Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry–based lipidomics in addressing cell biological questions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Merrill AH, Dennis EA, McDonald JG, Fahy E. 1.  2013. Lipidomics technologies at the end of the first decade and the beginning of the next. Adv. Nutr. 4:565–57 [Google Scholar]
  2. Shevchenko A, Simons K. 2.  2010. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11:593–98 [Google Scholar]
  3. Wenk MR.3.  2005. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4:594–610 [Google Scholar]
  4. Ivanova PT, Milne SB, Myers DS, Brown HA. 4.  2009. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr. Opin. Chem. Biol. 13:526–31 [Google Scholar]
  5. Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG. 5.  2006. The HIV lipidome: a raft with an unusual composition. Proc. Natl. Acad. Sci. USA 103:2641–46 [Google Scholar]
  6. Brügger B, Graham C, Leibrecht I, Mombelli E, Jen A. 6.  et al. 2004. The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J. Biol. Chem. 279:7530–36 [Google Scholar]
  7. Brügger B, Sandhoff R, Wegehingel S, Gorgas K, Malsam J. 7.  et al. 2000. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151:507–18 [Google Scholar]
  8. Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM. 8.  et al. 2012. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 196:213–21 [Google Scholar]
  9. Kalvodova L, Sampaio JL, Cordo S, Ejsing CS, Shevchenko A, Simons K. 9.  2009. The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J. Virol. 83:7996–8003 [Google Scholar]
  10. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ. 10.  et al. 2009. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185:601–12 [Google Scholar]
  11. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M. 11.  et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127:831–46 [Google Scholar]
  12. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D. 12.  et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–47 [Google Scholar]
  13. Andreyev AY, Fahy E, Guan Z, Kelly S, Li X. 13.  et al. 2010. Subcellular organelle lipidomics in TLR-4-activated macrophages. J. Lipid Res. 51:2785–97 [Google Scholar]
  14. Guan XL, Cestra G, Shui G, Kuhrs A, Schittenhelm RB. 14.  et al. 2013. Biochemical membrane lipidomics during Drosophila development. Dev. Cell 24:98–111 [Google Scholar]
  15. Jin J, Sison K, Li C, Tian R, Wnuk M. 15.  et al. 2012. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151:384–99 [Google Scholar]
  16. Liu ST, Sharon-Friling R, Ivanova P, Milne SB, Myers DS. 16.  et al. 2011. Synaptic vesicle–like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc. Natl. Acad. Sci. USA 108:12869–74 [Google Scholar]
  17. Surviladze Z, Harrison KA, Murphy RC, Wilson BS. 17.  2007. FcεRI and Thy-1 domains have unique protein and lipid compositions. J. Lipid Res. 48:1325–35 [Google Scholar]
  18. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR. 18.  et al. 2009. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50:Suppl.S9–14 [Google Scholar]
  19. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr. 19.  et al. 2005. A comprehensive classification system for lipids. J. Lipid Res. 46:839–61 [Google Scholar]
  20. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. 20.  2008. Informatics and computational strategies for the study of lipids. Mol. Biosyst. 4:121–27 [Google Scholar]
  21. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y. 21.  et al. 2000. A ubiquitin-like system mediates protein lipidation. Nature 408:488–92 [Google Scholar]
  22. London E, Brown DA. 22.  2000. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508:182–95 [Google Scholar]
  23. Simons K, Gerl MJ. 23.  2010. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11:688–99 [Google Scholar]
  24. Simons K, van Meer G. 24.  1988. Lipid sorting in epithelial cells. Biochemistry 27:6197–202 [Google Scholar]
  25. Ernst AM, Contreras FX, Brügger B, Wieland F. 25.  2010. Determinants of specificity at the protein–lipid interface in membranes. FEBS Lett. 584:1713–20 [Google Scholar]
  26. Hunte C, Richers S. 26.  2008. Lipids and membrane protein structures. Curr. Opin. Struct. Biol. 18:406–11 [Google Scholar]
