1932

Abstract

The RNA polymerase II transcription cycle is often divided into three major stages: initiation, elongation, and termination. Research over the last decade has blurred these divisions and emphasized the tightly regulated transitions that occur as RNA polymerase II synthesizes a transcript from start to finish. Transcription termination, the process that marks the end of transcription elongation, is regulated by proteins that interact with the polymerase, nascent transcript, and/or chromatin template. The failure to terminate transcription can cause accumulation of aberrant transcripts and interfere with transcription at downstream genes. Here, we review the mechanism, regulation, and physiological impact of a termination pathway that targets small noncoding transcripts produced by RNA polymerase II. We emphasize the Nrd1–Nab3–Sen1 pathway in yeast, in which the process has been extensively studied. The importance of understanding small RNA termination pathways is underscored by the need to control noncoding transcription in eukaryotic genomes.

Keyword(s): helicaseNab3Nrd1ribonucleoproteinSen1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034457
2015-06-02
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034457.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034457&mimeType=html&fmt=ahah

Literature Cited

  1. Richard P, Kiss T. 1.  2006. Integrating snoRNP assembly with mRNA biogenesis. EMBO Rep. 7:590–92 [Google Scholar]
  2. Nevins JR, Darnell JE Jr. 2.  1978. Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15:1477–93 [Google Scholar]
  3. Fraser NW, Nevins JR, Ziff E, Darnell JE Jr. 3.  1979. The major late adenovirus type 2 transcription unit: Termination is downstream from the last poly(A) site. J. Mol. Biol. 129:643–56 [Google Scholar]
  4. Zaret KS, Sherman F. 4.  1982. DNA sequence required for efficient transcription termination in yeast. Cell 28:563–73 [Google Scholar]
  5. Darnell JE, Evans R, Fraser N, Goldberg S, Nevins J. 5.  et al. 1978. The definition of transcription units for mRNA. Cold Spring Harb. Symp. Quant. Biol. 42:515–22 [Google Scholar]
  6. Logan J, Falck-Pedersen E, Darnell JE Jr, Shenk T. 6.  1987. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse β maj-globin gene. PNAS 84:8306–10 [Google Scholar]
  7. Ahn SH, Kim M, Buratowski S. 7.  2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13:67–76 [Google Scholar]
  8. Tollervey D. 8.  2004. Molecular biology: termination by torpedo. Nature 432:456–57 [Google Scholar]
  9. Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. 9.  2013. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499:360–63 [Google Scholar]
  10. Core LJ, Waterfall JJ, Lis JT. 10.  2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–48 [Google Scholar]
  11. Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS. 11.  et al. 2008. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–54 [Google Scholar]
  12. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB. 12.  et al. 2008. Divergent transcription from active promoters. Science 322:1849–51 [Google Scholar]
  13. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S. 13.  et al. 2012. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22:1173–83 [Google Scholar]
  14. Carroll KL, Pradhan DA, Granek JA, Clarke ND, Corden JL. 14.  2004. Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol. Cell. Biol. 24:6241–52 [Google Scholar]
  15. Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S. 15.  2006. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24:723–34 [Google Scholar]
  16. Rasmussen TP, Culbertson MR. 16.  1998. The putative nucleic acid helicase Sen1p is required for formation and stability of termini and for maximal rates of synthesis and levels of accumulation of small nucleolar RNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6885–96 [Google Scholar]
  17. Steinmetz EJ, Brow DA. 17.  1996. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein–like protein, Nrd1, and the putative helicase Sen1. Mol. Cell. Biol. 16:6993–7003Describes the original genetic screen that led to the discovery of Nrd1's function. [Google Scholar]
  18. Steinmetz EJ, Conrad NK, Brow DA, Corden JL. 18.  2001. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413:327–31Establishes NNS as the major termination mechanism for small noncoding RNAs. [Google Scholar]
