchable peptides using the AsLOV2 domain. Chem. Biol. 19:507–17 [Google Scholar]
  66. Strickland D, Lin Y, Wagner E, Hope CM, Zayner J. 66.  et al. 2012. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9:379–84Describes the LOV domain–based TULIP system, which allows the control of versatile protein interactions with spatiotemporal resolution. [Google Scholar]
  67. Wang X, Chen X, Yang Y. 67.  2012. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9:266–69 [Google Scholar]
  68. Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD. 68.  et al. 2014. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10:196–202 [Google Scholar]
  69. Zoltowski BD, Motta-Mena LB, Gardner KH. 69.  2013. Blue light-induced dimerization of a bacterial LOV-HTH DNA-binding protein. Biochemistry 52:6653–61 [Google Scholar]
  70. Grusch M, Schelch K, Riedler R, Reichhart E, Differ C. 70.  et al. 2014. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 33:1713–26 [Google Scholar]
  71. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE. 71.  2009. Induction of protein-protein interactions in live cells using light. Nat. Biotechnol. 27:941–45 [Google Scholar]
  72. Polstein LR, Gersbach CA. 72.  2014. Light-inducible gene regulation with engineered zinc finger proteins. Methods Mol. Biol. 1148:89–107 [Google Scholar]
  73. Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S. 73.  et al. 2007. Fast manipulation of cellular cAMP level by light in vivo. Nat. Methods 4:39–42 [Google Scholar]
  74. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R. 74.  et al. 2011. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286:1181–88 [Google Scholar]
  75. Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M. 75.  2010. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J. Biol. Chem. 285:41501–8 [Google Scholar]
  76. Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. 76.  2013. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10:249–52 [Google Scholar]
  77. Wend S, Wagner HJ, Müller K, Zurbriggen MD, Weber W, Radziwill G. 77.  2014. Optogenetic control of protein kinase activity in mammalian cells. ACS Synth. Biol. 3:280–85 [Google Scholar]
  78. Kim N, Kim JM, Lee M, Kim CY, Chang KY, Heo WD. 78.  2014. Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem. Biol. 21:903–12 [Google Scholar]
  79. Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P. 79.  2012. Optogenetic control of phosphoinositide metabolism. PNAS 109:e2316–23 [Google Scholar]
  80. Lee S, Park H, Kyung T, Kim NY, Kim S. 80.  et al. 2014. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11:633–36Homo-oligomerization of CRY2, followed by its heterodimerization with its CIB1 partner, was efficiently applied for inhibition of protein activity by its light-inducible trapping in clusters. [Google Scholar]
  81. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M. 81.  et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–76Applies the LITE system, consisting of CRY2 with TALE fusion, for modulation of mammalian endogenous gene expression and targeted epigenetic chromatin modifications. [Google Scholar]
  82. Ryu MH, Kang IH, Nelson MD, Jensen TM, Lyuksyutova AI. 82.  et al. 2014. Engineering adenylate cyclases regulated by near-infrared window light. PNAS 111:10167–72 [Google Scholar]
  83. Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A. 83.  2011. PACα–an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J. Neurochem. 116:616–25 [Google Scholar]
  84. Gasser C, Taiber S, Yeh CM, Wittig CH, Hegemann P. 84.  et al. 2014. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. PNAS 111:8803–8Describes the bacteriophytochrome-based NIR-light-activated phosphodiesterase, which enabled degradation of second messengers such as cGMP and cAMP in a light-controllable manner. [Google Scholar]
  85. Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. 85.  2009. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. PNAS 106:18225–30 [Google Scholar]
  86. Ni M, Tepperman JM, Quail PH. 86.  1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–84 [Google Scholar]
  87. Zhu Y, Tepperman JM, Fairchild CD, Quail PH. 87.  2000. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. PNAS 97:13419–24 [Google Scholar]
  88. Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. 88.  2002. A light-switchable gene promoter system. Nat. Biotechnol. 20:1041–44 [Google Scholar]
  89. Levskaya A, Weiner OD, Lim WA, Voigt CA. 89.  2009. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461:997–1001 [Google Scholar]
  90. Müller K, Engesser R, Metzger S, Schulz S, Kämpf MM. 90.  et al. 2013. A red/far-red light–responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41:e77Describes the first NIR-light optogenetic tool based on reversible PhyB–PIF6 interactions for control of gene expression in mammalian cells, which requires a supply of exogenous PCB chromophore. [Google Scholar]
  91. Müller K, Engesser R, Timmer J, Nagy F, Zurbriggen MD, Weber W. 91.  2013. Synthesis of phycocyanobilin in mammalian cells. Chem. Commun. 49:8970–72 [Google Scholar]
  92. Guo Q, Wang X, Tibbitt MW, Anseth KS, Montell DJ, Elisseeff JH. 92.  2012. Light activated cell migration in synthetic extracellular matrices. Biomaterials 33:8040–46 [Google Scholar]
  93. Peter E, Dick B, Baeurle SA. 93.  2012. Signaling pathway of a photoactivable Rac1-GTPase in the early stages. Proteins 80:1350–62 [Google Scholar]
  94. Rao MV, Chu PH, Hahn KM, Zaidel-Bar R. 94.  2013. An optogenetic tool for the activation of endogenous diaphanous-related formins induces thickening of stress fibers without an increase in contractility. Cytoskeleton 70:394–407 [Google Scholar]
  95. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. 95.  2010. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7:973–75 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error