  27. Lee AG.27.  2011. Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36:493–500 [Google Scholar]
  28. Coskun U, Grzybek M, Drechsel D, Simons K. 28.  2011. Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. USA 108:9044–48 [Google Scholar]
  29. Contreras FX, Ernst AM, Haberkant P, Björkholm P, Lindahl E. 29.  et al. 2012. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481:525–29 [Google Scholar]
  30. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. 30.  2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49:1137–46 [Google Scholar]
  31. Özbalci C, Sachsenheimer T, Brügger B. 31.  2013. Quantitative analysis of cellular lipids by nano–electrospray ionization mass spectrometry. Methods Mol. Biol. 1033:3–20 [Google Scholar]
  32. Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM. 32.  2013. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 54:1812–24 [Google Scholar]
  33. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K. 33.  et al. 2009. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106:2136–41 [Google Scholar]
  34. Haag M, Schmidt A, Sachsenheimer T, Brügger B. 34.  2012. Quantification of signaling lipids by nano-ESI MS/MS. Metabolites 2:57–76 [Google Scholar]
  35. Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H. 35.  et al. 2011. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. USA 108:1903–7 [Google Scholar]
  36. Bligh EG, Dyer WJ. 36.  1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–17 [Google Scholar]
  37. Folch J, Lees M, Sloane Stanley GH. 37.  1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497–509 [Google Scholar]
  38. Han X, Gross RW. 38.  2005. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24:367–412 [Google Scholar]
  39. Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. 39.  1985. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57:675–79 [Google Scholar]
  40. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 40.  1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71 [Google Scholar]
  41. Benesch JL, Robinson CV. 41.  2006. Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol. 16:245–51 [Google Scholar]
  42. Kameoka J, Craighead HG, Zhang H, Henion J. 42.  2001. A polymeric microfluidic chip for CE/MS determination of small molecules. Anal. Chem. 73:1935–41 [Google Scholar]
  43. Van Pelt CK, Zhang S, Fung E, Chu I, Liu T. 43.  et al. 2003. A fully automated nano electrospray tandem mass spectrometric method for analysis of Caco-2 samples. Rapid Commun. Mass Spectrom. 17:1573–78 [Google Scholar]
  44. Jung HR, Sylvanne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K. 44.  2011. High throughput quantitative molecular lipidomics. Biochim. Biophys. Acta 1811:925–34 [Google Scholar]
  45. Osman C, Haag M, Potting C, Rodenfels J, Dip PV. 45.  et al. 2009. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 184:583–96 [Google Scholar]
  46. Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT. 46.  et al. 2006. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal. Chem. 78:585–95 [Google Scholar]
  47. Zamfir A, Vukelić Z, Bindila L, Peter-Katalinić J, Almeida R. 47.  et al. 2004. Fully-automated chip-based nanoelectrospray tandem mass spectrometry of gangliosides from human cerebellum. J. Am. Soc. Mass Spectrom. 15:1649–57 [Google Scholar]
  48. Bilgin M, Markgraf DF, Duchoslav E, Knudsen J, Jensen ON. 48.  et al. 2011. Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: a tool for monitoring PE metabolism. Biochim. Biophys. Acta 1811:1081–89 [Google Scholar]
  49. Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R. 49.  et al. 2006. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78:6202–14 [Google Scholar]
  50. Ejsing CS, Moehring T, Bahr U, Duchoslav E, Karas M. 50.  et al. 2006. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap–orbitrap mass spectrometry. J. Mass Spectrom. 41:372–89 [Google Scholar]
  51. Ekroos K, Chernushevich IV, Simons K, Shevchenko A. 51.  2002. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal. Chem. 74:941–49 [Google Scholar]
  52. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A. 52.  2003. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 44:2181–92 [Google Scholar]