  19. Wilson SM, Datar KV, Paddy MR, Swedlow JR, Swanson MS. 19.  1994. Characterization of nuclear polyadenylated RNA-binding proteins in Saccharomyces cerevisiae. J. Cell Biol. 127:1173–84Presents the original description of the Nab proteins in yeast. [Google Scholar]
  20. Carroll KL, Ghirlando R, Ames JM, Corden JL. 20.  2007. Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 13:361–73 [Google Scholar]
  21. Loya TJ, O'Rourke TW, Degtyareva N, Reines D. 21.  2013. A network of interdependent molecular interactions describes a higher order Nrd1–Nab3 complex involved in yeast transcription termination. J. Biol. Chem. 288:34158–67 [Google Scholar]
  22. O'Rourke TW, Loya TJ, Head PE, Horton JR, Reines D. 22.  2015. Amyloid-like assembly of the low complexity domain of yeast Nab3. Prion 221–9
  23. Nedea E, Nalbant D, Xia D, Theoharis NT, Suter B. 23.  et al. 2008. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol. Cell 29:577–87 [Google Scholar]
  24. Conrad NK, Wilson SM, Steinmetz EJ, Patturajan M, Brow DA. 24.  et al. 2000. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 154:557–71 [Google Scholar]
  25. Hobor F, Pergoli R, Kubicek K, Hrossova D, Bacikova V. 25.  et al. 2011. Recognition of transcription termination signal by the nuclear polyadenylated RNA-binding (NAB) 3 protein. J. Biol. Chem. 286:3645–57 [Google Scholar]
  26. Lunde BM, Horner M, Meinhart A. 26.  2011. Structural insights into cis element recognition of non-polyadenylated RNAs by the Nab3–RRM. Nucleic Acids Res. 39:337–46 [Google Scholar]
  27. Creamer TJ, Darby MM, Jamonnak N, Schaughency P, Hao H. 27.  et al. 2011. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLOS Genet. 7:e1002329 [Google Scholar]
  28. Porrua O, Hobor F, Boulay J, Kubicek K, D'Aubenton-Carafa Y. 28.  et al. 2012. In vivo SELEX reveals novel sequence and structural determinants of Nrd1–Nab3–Sen1-dependent transcription termination. EMBO J. 31:3935–48 [Google Scholar]
  29. Webb S, Hector RD, Kudla G, Granneman S. 29.  2014. PAR-CLIP data indicate that Nrd1–Nab3–dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol. 15:R8 [Google Scholar]
  30. Bacikova V, Pasulka J, Kubicek K, Stefl R. 30.  2014. Structure and semi-sequence-specific RNA binding of Nrd1. Nucleic Acids Res. 42:8024–38 [Google Scholar]
  31. Loya TJ, O'Rourke TW, Reines D. 31.  2013. Yeast Nab3 protein contains a self-assembly domain found in human heterogeneous nuclear ribonucleoprotein C (hnRNP-C) that is necessary for transcription termination. J. Biol. Chem. 288:2111–17 [Google Scholar]
  32. Loya TJ, O'Rourke TW, Reines D. 32.  2012. A genetic screen for terminator function in yeast identifies a role for a new functional domain in termination factor Nab3. Nucleic Acids Res. 40:7476–91 [Google Scholar]
  33. Whitson SR, LeStourgeon WM, Krezel AM. 33.  2005. Solution structure of the symmetric coiled coil tetramer formed by the oligomerization domain of hnRNP C: implications for biological function. J. Mol. Biol. 350:319–37 [Google Scholar]
  34. Alberti S, Halfmann R, King O, Kapila A, Lindquist S. 34.  2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–58 [Google Scholar]
  35. Han TW, Kato M, Xie S, Wu LC, Mirzaei H. 35.  et al. 2012. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–79 [Google Scholar]
  36. Kato M, Han TW, Xie S, Shi K, Du X. 36.  et al. 2012. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–67 [Google Scholar]
  37. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J. 37.  et al. 2013. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–73 [Google Scholar]
  38. Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P. 38.  et al. 2013. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:1049–60 [Google Scholar]
  39. Patturajan M, Wei X, Berezney R, Corden JL. 39.  1998. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 18:2406–15 [Google Scholar]
  40. Steinmetz EJ, Brow DA. 40.  1998. Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. PNAS 95:6699–704 [Google Scholar]
  41. Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C. 41.  et al. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. PNAS 93:6975–80 [Google Scholar]
  42. Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. 42.  2008. The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15:795–804Describes the preferential binding of Nrd1 to the phospho-Ser5 Pol II CTD. [Google Scholar]
