Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Perlack RD, Wright L, Turhollow A, Graham R, Stokes B, Erbach D. 1.  2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply Report DOE/GO-102005-2135. US Dep. Energy, Oak Ridge Natl. Lab., Oak Ridge, TN [Google Scholar]
  2. Perlack R, Stokes B. 2.  2011. U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Report ORNL/TM-2011/224. US Dep. Energy, Oak Ridge Natl. Lab., Oak Ridge, TN [Google Scholar]
  3. Erickson B, Nelson JE, Winters P. 3.  2011. Perspectives on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7:176–85 [Google Scholar]
  4. West T, Dunphy-Guzman K, Sun A, Malczynski L, Reichmuth D. 4.  et al. 2009. Feasibility, economics, and environmental impact of producing 90 billion gallons of ethanol per year by 2030 Report SAND2009-3076J. Sandia Natl. Lab., Livermore, CA [Google Scholar]
  5. Humbird D, Davis R, Tao L, Kinchin C, Hsu D. 5.  et al. 2011. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol Report TP-5100-47764. Natl. Renew. Energy Lab., Golden, CO [Google Scholar]
  6. Chang M. 6.  2007. Harnessing energy from plant biomass. Curr. Opin. Chem. Biol. 11:677–84 [Google Scholar]
  7. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR. 7.  et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–7 [Google Scholar]
  8. Glass NL, Schmoll M, Cate JHD, Coradetti S. 8.  2013. Plant cell wall deconstruction by ascomycete fungi. Annu. Rev. Microbiol. 67:477–98 [Google Scholar]
  9. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 9.  2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506–77 [Google Scholar]
  10. Zhang YHP, Lynd L. 10.  2004. Towards an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. Biotechnol. Bioeng. 88:797–824 [Google Scholar]
  11. Zhang YHP, Himmel ME, Mielenz JR. 11.  2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24:452–81 [Google Scholar]
  12. Payne CM, Bomble YJ, Taylor CB, McCabe C, Himmel ME. 12.  et al. 2011. Multiple functions of aromatic–carbohydrate interactions in a processive cellulase examined with molecular simulation. J. Biol. Chem. 286:41028–35 [Google Scholar]
  13. Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT. 13.  2014. Binding site dynamics and aromatic–carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. J. Phys. Chem. B 117:4924–33 [Google Scholar]
  14. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. 14.  2012. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5:45–56 [Google Scholar]
  15. Sweeney MD, Xu F. 15.  2012. Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–63 [Google Scholar]
  16. Dimarogona M, Topakas E, Christakopoulos P. 16.  2013. Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Appl. Microbiol. Biotechnol. 97:8455–65 [Google Scholar]
  17. Raguz S, Yagüe E, Wood DA, Thurston CF. 17.  1992. Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus. Gene 119:183–90 [Google Scholar]
  18. Armesilla AL, Thurston CF, Yagüe E. 18.  1994. CEL1: a novel cellulose binding protein secreted by Agaricus bisporus during growth on crystalline cellulose. FEMS Microbiol. Lett. 116:293–99 [Google Scholar]
  19. Levasseur A, Drula E, Lombard V, Coutinho P, Henrissat B. 19.  2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6:41–54 [Google Scholar]
  20. Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Penttilä M, Tjerneld F. 20.  2001. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur. J. Biochem. 268:6498–507 [Google Scholar]
  21. Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M. 21.  2008. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J. Mol. Biol. 383:144–54 [Google Scholar]
  22. Vaaje-Kolstad G, Houston DR, Riemen AHR, Eijsink VGH, van Aalten DMF. 22.  2005. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem. 280:11313–19 [Google Scholar]
  23. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. 23.  2005. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem. 280:28492–97 [Google Scholar]
  24. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S. 24.  et al. 2003. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278:31988–97 [Google Scholar]
  25. Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA. 25.  et al. 2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. PNAS 106:22157–62 [Google Scholar]
  26. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J. 26.  et al. 2010. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 76:3599–610 [Google Scholar]
  27. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M. 27.  et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. PNAS 106:1954–59 [Google Scholar]
  28. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P. 28.  et al. 2011. The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–65 [Google Scholar]