  53. Lee H, Lerno LA Jr, Choe Y, Chu CS, Gillies LA. 53.  et al. 2012. Multiple precursor ion scanning of gangliosides and sulfatides with a reversed-phase microfluidic chip and quadrupole time-of-flight mass spectrometry. Anal. Chem. 84:5905–12 [Google Scholar]
  54. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. 54.  2009. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE 4:e6261 [Google Scholar]
  55. Koulman A, Woffendin G, Narayana VK, Welchman H, Crone C, Volmer DA. 55.  2009. High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid Commun. Mass Spectrom. 23:1411–18 [Google Scholar]
  56. Li J, Hoene M, Zhao X, Chen S, Wei H. 56.  et al. 2013. Stable isotope-assisted lipidomics combined with nontargeted isotopomer filtering, a tool to unravel the complex dynamics of lipid metabolism. Anal. Chem. 85:4651–57 [Google Scholar]
  57. Masoodi M, Eiden M, Koulman A, Spaner D, Volmer DA. 57.  2010. Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Anal. Chem. 82:8176–85 [Google Scholar]
  58. Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR, Shevchenko A. 58.  2012. Shotgun lipidomics on a LTQ orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 47:96–104 [Google Scholar]
  59. Schuhmann K, Herzog R, Schwudke D, Metelmann-Strupat W, Bornstein SR, Shevchenko A. 59.  2011. Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ orbitrap mass spectrometers. Anal. Chem. 83:5480–87 [Google Scholar]
  60. Schwudke D, Hannich JT, Surendranath V, Grimard V, Moehring T. 60.  et al. 2007. Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal. Chem. 79:4083–93 [Google Scholar]
  61. Taguchi R, Ishikawa M. 61.  2010. Precise and global identification of phospholipid molecular species by an orbitrap mass spectrometer and automated search engine Lipid Search. J. Chromatogr. A 1217:4229–39 [Google Scholar]
  62. Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A. 62.  2011. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb. Perspect. Biol. 3:a004614 [Google Scholar]
  63. Weintraub ST, Pinckard RN, Hail M. 63.  1991. Electrospray ionization for analysis of platelet-activating factor. Rapid Commun. Mass Spectrom. 5:309–11 [Google Scholar]
  64. Han X, Gross RW. 64.  1994. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl. Acad. Sci. USA 91:10635–39 [Google Scholar]
  65. Hoischen C, Ihn W, Gura K, Gumpert J. 65.  1997. Structural characterization of molecular phospholipid species in cytoplasmic membranes of the cell wall–less Streptomyces hygroscopicus L. form by use of electrospray ionization coupled with collision-induced dissociation mass spectrometry. J. Bacteriol. 179:3437–42 [Google Scholar]
  66. Kerwin JL, Tuininga AR, Ericsson LH. 66.  1994. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res. 35:1102–14 [Google Scholar]
  67. Kerwin JL, Tuininga AR, Wiens AM, Wang JC, Torvik JJ. 67.  et al. 1995. Isoprenoid-mediated changes in the glycerophospholipid molecular species of the sterol auxotrophic fungus Lagenidium giganteum. Microbiology 141:Part 2399–410 [Google Scholar]
  68. Kwon G, Bohrer A, Han X, Corbett JA, Ma Z. 68.  et al. 1996. Characterization of the sphingomyelin content of isolated pancreatic islets. Evaluation of the role of sphingomyelin hydrolysis in the action of interleukin-1 to induce islet overproduction of nitric oxide. Biochim. Biophys. Acta 1300:63–72 [Google Scholar]
  69. Smith PB, Snyder AP, Harden CS. 69.  1995. Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal. Chem. 67:1824–30 [Google Scholar]
  70. Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. 70.  1997. Quantitative analysis of biological membrane lipids at the low picomole level by nano–electrospray ionization tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 94:2339–44 [Google Scholar]
  71. Han X, Gubitosi-Klug RA, Collins BJ, Gross RW. 71.  1996. Alterations in individual molecular species of human platelet phospholipids during thrombin stimulation: electrospray ionization mass spectrometry–facilitated identification of the boundary conditions for the magnitude and selectivity of thrombin-induced platelet phospholipid hydrolysis. Biochemistry 35:5822–32 [Google Scholar]