  43. Gudipati RK, Villa T, Boulay J, Libri D. 43.  2008. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 15:786–94Shows that the mode of termination relates to Pol II's CTD phosphorylation state. [Google Scholar]
  44. Jenks MH, O'Rourke TW, Reines D. 44.  2008. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol. Cell. Biol. 28:3883–93 [Google Scholar]
  45. Arigo JT, Eyler DE, Carroll KL, Corden JL. 45.  2006. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23:841–51 [Google Scholar]
  46. Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D. 46.  2006. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the Nrd1–Nab3 pathway in genome surveillance. Mol. Cell 23:853–64 [Google Scholar]
  47. Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL. 47.  2011. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA 17:2011–25 [Google Scholar]
  48. Nedea E, He X, Kim M, Pootoolal J, Zhong G. 48.  et al. 2003. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem. 278:33000–10 [Google Scholar]
  49. Riordan DP, Herschlag D, Brown PO. 49.  2011. Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Res. 39:1501–9 [Google Scholar]
  50. Winey M, Culbertson MR. 50.  1988. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118:609–17Presents the original description of the isolation of the SEN mutants. [Google Scholar]
  51. DeMarini DJ, Winey M, Ursic D, Webb F, Culbertson MR. 51.  1992. SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2154–64 [Google Scholar]
  52. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A. 52.  et al. 2003. Global analysis of protein expression in yeast. Nature 425:737–41 [Google Scholar]
  53. Ursic D, Himmel KL, Gurley KA, Webb F, Culbertson MR. 53.  1997. The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res. 25:4778–85 [Google Scholar]
  54. Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA. 54.  2006. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 24:735–46 [Google Scholar]
  55. Ursic D, Chinchilla K, Finkel JS, Culbertson MR. 55.  2004. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res. 32:2441–52 [Google Scholar]
  56. Becherel OJ, Yeo AJ, Stellati A, Heng EY, Luff J. 56.  et al. 2013. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLOS Genet. 9:e1003435 [Google Scholar]
  57. De Amicis A, Piane M, Ferrari F, Fanciulli M, Delia D, Chessa L. 57.  2011. Role of senataxin in DNA damage and telomeric stability. DNA Repair 10:199–209 [Google Scholar]
  58. Suraweera A, Becherel OJ, Chen P, Rundle N, Woods R. 58.  et al. 2007. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J. Cell Biol. 177:969–79 [Google Scholar]
  59. Porrua O, Libri D. 59.  2013. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat. Struct. Mol. Biol. 20:884–91 [Google Scholar]
  60. Kim HD, Choe J, Seo YS. 60.  1999. The sen1+ gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38:14697–710 [Google Scholar]
  61. Chen X, Müller U, Sundling KE, Brow DA. 61.  2014. Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human Senataxin that elicit cerebellar ataxia. Genetics 198:577–90 [Google Scholar]
  62. LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E. 62.  et al. 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121:713–24 [Google Scholar]
  63. Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S. 63.  et al. 2005. A new yeast poly(A) polymerase complex involved in RNA quality control. PLOS Biol. 3:e189 [Google Scholar]
  64. Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME. 64.  et al. 2005. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121:725–37 [Google Scholar]
  65. Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D. 65.  1999. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18:5399–410 [Google Scholar]
  66. Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. 66.  1999. The yeast exosome and human PM-Scl are related complexes of 3′ → 5′ exonucleases. Genes Dev. 13:2148–58 [Google Scholar]
  67. Januszyk K, Lima CD. 67.  2014. The eukaryotic RNA exosome. Curr. Opin. Struct. Biol. 24:132–40 [Google Scholar]
  68. van Hoof A, Lennertz P, Parker R. 68.  2000. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20:441–52 [Google Scholar]
  69. Davis CA, Ares M Jr. 69.  2006. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. PNAS 103:3262–67 [Google Scholar]
  70. Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A. 70.  2009. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–42 [Google Scholar]