  29. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen J-C. 29.  et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–16 [Google Scholar]
  30. Brown K, Harris P, Zaretsky E, Re E, Vlasenko E. 30.  et al. 2008. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity US Patent Appl. 11/046,124 [Google Scholar]
  31. Dotson WD, Greenier J, Ding H. 31.  2007. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity. US Patent 7361495 B2 [Google Scholar]
  32. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H. 32.  et al. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–22 [Google Scholar]
  33. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Navarro Poulsen J-C. 33.  et al. 2011. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. PNAS 108:15079–84 [Google Scholar]
  34. Phillips CM, Beeson WT, Cate JHD, Marletta MA. 34.  2011. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6:1399–406 [Google Scholar]
  35. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. 35.  2011. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl. Environ. Microbiol. 77:7007–15 [Google Scholar]
  36. Henriksson G, Johansson G, Pettersson G. 36.  2000. A critical review of cellobiose dehydrogenases. J. Biotechnol. 78:93–113 [Google Scholar]
  37. Zamocky M, Ludwig R, Peterbauer C, Hallberg M, Divne C. 37.  et al. 2006. Cellobiose dehydrogenase—a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr. Protein Pept. Sci. 7:255–80 [Google Scholar]
  38. Mason N, Nicholls P, Wilson M. 38.  2003. Rotting by radicals—the role of cellobiose oxidoreductase. Biochem. Soc. Trans. 31:1335–36 [Google Scholar]
  39. Beeson WT, Phillips CM, Cate JHD, Marletta MA. 39.  2012. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Biol. Chem. 134:890–92 [Google Scholar]
  40. Li X, Beeson WT, Phillips CM, Marletta MA, Cate JHD. 40.  2012. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–61 [Google Scholar]
  41. Wu M, Beckham GT, Larsson AM, Ishida T, Kim S. 41.  et al. 2013. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J. Biol. Chem. 288:12828–39 [Google Scholar]
  42. Aachmann FL, Sørlie M, Skjåk-Bræk G, Eijsink VGH, Vaaje-Kolstad G. 42.  2012. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. PNAS 109:18779–84 [Google Scholar]
  43. Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M. 43.  et al. 2012. Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J. Mol. Biol. 416:239–54 [Google Scholar]
  44. Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ. 44.  et al. 2013. The copper active site of CBM33 polysaccharide oxygenases. J. Am. Chem. Soc. 135:6069–77 [Google Scholar]
  45. Gudmundsson M, Kim S, Wu M, Ishida T, Momeni MH. 45.  et al. 2014. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J. Biol. Chem. 289:18782–92 [Google Scholar]
  46. Hemsworth GR, Henrissat B, Davies GJ, Walton PH. 46.  2014. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10:122–26 [Google Scholar]
  47. Forsberg Z, Mackenzie AK, Sorlie M, Rohr AK, Helland R. 47.  et al. 2014. Structural and functional characterization of a conserved pair of bacterial cellulose–oxidizing lytic polysaccharide monooxygenases. PNAS 111:8446–51 [Google Scholar]
  48. Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN, Fox BG. 48.  2014. Evolution of substrate specificity in bacterial AA10 LPMOs. Biotechnol. Biofuels 7:109 [Google Scholar]
  49. Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G. 49.  et al. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry–dynamical simulated annealing. Biochemistry 28:7241–57 [Google Scholar]
  50. Lieberman RL, Rosenzweig AC. 50.  2005. The quest for the particulate methane monooxygenase active site. J. Chem. Soc. Dalton Trans. 21:3390–96 [Google Scholar]
  51. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. 51.  2010. Oxidation of methane by a biological dicopper centre. Nature 465:115–19 [Google Scholar]
  52. Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG. 52.  2006. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded CuICuII forms. J. Am. Chem. Soc. 128:5834–50 [Google Scholar]
  53. Arnesano F, Banci L, Bertini I, Mangani S, Thompsett AR. 53.  2003. A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. PNAS 100:3814–19 [Google Scholar]
  54. Bertini I, Sigel A, Sigel H. 54.  2001. Handbook on Metalloproteins Basel/New York: Marcel Dekker [Google Scholar]
  55. Persson I, Persson P, Sandström M, Ullström A-S. 55.  2002. Structure of Jahn–Teller distorted solvated copper(II) ions in solution, and in solids with apparently regular octahedral coordination geometry. J. Chem. Soc. Dalton Trans. 7:1256–65 [Google Scholar]