  72. Lehmann WD, Koester M, Erben G, Keppler D. 72.  1997. Characterization and quantification of rat bile phosphatidylcholine by electrospray–tandem mass spectrometry. Anal. Biochem. 246:102–10 [Google Scholar]
  73. Gu M, Kerwin JL, Watts JD, Aebersold R. 73.  1997. Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry. Anal. Biochem. 244:347–56 [Google Scholar]
  74. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. 74.  2001. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42:663–72 [Google Scholar]
  75. Han X, Yang K, Gross RW. 75.  2012. Multi-dimensional mass spectrometry–based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31:134–78 [Google Scholar]
  76. Han X, Yang J, Cheng H, Ye H, Gross RW. 76.  2004. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal. Biochem. 330:317–31 [Google Scholar]
  77. Hou W, Zhou H, Bou Khalil M, Seebun D, Bennett SA, Figeys D. 77.  2011. Lyso-form fragment ions facilitate the determination of stereospecificity of diacyl glycerophospholipids. Rapid Commun. Mass Spectrom. 25:205–17 [Google Scholar]
  78. Pike LJ, Han X, Gross RW. 78.  2005. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J. Biol. Chem. 280:26796–804 [Google Scholar]
  79. Yang K, Cheng H, Gross RW, Han X. 79.  2009. Automated lipid identification and quantification by multidimensional mass spectrometry–based shotgun lipidomics. Anal. Chem. 81:4356–68 [Google Scholar]
  80. Bennion B, Dasgupta S, Hogan EL, Levery SB. 80.  2007. Characterization of novel myelin components 3-O-acetyl-sphingosine galactosylceramides by electrospray ionization Q-TOF MS and MS/CID-MS of Li+ adducts. J. Mass Spectrom. 42:598–620 [Google Scholar]
  81. Bowden JA, Albert CJ, Barnaby OS, Ford DA. 81.  2011. Analysis of cholesteryl esters and diacylglycerols using lithiated adducts and electrospray ionization–tandem mass spectrometry. Anal. Biochem. 417:202–10 [Google Scholar]
  82. Ham BM, Cole RB. 82.  2005. Determination of bond dissociation energies using electrospray tandem mass spectrometry and a derived effective reaction path length approach. Anal. Chem. 77:4148–59 [Google Scholar]
  83. Hsu FF, Bohrer A, Turk J. 83.  1998. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 9:516–26 [Google Scholar]
  84. Hsu FF, Bohrer A, Wohltmann M, Ramanadham S, Ma Z. 84.  et al. 2000. Electrospray ionization mass spectrometric analyses of changes in tissue phospholipid molecular species during the evolution of hyperlipidemia and hyperglycemia in Zucker diabetic fatty rats. Lipids 35:839–54 [Google Scholar]
  85. Hsu FF, Turk J. 85.  1999. Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 10:600–12 [Google Scholar]
  86. Hsu FF, Turk J. 86.  1999. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 10:587–99 [Google Scholar]
  87. Hsu FF, Turk J. 87.  2008. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 19:1681–91 [Google Scholar]
  88. Brown SH, Mitchell TW, Blanksby SJ. 88.  2011. Analysis of unsaturated lipids by ozone-induced dissociation. Biochim. Biophys. Acta 1811:807–17 [Google Scholar]
  89. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M. 89.  et al. 2005. Focused lipidomics by tandem mass spectrometry. J. Chromatogr. B 823:26–36 [Google Scholar]
  90. Schwudke D, Liebisch G, Herzog R, Schmitz G, Shevchenko A. 90.  2007. Shotgun lipidomics by tandem mass spectrometry under data-dependent acquisition control. Methods Enzymol. 433:175–91 [Google Scholar]
  91. Chernushevich IV, Loboda AV, Thomson BA. 91.  2001. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36:849–65 [Google Scholar]
  92. Stahlman M, Ejsing CS, Tarasov K, Perman J, Boren J, Ekroos K. 92.  2009. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J. Chromatogr. B 877:2664–72 [Google Scholar]
  93. Chan R, Uchil PD, Jin J, Shui G, Ott DE. 93.  et al. 2008. Retroviruses, human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J. Virol. 82:11228–38 [Google Scholar]
  94. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F. 94.  et al. 2011. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat. Methods 8:267–72 [Google Scholar]
  95. Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S. 95.  Di et al. 2004. Impaired PtdIns4,5P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–22 [Google Scholar]