  71. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S. 71.  et al. 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–37 [Google Scholar]
  72. Jia H, Wang X, Anderson JT, Jankowsky E. 72.  2012. RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex. PNAS 109:7292–97 [Google Scholar]
  73. Jia H, Wang X, Liu F, Guenther UP, Srinivasan S. 73.  et al. 2011. The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex. Cell 145:890–901 [Google Scholar]
  74. Vasiljeva L, Buratowski S. 74.  2006. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol. Cell 21:239–48 [Google Scholar]
  75. Arigo JT, Carroll KL, Ames JM, Corden JL. 75.  2006. Regulation of yeast NRD1 expression by premature transcription termination. Mol. Cell 21:641–51Demonstrates autoregulation of Nrd1 expression through control of its own premature transcription termination. [Google Scholar]
  76. Grzechnik P, Kufel J. 76.  2008. Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol. Cell 32:247–58 [Google Scholar]
  77. Birse CE, Minvielle-Sebastia L, Lee BA, Keller W, Proudfoot NJ. 77.  1998. Coupling termination of transcription to messenger RNA maturation in yeast. Science 280:298–301 [Google Scholar]
  78. Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K. 78.  et al. 2014. Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol. Cell 55:467–81 [Google Scholar]
  79. Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J. 79.  2004. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18:1227–40 [Google Scholar]
  80. Schneider C, Tollervey D. 80.  2013. Threading the barrel of the RNA exosome. Trends Biochem. Sci. 38:485–93 [Google Scholar]
  81. Cheng H, He X, Moore C. 81.  2004. The essential WD repeat protein Swd2 has dual functions in RNA polymerase II transcription termination and lysine 4 methylation of histone H3. Mol. Cell. Biol. 24:2932–43 [Google Scholar]
  82. Dheur S, Vo LTA, Voisinet-Hakil F, Minet M, Schmitter JM. 82.  et al. 2003. Pti1p and Ref2p found in association with the mRNA 3′ end formation complex direct snoRNA maturation. EMBO J. 22:2831–40 [Google Scholar]
  83. Dichtl B, Aasland R, Keller W. 83.  2004. Functions for S. cerevisiae Swd2p in 3′ end formation of specific mRNAs and snoRNAs and global histone 3 lysine 4 methylation. RNA 10:965–77 [Google Scholar]
  84. Fatica A, Morlando M, Bozzoni I. 84.  2000. Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3′-processing apparatus. EMBO J. 19:6218–29 [Google Scholar]
  85. Ganem C, Devaux F, Torchet C, Jacq C, Quevillon-Cheruel S. 85.  et al. 2003. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast. EMBO J. 22:1588–98 [Google Scholar]
  86. Morlando M, Greco P, Dichtl B, Fatica A, Keller W, Bozzoni I. 86.  2002. Functional analysis of yeast snoRNA and snRNA 3′-end formation mediated by uncoupling of cleavage and polyadenylation. Mol. Cell. Biol. 22:1379–89 [Google Scholar]
  87. Steinmetz EJ, Brow DA. 87.  2003. Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol. Cell. Biol. 23:6339–49 [Google Scholar]
  88. Soares LM, Buratowski S. 88.  2012. Yeast Swd2 is essential because of antagonism between Set1 histone methyltransferase complex and APT (associated with Pta1) termination factor. J. Biol. Chem. 287:15219–31 [Google Scholar]
  89. Rondon AG, Mischo HE, Kawauchi J, Proudfoot NJ. 89.  2009. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol. Cell 36:88–98 [Google Scholar]
  90. Honorine R, Mosrin-Huaman C, Hervouet-Coste N, Libri D, Rahmouni AR. 90.  2011. Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts. Nucleic Acids Res. 39:2809–20 [Google Scholar]
  91. Beggs S, James TC, Bond U. 91.  2012. The polyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p. Nucleic Acids Res. 40:2700–11 [Google Scholar]
  92. Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A. 92.  et al. 2014. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLOS Genet. 10:e1004288 [Google Scholar]
  93. Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W. 93.  et al. 2011. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41:21–32 [Google Scholar]
  94. Buratowski S. 94.  2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36:541–46 [Google Scholar]
  95. McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G. 95.  et al. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–61 [Google Scholar]