  56. Hemsworth GR, Davies GJ, Walton PH. 56.  2013. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr. Opin. Chem. Biol. 23:660–68 [Google Scholar]
  57. Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR. 57.  et al. 2014. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. PNAS 111:8797–802 [Google Scholar]
  58. Dimarogona M, Topakas E, Olsson L, Christakopoulos P. 58.  2012. Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour. Technol. 110:480–87 [Google Scholar]
  59. Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AKG. 59.  et al. 2012. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl. Environ. Microbiol. 78:6161–71 [Google Scholar]
  60. Stubbe J, Nocera DG, Yee CS, Chang MCY. 60.  2003. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?. Chem. Rev. 103:2167–202 [Google Scholar]
  61. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA. 61.  et al. 2013. Proton-coupled electron transfer. Chem. Rev. 112:4016–93 [Google Scholar]
  62. Cordes M, Giese B. 62.  2009. Electron transfer in peptides and proteins. Chem. Soc. Rev. 38:892–901 [Google Scholar]
  63. Gardner JG, Crouch L, Labourel A, Forsberg Z, Bukhman YV. 63.  et al. 2014. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium. Mol. Microbiol. 94:1121–33 [Google Scholar]
  64. Nishiyama Y, Langan P, Chanzy H. 64.  2002. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124:9074–82 [Google Scholar]
  65. Vu VV, Beeson WT, Phillips CM, Cate JHD, Marletta MA. 65.  2014. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J. Am. Chem. Soc. 136:562–65 [Google Scholar]
  66. Blanksby SJ, Ellison GB. 66.  2003. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36:255–63 [Google Scholar]
  67. Taylor CB, Talib MF, McCabe C, Bu L, Adney WS. 67.  et al. 2012. Computational investigation of glycosylation effects on a family 1 carbohydrate–binding module. J. Biol. Chem. 287:3147–55 [Google Scholar]
  68. Forsberg Z, Røhr ÅK, Mekasha S, Andersson KK, Eijsink VGH. 68.  et al. 2014. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–56 [Google Scholar]
  69. Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM. 69.  et al. 2013. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl. Environ. Microbiol. 79:488–96 [Google Scholar]
  70. Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH. 70.  et al. 2012. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLOS ONE 6:e27807 [Google Scholar]
  71. Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y. 71.  et al. 2011. Cleavage of cellulose by a CBM33 protein. Protein Sci. 20:1479–83 [Google Scholar]
  72. Beeson WT, Iavarone AT, Hausmann CD, Cate JH, Marletta MA. 72.  2011. Extracellular aldonolactonase from Myceliophthora thermophila. Appl Environ Microbiol 77:650–56 [Google Scholar]
  73. Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D. 73.  et al. 2013. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J. Biol. Chem. 289:2632–42 [Google Scholar]
  74. Klinman JP. 74.  2006. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem. 281:3013–16 [Google Scholar]
  75. Evans JP, Ahn K, Klinman JP. 75.  2003. Evidence that dioxygen and substrate activation are tightly coupled in dopamine β-monooxygenase: implications for the reactive oxygen species. J. Biol. Chem. 278:49691–98 [Google Scholar]
  76. Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH. 76.  et al. 2011. Copper dioxygen (bio)inorganic chemistry. Faraday Discuss. 148:11–39 [Google Scholar]
  77. Himes RA, Karlin KD. 77.  2009. Copper-dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO). Curr. Opin. Chem. Biol. 13:119–31 [Google Scholar]
  78. Mirica LM, Ottenwaelder X, Stack TDP. 78.  2004. Structure and spectroscopy of copper–dioxygen complexes. Chem. Rev. 104:1013–46 [Google Scholar]
  79. Lewis EA, Tolman WB. 79.  2004. Reactivity of dioxygen–copper systems. Chem. Rev. 104:1047–76 [Google Scholar]
  80. Klinman JP. 80.  1996. Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem. Rev. 96:2541–62 [Google Scholar]
  81. Prigge ST, Eipper BA, Mains RE, Amzel LM. 81.  2004. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304:864–67 [Google Scholar]
  82. Cramer CJ, Tolman WB. 82.  2007. Mononuclear Cu–O2 complexes: geometries, spectroscopic properties, electronic structures, and reactivity. Acc. Chem. Res. 40:601–8 [Google Scholar]
  83. Chen P, Solomon EI. 83.  2004. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine α–hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. J. Am. Chem. Soc. 126:4991–5000 [Google Scholar]
  84. Denisov IG, Makris TM, Sligar SG, Schlichting I. 84.  2005. Structure and chemistry of cytochrome P450. Chem. Rev. 105:2253–78 [Google Scholar]