  96. Pettitt TR, Dove SK, Lubben A, Calaminus SD, Wakelam MJ. 96.  2006. Analysis of intact phosphoinositides in biological samples. J. Lipid Res. 47:1588–96 [Google Scholar]
  97. Wakelam MJ, Clark J. 97.  2011. Methods for analyzing phosphoinositides using mass spectrometry. Biochim. Biophys. Acta 1811:758–62 [Google Scholar]
  98. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF. 98.  et al. 2003. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21:813–17 [Google Scholar]
  99. Richardson D, Ortori CA, Chapman V, Kendall DA, Barrett DA. 99.  2007. Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography–tandem electrospray ionization mass spectrometry. Anal. Biochem. 360:216–26 [Google Scholar]
  100. Schreiber D, Harlfinger S, Nolden BM, Gerth CW, Jaehde U. 100.  et al. 2007. Determination of anandamide and other fatty acyl ethanolamides in human serum by electrospray tandem mass spectrometry. Anal. Biochem. 361:162–68 [Google Scholar]
  101. Thomas A, Hopfgartner G, Giroud C, Staub C. 101.  2009. Quantitative and qualitative profiling of endocannabinoids in human plasma using a triple quadrupole linear ion trap mass spectrometer with liquid chromatography. Rapid Commun. Mass Spectrom. 23:629–38 [Google Scholar]
  102. Bollinger JG, Thompson W, Lai Y, Oslund RC, Hallstrand TS. 102.  et al. 2010. Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. Anal. Chem. 82:6790–96 [Google Scholar]
  103. Liu X, Moon SH, Mancuso DJ, Jenkins CM, Guan S. 103.  et al. 2013. Oxidized fatty acid analysis by charge-switch derivatization, selected reaction monitoring, and accurate mass quantitation. Anal. Biochem. 442:40–50 [Google Scholar]
  104. Wang M, Han RH, Han X. 104.  2013. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation–assisted approach. Anal. Chem. 85:9312–20 [Google Scholar]
  105. Milne SB, Tallman KA, Serwa R, Rouzer CA, Armstrong MD. 105.  et al. 2010. Capture and release of alkyne-derivatized glycerophospholipids using cobalt chemistry. Nat. Chem. Biol. 6:205–7 [Google Scholar]
  106. Fahy E, Cotter D, Sud M, Subramaniam S. 106.  2011. Lipid classification, structures and tools. Biochim. Biophys. Acta 1811:637–47 [Google Scholar]
  107. Hartler J, Tharakan R, Köfeler HC, Graham DR, Thallinger GG. 107.  2013. Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief. Bioinforma. 14:375–90 [Google Scholar]
  108. Oresic M.108.  2011. Informatics and computational strategies for the study of lipids. Biochim. Biophys. Acta 1811:991–99 [Google Scholar]
  109. Herzog R, Schuhmann K, Schwudke D, Sampaio JL, Bornstein SR. 109.  et al. 2012. LipidXplorer: a software for consensual cross-platform lipidomics. PLoS ONE 7:e29851 [Google Scholar]
  110. Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR. 110.  et al. 2011. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 12:R8 [Google Scholar]
  111. Köfeler HC, Fauland A, Rechberger GN, Trötzmüller M. 111.  2012. Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites 2:19–38 [Google Scholar]
  112. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O. 112.  2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10:755–58 [Google Scholar]
  113. Horvath SE, Daum G. 113.  2013. Lipids of mitochondria. Prog. Lipid Res. 52:590–614 [Google Scholar]
  114. Claypool SM, Koehler CM. 114.  2012. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37:32–41 [Google Scholar]
  115. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY. 115.  et al. 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15:1197–205 [Google Scholar]
  116. Kiebish MA, Han X, Cheng H, Lunceford A, Clarke CF. 116.  et al. 2008. Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. J. Neurochem. 106:299–312 [Google Scholar]
  117. Schlame M, Ren M, Xu Y, Greenberg ML, Haller I. 117.  2005. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids 138:38–49 [Google Scholar]
  118. Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ. 118.  et al. 2012. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat. Neurosci. 15:1407–13 [Google Scholar]
  119. Kiebish MA, Bell R, Yang K, Phan T, Zhao Z. 119.  et al. 2010. Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J. Lipid Res. 51:2153–70 [Google Scholar]