  96. Wu X, Rossettini A, Hanes SD. 96.  2003. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA Pol II to inhibit transcription elongation in Saccharomyces cerevisiae. Genetics 165:1687–702 [Google Scholar]
  97. Meinhart A, Cramer P. 97.  2004. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430:223–26 [Google Scholar]
  98. Kopcewicz KA, O'Rourke TW, Reines D. 98.  2007. Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol. Cell. Biol. 27:2821–29Shows the distance dependence of a CUT terminator's use of the NNS–exosome system. [Google Scholar]
  99. Chinchilla K, Rodríguez-Molina JB, Ursic D, Finkel JS, Ansari AZ, Culbertson MR. 99.  2012. Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Eukaryot. Cell 11:417–29 [Google Scholar]
  100. Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD. 100.  et al. 2009. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34:387–93 [Google Scholar]
  101. Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K. 101.  et al. 2007. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–79 [Google Scholar]
  102. Kim M, Suh H, Cho E-J, Buratowski S. 102.  2009. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284:26421–26 [Google Scholar]
  103. Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. 103.  2012. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol. Cell 45:111–22 [Google Scholar]
  104. Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K. 104.  et al. 2009. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29:5455–64 [Google Scholar]
  105. Schwer B, Sanchez AM, Shuman S. 105.  2012. Punctuation and syntax of the RNA polymerase II CTD code in fission yeast. PNAS 109:18024–29 [Google Scholar]
  106. Stiller JW, McConaughy BL, Hall BD. 106.  2000. Evolutionary complementation for polymerase II CTD function. Yeast 16:57–64 [Google Scholar]
  107. Kim H, Erickson B, Luo W, Seward D, Graber JH. 107.  et al. 2010. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17:1279–86 [Google Scholar]
  108. Hintermair C, Heidemann M, Koch F, Descostes N, Gut M. 108.  et al. 2012. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 31:2784–97 [Google Scholar]
  109. Hsin JP, Sheth A, Manley JL. 109.  2011. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334:683–86 [Google Scholar]
  110. Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M. 110.  et al. 2012. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336:1723–25 [Google Scholar]
  111. Schreieck A, Easter AD, Etzold S, Wiederhold K, Lidschreiber M. 111.  et al. 2014. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat. Struct. Mol. Biol. 21:175–79 [Google Scholar]
  112. Hsu PL, Yang F, Smith-Kinnaman W, Yang W, Song JE. 112.  et al. 2014. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD. J. Mol. Biol. 426:2970–81 [Google Scholar]
  113. Yogesha SD, Mayfield JE, Zhang Y. 113.  2014. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA polymerase II. Molecules 19:1481–511 [Google Scholar]
  114. Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D. 114.  et al. 2012. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev. 26:1891–96 [Google Scholar]
  115. Gemmill TR, Wu X, Hanes SD. 115.  2005. Vanishingly low levels of Ess1 prolyl-isomerase activity are sufficient for growth in Saccharomyces cerevisiae. J. Biol. Chem. 280:15510–17 [Google Scholar]
  116. Hanes SD. 116.  2014. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. Biochim. Biophys. Acta 1839:316–33 [Google Scholar]
  117. Hazelbaker DZ, Marquardt S, Wlotzka W, Buratowski S. 117.  2013. Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination. Mol. Cell 49:55–66Demonstrates a kinetic window of susceptibility for Pol II to NNS termination. [Google Scholar]
  118. Rando OJ, Winston F. 118.  2012. Chromatin and transcription in yeast. Genetics 190:351–87 [Google Scholar]
  119. Sheldon KE, Mauger DM, Arndt KM. 119.  2005. A requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3′ end formation. Mol. Cell 20:225–36 [Google Scholar]
  120. Terzi N, Churchman LS, Vasiljeva L, Weissman J, Buratowski S. 120.  2011. H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1–Nab3–Sen1 pathway. Mol. Cell. Biol. 31:3569–83 [Google Scholar]
  121. Tomson BN, Crisucci EM, Heisler LE, Gebbia M, Nislow C, Arndt KM. 121.  2013. Effects of the Paf1 complex and histone modifications on snoRNA 3′-end formation reveal broad and locus-specific regulation. Mol. Cell. Biol. 33:170–82 [Google Scholar]