  85. Donoghue PJ, Tehranchi J, Cramer CJ, Sarangi R, Solomon EI, Tolman WB. 85.  2011. Rapid C–H bond activation by a monocopper(III)–hydroxide complex. J. Am. Chem. Soc. 133:17602–5 [Google Scholar]
  86. Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT. 86.  2014. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. PNAS 111:149–54 [Google Scholar]
  87. Bollinger JM Jr., Diao Y, Matthews ML, Xing G, Krebs C. 87.  2009. myo-Inositol oxygenase: a radical new pathway for O2 and C–H activation at a nonheme diiron cluster. J. Chem. Soc. Dalton Trans. 6:905–14 [Google Scholar]
  88. Fujii T, Yamaguchi S, Hirota S, Masuda H. 88.  2008. H-atom abstraction reaction for organic substrates via mononuclear copper(II)-superoxo species as a model for DbM and PHM. J. Chem. Soc. Dalton Trans. 1:164–70 [Google Scholar]
  89. Cho J, Woo J, Han JE, Kubo M, Ogura T, Nam W. 89.  2011. Chromium(V)-oxo and chromium(III)-superoxo complexes bearing a macrocyclic TMC ligand in hydrogen atom abstraction reactions. Chem. Sci. 2:2057–62 [Google Scholar]
  90. Makris TM, von Koenig K, Schlichting I, Sligar SG. 90.  2007. Alteration of P450 distal pocket solvent leads to impaired proton delivery and changes in heme geometry. Biochemistry 46:14129–40 [Google Scholar]
  91. Floudas D, Binder M, Riley R, Barry K, Blanchette RA. 91.  et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–19 [Google Scholar]
  92. Taylor JW, Berbee ML. 92.  2006. Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–49 [Google Scholar]
  93. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA. 93.  et al. 2013. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 79:4620–34 [Google Scholar]
  94. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J. 94.  et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotech. 29:922–27 [Google Scholar]
  95. MacDonald J, Doering M, Canam T, Gong Y, Guttman DS. 95.  et al. 2011. Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl. Environ. Microbiol. 77:3211–18 [Google Scholar]
  96. Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G. 96.  et al. 2009. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl. Environ. Microbiol. 75:4058–68 [Google Scholar]
  97. Mahajan S, Master E. 97.  2010. Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl. Microbiol. Biotechnol. 86:1903–14 [Google Scholar]
  98. Chen S, Wilson DB. 98.  2007. Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J. Bacteriol. 189:6260–65 [Google Scholar]
  99. Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG. 99.  2013. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci. Rep. 3:1330–39 [Google Scholar]
  100. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R. 100.  et al. 2013. MycoCosm portal: gearing up for 1,000 fungal genomes. Nucleic Acids Res. Database 42:699–704 [Google Scholar]
  101. McClendon S, Batth T, Petzold C, Adams P, Simmons B, Singer S. 101.  2012. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol. Biofuels 5:54–62 [Google Scholar]
  102. Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS. 102.  et al. 2007. Enabling a community to dissect an organism: overview of the Neurospora Functional Genomics Project. Adv. Genet. 57:49–96 [Google Scholar]
  103. Loose JSM, Forsberg Z, Fraaije MW, Eijsink VGH, Vaaje-Kolstad G. 103.  2014. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Lett. 588:3435–40 [Google Scholar]
  104. Chaudhuri S, Bruno JC, Alonzo F 3rd, Xayarath B, Cianciotto NP, Freitag NE. 104.  2010. Contribution of chitinases to Listeria monocytogenes pathogenesis. Appl. Environ. Microbiol. 76:7302–5 [Google Scholar]
  105. Paspaliari DK, Loose JSM, Larsen MH, Vaaje-Kolstad G. 105.  2015. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. FEBS J 282921–36 [Google Scholar]
  106. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT. 106.  et al. 2014. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. PNAS 111:6287–92 [Google Scholar]
  107. Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA. 107.  2014. A family of starch-active polysaccharide monooxygenases. PNAS 111:13822–27 [Google Scholar]
  108. Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR. 108.  et al. 2015. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat. Commun. 6:5961 [Google Scholar]
  109. Cannella D, Hsieh CC, Felby C, Jørgensen H. 109.  2012. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol. Biofuels 5:26–35 [Google Scholar]
  110. Olofsson K, Bertilsson M, Liden G. 110.  2008. A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1:7–20 [Google Scholar]
  111. Cannella D, Jørgensen H. 111.  2014. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?. Biotechnol. Bioeng. 111:59–68 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error