  120. Tatsuta T, Scharwey M, Langer T. 120.  2013. Mitochondrial lipid trafficking. Trends Cell Biol. 2444–52
  121. Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T. 121.  2012. Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338:815–18 [Google Scholar]
  122. Potting C, Tatsuta T, Konig T, Haag M, Wai T. 122.  et al. 2013. TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 18:287–95 [Google Scholar]
  123. Di Gennaro A, Haeggström JZ. 123.  2012. The leukotrienes: immune-modulating lipid mediators of disease. Adv. Immunol. 116:51–92 [Google Scholar]
  124. Hirata T, Narumiya S. 124.  2012. Prostanoids as regulators of innate and adaptive immunity. Adv. Immunol. 116:143–74 [Google Scholar]
  125. Ji RR, Xu ZZ, Strichartz G, Serhan CN. 125.  2011. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34:599–609 [Google Scholar]
  126. Kendall AC, Nicolaou A. 126.  2013. Bioactive lipid mediators in skin inflammation and immunity. Prog. Lipid Res. 52:141–64 [Google Scholar]
  127. Deems R, Buczynski MW, Bowers-Gentry R, Harkewicz R, Dennis EA. 127.  2007. Detection and quantitation of eicosanoids via high performance liquid chromatography–electrospray ionization–mass spectrometry. Methods Enzymol. 432:59–82 [Google Scholar]
  128. Dickinson JS, Murphy RC. 128.  2002. Mass spectrometric analysis of leukotriene A4 and other chemically reactive metabolites of arachidonic acid. J. Am. Soc. Mass Spectrom. 13:1227–34 [Google Scholar]
  129. Feldstein AE, Lopez R, Tamimi TA, Yerian L, Chung YM. 129.  et al. 2010. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res. 51:3046–54 [Google Scholar]
  130. Isobe Y, Arita M, Matsueda S, Iwamoto R, Fujihara T. 130.  et al. 2012. Identification and structure determination of novel anti-inflammatory mediator resolvin E3, 17,18-dihydroxyeicosapentaenoic acid. J. Biol. Chem. 287:10525–34 [Google Scholar]
  131. Maskrey BH, O'Donnell VB. 131.  2008. Analysis of eicosanoids and related lipid mediators using mass spectrometry. Biochem. Soc. Trans. 36:1055–59 [Google Scholar]
  132. Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A. 132.  2008. Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy–fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:75–83 [Google Scholar]
  133. Nicolaou A, Masoodi M, Mir A. 133.  2009. Lipidomic analysis of prostanoids by liquid chromatography–electrospray tandem mass spectrometry. Methods Mol. Biol. 579:271–86 [Google Scholar]
  134. Yamada T, Tani Y, Nakanishi H, Taguchi R, Arita M, Arai H. 134.  2011. Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice. FASEB J. 25:561–68 [Google Scholar]
  135. Yang J, Schmelzer K, Georgi K, Hammock BD. 135.  2009. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 81:8085–93 [Google Scholar]
  136. Yin H, Cox BE, Liu W, Porter NA, Morrow JD, Milne GL. 136.  2009. Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray iontrap mass spectrometry. J. Mass Spectrom. 44:672–80 [Google Scholar]
  137. Yu R, Zhao G, Christman JW, Xiao L, Van Breemen RB. 137.  2013. Method development and validation for ultra-high pressure liquid chromatography/tandem mass spectrometry determination of multiple prostanoids in biological samples. J. AOAC Int. 96:67–76 [Google Scholar]
  138. Song J, Liu X, Wu J, Meehan MJ, Blevitt JM. 138.  et al. 2013. A highly efficient, high-throughput lipidomics platform for the quantitative detection of eicosanoids in human whole blood. Anal. Biochem. 433:181–88 [Google Scholar]
  139. Norris PC, Dennis EA. 139.  2012. Ω3 Fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc. Natl. Acad. Sci. USA 109:8517–22 [Google Scholar]
  140. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J. 140.  et al. 2013. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153:112–25 [Google Scholar]
  141. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS. 141.  et al. 2010. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51:3299–305 [Google Scholar]
  142. Fahy E, Sud M, Cotter D, Subramaniam S. 142.  2007. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35:W606–12 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error