  122. Tomson BN, Davis CP, Warner MH, Arndt KM. 122.  2011. Identification of a role for histone H2B ubiquitylation in noncoding RNA 3′-end formation through mutational analysis of Rtf1 in Saccharomyces cerevisiae. Genetics 188:273–89 [Google Scholar]
  123. Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K. 123.  et al. 2010. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol. Cell 39:234–46 [Google Scholar]
  124. Kim T, Buratowski S. 124.  2009. Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5′ transcribed regions. Cell 137:259–72 [Google Scholar]
  125. Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H. 125.  et al. 2006. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24:785–96 [Google Scholar]
  126. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK. 126.  et al. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–92 [Google Scholar]
  127. Joshi AA, Struhl K. 127.  2005. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20:971–78 [Google Scholar]
  128. Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V. 128.  et al. 2005. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593–605 [Google Scholar]
  129. Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y. 129.  et al. 2012. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19:884–92 [Google Scholar]
  130. Alen C, Kent NA, Jones HS, O'Sullivan J, Aranda A, Proudfoot NJ. 130.  2002. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell 10:1441–52 [Google Scholar]
  131. Morillon A, Karabetsou N, O'Sullivan J, Kent N, Proudfoot N, Mellor J. 131.  2003. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115:425–35 [Google Scholar]
  132. Tomson BN, Arndt KM. 132.  2013. The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochim. Biophys. Acta 1829:116–26 [Google Scholar]
  133. Tous C, Rondón AG, García-Rubio M, González-Aguilera C, Luna R, Aguilera A. 133.  2011. A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J. 30:1953–64 [Google Scholar]
  134. Kaplan CD, Laprade L, Winston F. 134.  2003. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301:1096–99 [Google Scholar]
  135. Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P. 135.  et al. 2013. Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 155:1075–87 [Google Scholar]
  136. Wlotzka W, Kudla G, Granneman S, Tollervey D. 136.  2011. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30:1790–803 [Google Scholar]
  137. Steinmetz EJ, Ng SBH, Cloute JP, Brow DA. 137.  2006. cis- and trans-acting determinants of transcription termination by yeast RNA polymerase II. Mol. Cell. Biol. 26:2688–96 [Google Scholar]
  138. Singh N, Ma Z, Gemmill T, Wu X, Defiglio H. 138.  et al. 2009. The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol. Cell 36:255–66 [Google Scholar]
  139. Tietjen JR, Zhang DW, Rodríguez-Molina JB, White BE, Akhtar MS. 139.  et al. 2010. Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17:1154–61 [Google Scholar]
  140. Lenstra TL, Tudek A, Clauder S, Xu Z, Pachis ST. 140.  et al. 2013. The role of Ctk1 kinase in termination of small non-coding RNAs. PLOS ONE 8:e80495 [Google Scholar]
  141. Kuehner JN, Brow DA. 141.  2008. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol. Cell 31:201–11 [Google Scholar]
  142. Thiebaut M, Colin J, Neil H, Jacquier A, Seraphin B. 142.  et al. 2008. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol. Cell 31:671–82 [Google Scholar]
  143. Jensen TH, Jacquier A, Libri D. 143.  2013. Dealing with pervasive transcription. Mol. Cell 52:473–84 [Google Scholar]
  144. van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M. 144.  et al. 2011. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475:114–17 [Google Scholar]
  145. David L, Huber W, Granovskaia M, Toedling J, Palm CJ. 145.  et al. 2006. A high-resolution map of transcription in the yeast genome. PNAS 103:5320–25 [Google Scholar]
  146. Xu Z, Wei W, Gagneur J, Clauder-Münster S, Smolik M. 146.  et al. 2011. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7:468 [Google Scholar]
  147. Castelnuovo M, Zaugg JB, Guffanti E, Maffioletti A, Camblong J. 147.  et al. 2014. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. Nucleic Acids Res. 42:4348–62 [Google Scholar]
  148. Churchman LS, Weissman JS. 148.  2011. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469:368–73 [Google Scholar]
  149. Marquardt S, Escalante-Chong R, Pho N, Wang J, Churchman LS. 149.  et al. 2014. A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 157:1712–23 [Google Scholar]
  150. Whitehouse I, Rando OJ, Delrow J, Tsukiyama T. 150.  2007. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–35 [Google Scholar]
  151. Murray SC, Serra Barros A, Brown DA, Dudek P, Ayling J, Mellor J. 151.  2012. A pre-initiation complex at the 3′-end of genes drives antisense transcription independent of divergent sense transcription. Nucleic Acids Res. 40:2432–44 [Google Scholar]
  152. Rhee HS, Pugh BF. 152.  2012. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301 [Google Scholar]
  153. Hainer SJ, Pruneski JA, Mitchell RD, Monteverde RM, Martens JA. 153.  2011. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 25:29–40 [Google Scholar]
  154. Martens JA, Laprade L, Winston F. 154.  2004. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–74 [Google Scholar]
  155. Castelnuovo M, Rahman S, Guffanti E, Infantino V, Stutz F, Zenklusen D. 155.  2013. Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat. Struct. Mol. Biol. 20:851–58 [Google Scholar]
  156. Hongay CF, Grisafi PL, Galitski T, Fink GR. 156.  2006. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:735–45 [Google Scholar]
  157. Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. 157.  2008. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol. Cell 32:685–95 [Google Scholar]
  158. Vasiljeva L, Kim M, Terzi N, Soares LM, Buratowski S. 158.  2008. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol. Cell 29:313–23 [Google Scholar]
  159. Darby MM, Serebreni L, Pan X, Boeke JD, Corden JL. 159.  2012. The Saccharomyces cerevisiae Nrd1–Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion. Mol. Cell. Biol. 32:1762–75 [Google Scholar]
  160. Sugimoto K, Matsumoto K, Kornberg RD, Reed SI, Wittenberg C. 160.  1995. Dosage suppressors of the dominant G1 cyclin mutant CLN3-2: identification of a yeast gene encoding a putative RNA/ssDNA binding protein. Mol. Gen. Genet. 248:712–18 [Google Scholar]
  161. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE. 161.  et al. 2007. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. PNAS 104:2193–98 [Google Scholar]
  162. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM. 162.  et al. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20:301–5 [Google Scholar]
  163. Kim KY, Levin DE. 163.  2011. Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination. Cell 144:745–56 [Google Scholar]
  164. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I. 164.  et al. 2004. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74:1128–35 [Google Scholar]
  165. Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I. 165.  et al. 2004. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet. 36:225–27 [Google Scholar]
  166. O'Reilly D, Kuznetsova OV, Laitem C, Zaborowska J, Dienstbier M, Murphy S. 166.  2014. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res. 42:264–75 [Google Scholar]
  167. Skourti-Stathaki K, Proudfoot NJ, Gromak N. 167.  2011. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42:794–805 [Google Scholar]
  168. Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D. 168.  et al. 2012. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151:835–46 [Google Scholar]
  169. Yuce O, West SC. 169.  2013. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33:406–17 [Google Scholar]
  170. Fogel BL, Cho E, Wahnich A, Gao F, Becherel OJ. 170.  et al. 2014. Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2. Hum. Mol. Genet. 23:4758–69 [Google Scholar]
  171. Richard P, Feng S, Manley JL. 171.  2013. A SUMO-dependent interaction between senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev. 27:2227–32 [Google Scholar]
  172. Brannan K, Kim H, Erickson B, Glover-Cutter K, Kim S. 172.  et al. 2012. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46:311–24 [Google Scholar]
  173. Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ. 173.  2008. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev. 22:1082–92 [Google Scholar]
  174. Lepore N, Lafontaine DL. 174.  2011. A functional interface at the rDNA connects rRNA synthesis, pre-rRNA processing and nucleolar surveillance in budding yeast. PLOS ONE 6:e24962 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034457
Loading
/content/journals/10.1146/annurev-biochem-060614-034457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error